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The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive vol-

ume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-

quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control,

variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype in-

formation. The pipeline can process thousands of samples in parallel and requires less computational resources than current

alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project

show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our

pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including

the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical

sequencing studies.

[Supplemental material is available for this article.]

The cost of human genome sequencing has declined rapidly, pow-
ered by advances in massively parallel sequencing technologies.
This has made possible the collection of genomic information
on an unprecedented scale and made large-scale sequencing a
practical strategy for biological and medical studies. An initial
step for nearly all sequencing studies is to detect variant sites
among sampled individuals and genotype them. This analysis is
challenging because errors in high-throughput sequence data are
much more common than true genomic variation. There are
diverse sources of trouble (base-calling errors, alignment artifacts,
contaminant reads derived from other samples), and the resulting
errors are often correlated. The analysis is also computationally
and statistically challenging because of the volume of data in-
volved. Using standard formats, raw sequence reads for a single
deeply (30×) sequenced human genome require >100 gigabytes
(GB) of storage.

Several tools are now available to process next-generation se-
quencing data. For example, the Genome Analysis Toolkit (GATK)
(DePristo et al. 2011), SAMtools (Li 2011), and SNPTools (Wang
et al. 2013) are used for variant discovery and genotyping from
small to moderate numbers of sequenced samples. However, as
the number of sequenced genomes grows, analysis becomes in-
creasingly challenging, requiring complex data processing steps,
division of sequence data into many small regions, management
and scheduling of analysis jobs, and often, prohibitive demands
on computing resources. A tempting approach to alleviate compu-
tational burden is to process samples in small batches, but this can
lead to reduced power for rare variant discovery and systematic dif-
ferences between samples processed in different batches.

There is a pressing need for software pipelines that support
large-scale medical sequencing studies that will be made possible
by decreased sequencing costs. Desirable features for such pipe-
lines include (1) scalability to tens of thousands of samples; (2)
the ability to easily stop and resume analyses; (3) the option to car-
ry out incremental analyses as new samples are sequenced; (4) flex-
ibility to accommodate different study designs: shallow and deep
sequencing, whole-genome, whole-exome, or small targeted ex-
periments; and, of course, (5) high-quality genotyping and variant
discovery.

Here, we describe and evaluate our flexible and efficient se-
quence analysis software pipeline, Genomes on the Cloud
(GotCloud). We show that GotCloud delivers high-quality variant
sites and accurate genotypes across thousands of samples. We
describe the strategies to systematically divide processing of very
large data sets into manageable pieces. We also demonstrate novel
automated frameworks for filtering sequencing and alignment ar-
tifacts from variant calls as well as for accurate genotyping using
haplotype information.

Results

GotCloud offers a comprehensive pipeline including sequence
alignment, post-alignment processing and quality control, variant
calling, variant filtering, and haplotype-aware genotype refine-
ment, as described in the Methods section (Fig. 1). In this section
we highlight and evaluate key features of GotCloud, including
the computational efficiency and the robustness of variant call-
ing and filtering, compared with GATK UnifiedGenotyper. Our

Corresponding author: hmkang@umich.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.176552.114.

© 2015 Jun et al. This article is distributed exclusively by Cold Spring Harbor
Laboratory Press for the first six months after the full-issue publication date (see
http://genome.cshlp.org/site/misc/terms.xhtml). After sixmonths, it is available
under a Creative Commons License (Attribution-NonCommercial 4.0 In-
ternational), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

918 Genome Research 25:918–925 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/15; www.genome.org
www.genome.org

mailto:hmkang@umich.edu
mailto:hmkang@umich.edu
http://www.genome.org/cgi/doi/10.1101/gr.176552.114
http://www.genome.org/cgi/doi/10.1101/gr.176552.114
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


GotCloud variant calling pipeline has been used in many large ge-
nome and exome sequencing studies, eachwith thousands of sam-
ples (Table 1).

Evaluation of computational efficiency

Using low-coverage genome and exome data sets from the 1000
Genomes Project, we evaluate the computational efficiency of
GotCloud using a minicluster with four dedicated computing
nodes, where each node has 48 physical CPU cores and 64 GB of
main memory. Figure 2A summarizes the total computational
costs as a function of sample size, comparing the GotCloud vari-
ant calling pipeline and the GATK UnifiedGenotyper.

For low-coverage genomes, total runtimes for both GotCloud
and GATK increase at a faster than linear rate with sample size,
because increased sample size increases not only the number of
samples (and the amount of sequence data) to process but also re-

sults in more discovered variant sites, which must be inspected in
each sample for genotyping and variant filtering. For both low-
coverage genomes and deep exomes, GotCloud ran faster than
GATK, most noticeably for analyses of >500 samples. This speed
advantage increases gradually. For analysis of 1000 low-coverage
samples, GotCloud took ∼5700 CPU hours, whereas GATK took
∼16,500 CPU hours. Similarly, for 1000 exomes, GotCloud took
∼750 CPU hours and GATK took ∼2930 CPU hours.

GotCloud also maintains an efficient memory footprint (Fig.
2B).While GATK required >7GB ofmemory to analyze a thousand
exomes, GotCloud on average required <1GBofmemory. Inmem-
ory-bound computing environments with a large number of con-
current processes, which is a common practice for large-scale
sequencing studies, GotCloud can host approximately 10 times
more concurrent processes than GATK.

Unlike low-coverage genomes, the runtime for deep exomes
grows almost linearly with sample size, because the majority of
computational effort is spent on the “pileup” step that summarizes
deep sequence data, whereas little time is spent on the
“glfMultiples” variant calling processes due to the relatively small
target size (Supplemental Fig. 1).

Evaluation of variant detection sensitivity

Wenext assessed the variant detection sensitivity ofGotCloud and
GATK with increasing sample sizes for low-coverage genomes. For
both GATK and GotCloud, the number of detected variants per
sample increased as more samples were analyzed together (Tables
2, 3; Supplemental Table S3), particularly when the coverage was
low. This is consistent with our expectation because variants
shared between samples are more likely to be detected when the
information across samples is combined (Li et al. 2010).

We calculated the fraction of detected variants among the
polymorphic variants in HumanExome BeadChip arrays as a mea-
sure of variant detection sensitivity. We excluded the variants in-
cluded in the Omni2.5 SNP genotyping array, which was used for
training the SVM filters. As expected, GotCloud’s HumanExome
BeadChip sensitivity for low-coverage data increased from 71.4%
to 75.3% as the sample size increased from 10 to 1000 (Fig. 3A).
For deep exome data, the sensitivity also increased from 90.8% to
94.2% (Fig. 3B). GATK showed lower sensitivity both for low-cover-
age data (67.4%–71.5%), and deep exome data (78.3%–89.6%).
GotCloud consistently showedhigher variant detection sensitivity
than GATK in every comparison.

Evaluation of variant filtering

We evaluated the quality of filtered variant calls by looking at the
transition to transversion ratio (Ts/Tv). To complement the

Figure 1. Outline of GotCloud variant calling pipeline.

Table 1. GotCloud pipeline in large-scale sequencing studies

Project Sequence type No. samples No. SNPs

Runtime (days)

Variant calling (100 CPUs) Genotype refinement (1000 CPUs)

1000G (phase I) ∼4× Genome 1092 34.5M 2.6 15.6
1000G (phase I) ∼40× Exome 822 598K 0.38 N/A
GoT2D ∼5× Genome 2875 26.7M 7.9 41.0
ESP ∼80× Exome 6916 1.9M 6.3 N/A
Sardinia ∼3× Genome 2123 17.6M 5.5 30.1

Variant calling runtime was extrapolated from the analysis of Figure 2 using quadratic model fit, and genotype refinement runtime was calculated
based on empirical results from the GoT2D data set (2875 genomes).
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sensitivity analysis, we evaluated the quality of the filtered calls us-
ing the HumanExome BeadChip sensitivity described above.

Previous studies report whole-genome Ts/Tv between 2.1 and
2.3 (DePristo et al. 2011), but the exact value is affected by allele
frequency, GC content, proportion of CpG sites, natural selection,
and other factors. Instead of setting a specific target Ts/Tv value,
we compared the Ts/Tv between “known” SNPs (those in dbSNP)

and “novel” SNPs (those not in dbSNP). We used dbSNP version
129, which is the latest release without variants from next-genera-
tion sequencing. Large differences in Ts/Tv between known and
novel SNPs suggest that the “novel” SNP list likely includes vari-
ants with unusual properties, indicating potential false positives.

In GotCloud’s two-step filtering process (Fig. 1), variants with
lower quality are first identified by applying individual hard filters
(Supplemental Table S1), and variants failing multiple hard filters
are used as negative examples to train a support vector machine
(SVM) classifier (See Methods for details). In our analysis of 1000
low-coverage samples, the difference of Ts/Tv between known
(2.29) and novel (2.16) SNPs was high before SVM filtering, sug-
gesting that novel SNPs have a lower quality than known SNPs.
After SVM filtering, known (2.33) and novel (2.32) SNPs have sim-
ilar Ts/Tv, suggesting that many false positive SNPs were filtered
out. The trend was similar for all other sample sizes.

Our SVM filter reduces the variant detection sensitivity by
only a small amount. The HumanExome BeadChip sensitivity
was reduced by only 0.5%–0.9% after removing 8%–13% of the
unfiltered calls, suggesting that the vast majority of SNPs filtered
out are likely false positives (Fig. 3). The variant quality score recal-
ibration (VQSR) filter from GATK reduced sensitivity by 0.1%–

2.4% after removing 1.6%–25% of the unfiltered calls, across dif-
ferent sample sizes.

In exomes, we expect higher Ts/Tv than in other regions
because degeneracy of the genetic code means that selection
against variants that alter protein sequence preferentially removes
transversion alleles from the population, as reported in previous
studies on population-scale exome sequencing (Tennessen et al.
2012; Fu et al. 2013). Differences between known and novel SNPs
are also expected as a result of natural selection since protein-
codingvariants (which aremore often transversions) tend tobe rar-
er than variants that do not alter protein sequence (which are
more often transitions). To facilitate interpretation, we stratify
the analysis of exome samples and examine nonsynonymous var-
iants that alter protein sequence separately from synonymous var-
iants that do not.

In exome sequencing, we again observed that (within each
functional category) Ts/Tv for known and novel variants became
much more similar after filtering (Supplemental Table S2). With
1000 exomes, Ts/Tv at nonsynonymous SNPs were 2.24 and 1.61
for known and novel variants before filtering, which became
2.33 and 2.31, respectively, after filtering. For synonymous SNPs,
Ts/Tv of 5.40 and 4.05 for known and novel variants before filter-
ing became 5.55 and 5.49 after filtering. We expect that filtering
becomes progressively more effective with larger sample sizes

Figure 2. Computational costs of GATK UnifiedGenotyper and
GotCloud pipelines. (A) Runtime estimated for whole-genome (6×) and
whole-exome (60×) sequence data running with 40 parallel sessions on
a four-node minicluster with 48 physical CPU cores. For GATK, runtimes
for 1000 samples are extrapolated from analyses of a single 5-Mb block
of Chromosome 20. For all other analyses, no extrapolation was used.
(B) Peak memory usage estimates averaged over Chromosome 20 chunks.

Table 2. Summary of variant calling results and the effect of filtering for low-pass sequence data

No. samples Filter No. total SNPs No. avg. SNPs per sample %dbSNP (v129) Known Ts/Tv Novel Ts/Tv

10 None 186,277 72,590 71.7 2.29 2.15
SVM PASS 172,837 66,570 73.7 2.31 2.29

FAIL 13,440 6020 46.6 1.96 1.47
100 None 425,050 78,901 42.0 2.29 2.13

SVM PASS 390,404 70,452 43.8 2.31 2.32
FAIL 34,646 8449 21.9 1.87 1.12

1000 None 1,032,984 79,465 19.3 2.29 2.16
SVM PASS 931,893 69,984 20.1 2.33 2.32

FAIL 101,091 9481 19.3 1.83 1.24

1000 Chromosome 20 BAM files were randomly selected from the 1000G Phase 3 data. Results with 10 samples were averaged over 10 sets of
10 BAM files.
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because the SVM classifier can better learn how to use diagnostics
such as allele balance in heterozygotes and strand preference
for the reference when more data are available. This expectation
is confirmed by inspection of Table 2 and Supplemental Table
S2, where differences between known
and novel variants after filtering become
progressively smaller as sample size
increases.

Because multiple features are com-
bined to construct SVM classifiers,
GotCloud’s SVM filtering outperforms
the filtering approach using any individ-
ual feature. We ordered variants based
on each individual feature, and evaluated
the Ts/Tv of variants after applying the
filters based on a single feature (Fig. 4A)
and the HumanExome BeadChip sensi-
tivity lost by applying each filter (Fig.
4B). SVM filtering showed the largest sep-
aration of Ts/Tv between filtered-in and
filtered-out variants (2.32 versus 1.20)
and the smallest loss of HumanExome
BeadChip sensitivity (0.5%). Some filters
based on individual features, such as
StrandBias or AlleleBalance, achieved
similar separation of Ts/Tv to SVM filters
but showed >5× larger (2.8%–3.2%) loss
of HumanExome BeadChip sensitivity.
Our results demonstrate that the SVM fil-
ter provides an automatic and powerful
framework to distinguish likely true and
false variants.

Portability of SVM decision rules

GotCloud provides robust filtering for
small targeted sequencing experiments
in most cases, because SVM requires
only a small number of positive and
negative labels to find a decision boun-
dary. In some cases, however, the num-
ber of labeled variants may be too small
to develop adequate training models.

GotCloud allows the transferring of
SVM classification models across data
sets. Our classification model is robust
to the differences in feature distribution
between data sets because the filtering
is based on quantile-normalized feature
space. We applied our model-transfer
filtering trained from whole-exome se-
quencing data of independent samples
onto small subsets of exome sequenc-
ing data, mimicking small target se-
quencing of 10 kb to 10 Mb. We used
500 exome samples from the 1000
Genomes Project to train the SVM classi-
fier, and used another 500 nonoverlap-
ping exome samples to simulate small
target sequencing. Our results demon-
strate that the model-transfer filtering
provides higher novel Ts/Tv than the

self-trained SVM filtering trained within only the target regions,
especially when the target region was smaller (Fig. 5). In the exper-
iment with the smallest target region of 10 kb, the self-trained
model shows some differences between known (2.32) and novel

Figure 3. Variant discovery sensitivity comparison of GotCloud and GATK using HumanExome
BeadChip excluding the SNPs contained in Omni2.5 array, because Omni2.5 variants are used to train
variant filters in GotCloud and GATK. GotCloud results are shown for unfiltered (raw) and SVM-filtered
sets, and GATK results are shown for unfiltered and VQSR-filtered sets, across low-coverage genome
(A) and exome data (B).

Table 3. Comparison of SNP call sets (unfiltered and filtered) between GATK UnifiedGenotyper
and GotCloud for low-coverage genome data

No.
samples Pipeline Filter

No. total
SNPs

No. SNPs
per sample

No. dbSNP
(v129)

Known
Ts/Tv

Novel
Ts/Tv

10 GotCloud None 186,277 72,590 133,585 2.29 2.15
SVM 172,837 66,570 127,322 2.31 2.29

GATK None 194,445 74,343 132,825 2.28 1.76
VQSR 156,232 59,890 117,274 2.31 2.27

100 GotCloud None 425,050 78,901 178,546 2.29 2.13
SVM 390,404 70,452 170,943 2.31 2.32

GATK None 461,734 84,808 177,837 2.30 1.69
VQSR 454,463 81,818 173,253 2.30 1.69

1000 GotCloud None 1,032,984 79,465 199,739 2.29 2.16
SVM 931,893 69,984 187,526 2.33 2.32

GATK None 1,127,419 89,999 198,575 2.32 1.80
VQSR 846,382 64,411 172,941 2.39 2.33

1000 Chromosome 20 BAM files were randomly selected from the 1000G Phase 3 data. Results with
10 samples were averaged over 10 sets of 10 BAM files.
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(2.25) Ts/Tv for nonsynonymous SNPs, while the transfer model
shows smaller differences between known (2.35) and novel
(2.33) Ts/Tv. In our experimental setup where there is little or no
systematic difference between the data sets, model-transfer filter-
ing appears to perform as good as the self-trained SVM, even for
large target regions. Based on our experiences, when there are sys-
tematic differences between the sequencing data sets, the self-
trained model will likely perform better when the target region is
large (e.g., >1 Mb).

Effect of trimming overlapping fragments

One of the previously undocumented ways that GotCloud im-
proves the quality of the variant lists is to appropriately account
for overlapping fragments in paired end reads. Read pairs derived
from small fragments may often overlap using our stand-alone
tool bamUtil clipOverlap. If errors occur in the PCR amplification
step, these overlapping fragments will carry errors forward to
both paired reads. In these cases, a single-base sequencing error
may appear to be two independent mismatches, resulting in false
positive SNP calls. GotCloud, by default, trims the overlapping
fragment with lower sequencing quality to avoid these artifacts.
This artifact is more problematic for very rare variants where filter-
ing based on multisample statistics is not as useful; hence we eval-
uated our approach by analyzing Ts/Tv ratios for the singletons,
which are the variants with the lowest possible allele count (AC
= 1). Our evaluation with low-coverage sequencing data demon-
strates that the Ts/Tv of novel singletons substantially decreases
from 2.21 to 1.97 if the overlapping fragments are not accounted
for properly (Fig. 6).

Haplotype-aware genotype refinement

GotCloud also provides an automated pipeline to parallelize hap-
lotype-aware genotype refinement. We evaluated the benefits
of haplotype-aware refinement for low-coverage whole genomes.
SVM-filtered VCF files were supplied to Beagle (50 rounds),
and Beagle haplotypes were used to seed ThunderVCF (20 rounds).
We measured nonreference genotype concordances using
Omni2.5 array genotypes (Fig. 7). For 10 samples, nonreference
discordance was reduced from 10.0% before refinement to 6.56%
after Beagle refinement, and then further reduced to 5.36% after
ThunderVCF. Since haplotype-aware refinement depends on the

number of available haplotypes, the im-
provements were greater with more sam-
ples. After refinement, the nonreference
discordance for the 100 sample experi-
ment was reduced from 10.38% to
2.37%, and for 1000 samples it was re-
duced from 10.21% to 1.48%, consistent
with our previous experiments (Li et al.
2011; The 1000 Genomes Project
Consortium 2012).

Discussion

The GotCloud pipeline provides an effi-
cient and flexible framework for analyses
of large-scale sequence data. Experimen-
tal results show that GotCloud discovers
and genotypes high-quality SNPs by
combining population-based multisam-

ple calling and machine-learning-based filtering. It also requires
less computational time and has a smaller memory footprint
than the popular GATK pipeline. GotCloud provides a complete
end-to-end pipeline from raw sequence data to variant calls, to
haplotype-aware genotype refinement that substantially improves
accuracy for low-pass whole-genome sequencing.

GotCloud achieves a small memory footprint even with
many deeply sequenced samples because the “pileup” step sum-
marizes one sample at a time into a compact likelihood representa-
tion that is largely independent of sequencing depth. Once data
for each sample has been summarized, variant calling reviews
“pileup” results for many samples, one region at a time, using
much less computing resources than would be required for access-
ing BAM files directly. The advantages of this approach will be-
come more marked as sequencing depth increases. As a result,
GotCloud can process larger sample sizes with the same memory
or (by accommodating more parallel processes) achieve an even
greater speed advantage.

Figure 4. Comparison of SVM filteringwith hard filtering based on a single feature. (A) Ts/Tv of filtered-
in (PASS) and filtered-out (FAIL) variants using different filters. Variants are ordered by a single variant fea-
ture and a fixed fraction of variants (8%) are filtered out tomatch the variant counts with the default SVM
filter. Absolute values are used for StrandBias correlation and CycleBias correlation. (B) Percentage of fil-
tered-out HumanExome BeadChip (Omni2.5) variants among those that are polymorphic in the array
genotypes.

Figure 5. Impact of model-transfer filtering on the variant quality. The
vertical axis represents Ts/Tv for novel SNPs for model-transferred SVM
and self-trained SVM filters. Ts/Tv for known SNPs are∼3.5, which is higher
than novel SNPs because known SNPs contain a larger fraction of synony-
mous SNPs. The horizontal axis represents the size of targeted regions ran-
domly selected from 500 whole-exome sequences. The transferred model
is trained on nonoverlapping 500 exome data.
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Another advantage of separating the “pileup” and the “vari-
ant calling” steps is the possibility of incremental processing.
Large-scale DNA sequencing studies can take many years of time
and effort, and it is common to produce sequence data inmultiple
batches and generate multiple iterations of the variant calls for in-
termediate analyses and quality assurance. When a new batch of
samples is added for a new round of variant calling, GotCloud
needs to run the time-consuming pileup steponly on thenew sam-
ples,whileone-passpipelinesneed to reprocess all BAMfiles at each
iteration of the analysis. For example, consider a scenario where an
additional 200 exome sequencing samples are added to the 1000
existing samples (Fig. 2A; Supplemental Fig. 1B). To generate a
new SNP set over all 1200 samples, GotCloud requires ∼150 CPU
hours for pileup of the 200 new samples and <50 CPU hours for
glfMultiples to regenerate variant lists, achieving ∼75% of reduc-
tion in computing time compared with the case of doing every-
thing from scratch.

The GotCloud pipeline has customizable options such as the
size of genomic chunks to be processed in parallel, the regions
for targeted sequencing, and filtering parameters. Default parame-
ter settings are provided for common study designs, but these pa-
rameters can be changed to leverage expert knowledge based on
sequencing protocol, study design, objectives, and computing
environments.

For filtering, default parameters (Supplemental Table S1)
should be adequate for most scenarios, because the final SVM-fil-
tered results from GotCloud are not very sensitive to any single
threshold. When generating a variant ranking strategy, the SVM
classifier combines information across the many variants that
fail multiple hard filters, unlike the hard-filtering approach where
one inadequate threshold directly affects the filtering results. For
unusual scenarios such as drastic changes in sequencing technol-
ogies used, we provide detailed guidelines for parameter tuning
in the user’s manual (http://www.gotcloud.org).

In summary, GotCloud is an efficient, flexible, scalable, and
integrated framework that can transform raw sequence data into
high-quality variants calls and genotypes. GotCloud has already
proven useful in several large-scale sequencing studies. With un-
precedented growth of the sequencing throughput now enabling
us to produce tens of thousands of deep genomes, we expect
that GotCloud will continue to contribute to our common goal
of completing the map of human genetic variation and its conse-
quences. GotCloud is under active development with several key
improvements expected in the near future and will continue to in-
clude updates to cutting edge open source methods.

Methods

An overview of our GotCloud pipeline is given in Figure 1.
GotCloud combines several components, including: alignment,
variant calling, variant filtering, and genotype refinement. The
alignment step takes raw sequence reads stored in FASTQ files as in-
put and generates sample level sequence quality summaries and bi-
nary sequence aligned/mapped (BAM) files as output. Subsequent
steps take these BAM files as input and generate progressivelymore
refined variant call format (VCF) files as output. The variant call-
ing, filtering, and genotyping steps consist of four major tasks:
building a pileup summary of variation per individual, identifying
an initial set of variant sites, filtering poor quality variants and, fi-
nally, an optional genotype refinement step which is recommend-
ed for whole-genome sequence data and improves initial genotype
calls by leveraging haplotype information.

Each processing step is divided into a series of small tasks and
file dependencies are managed by the GNU make utility. GNU
make handles scheduling of the different tasks and deploys tasks
in highly parallel environments, such as high-performance com-
puting clusters. Dividing work into thousands of small jobs in-
creases memory efficiency, avoiding monolithic steps that must
process many terabytes of data directly. In the remainder of the
Methods section, we provide additional details on each step.

Automated sequence alignment, post-processing,

and quality assessment

The first step of analysis with GotCloud is to align raw sequence
reads (in FASTQ format) to the reference genome and post-process
the aligned reads (in BAM format) to be ready for variant calling.
GotCloud uses widely available alignment software, such as BWA
(Li and Durbin 2009) and MOSAiK (Zhao et al. 2013), to generate
initial BAM files. After the initial alignment, each BAM file is sorted
by genomic coordinates and post-processed to remove duplicated
reads and recalibrate base quality scores in a computationally and
memory efficient manner using our bamUtil tool included in
GotCloud. After these steps, several quality control metrics (such
as the number of mapped reads, base-quality distribution, insert
size distribution, GC bias profile, sample identity checks, and esti-
mated DNA sample contamination) are produced and stored into
summary files (Jun et al. 2012; Li et al. 2013). These quality assess-
ment steps provide a snapshot of data quality and help identify
problems such as low library complexity, insufficient read depth,
DNA sample swaps, and sample contamination. Removal of poor
performing samples at early steps of the analysis chain helps im-
prove the overall quality of study results.

Figure 6. Comparison of known and novel Ts/Tv with and without trim-
mingoverlapping reads for1000 low-coverageChromosome20sequences
fromthe1000GenomesProject.Overlapping fragments lowersnovel Ts/Tv
and the effect is more eminent in the singletons (with allele count of one).

Figure 7. Nonreference genotype concordance for low-pass genome
data calculated using Omni2.5 array genotypes. The haplotype-aware re-
finement steps significantly improve genotype accuracy, especially with
larger sample sizes.
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Parallelized and incremental variant discovery

GotCloud’s variant discovery step generates an initial unfiltered
VCF from a set of BAM files, based on two major tasks–pileup
and glfMultiples. The first task, “pileup,” summarizes overlapping
bases for each position one sample at a time and produces geno-
type likelihood files by calculating the probability of observed bas-
es given hypothetical true genotypes at each genomic position.
GotCloud uses a modified version of SAMtools to generate geno-
type likelihoods for all 10 possible diploid SNP genotypes and store
them in GLF format (Li 2011). This “pileup” task processes one
sample at time and the resulting genotype likelihood files are
divided into short chromosomal segments to facilitate down-
stream analyses. When a read pair has overlapping fragments
due to short insert size, the fragment with lower average base qual-
ity is trimmed to avoid false positive variants due to PCR artifacts.

The second task, “glfMultiples,” reviews the “pileup” results
of the same chromosomal segment across all samples to identify
variant sites. The computational complexity of the glfMultiples
step is largely insensitive to sequencing depth and increases almost
linearly with the number of samples and the length of the genome
targeted for analysis. As a result, GotCloud can efficiently handle
thousands of deeply sequenced samples together, which is chal-
lenging for most variant callers. Our multisample SNP caller,
glfMultiples, uses a naïve Bayes model to compute the probability
that an alternative allele is present given observed data and a pop-
ulation-based prior. It has high power to detect shared variants
among individuals, especially with large numbers of sequenced
samples. A more detailed description of glfMultiples algorithm is
provided by Li et al. (2011).

Variant filtering by leveraging machine-learning methods

High-throughput sequencing reads are prone to sequencing errors
and alignment artifacts. As a result, initial variant site lists typically
contain many false positives. To improve the quality of variant
lists, we apply a filtering step that evaluates a series of features at
each potential site. Using machine-learning techniques, these fea-
tures are then used to identify the highest quality variants and re-
duce the number of false positive variants.

Features for each potential site are extracted from BAM files
one sample at a time in a highly parallelized manner, and the re-
sults are organized into small files each representing a short stretch
of the genome. We calculate features reflecting site-specific se-
quencing quality, such as sequencing depth and the fraction of
bases with low-quality scores, and features reflecting the quality
of the evidence for a variant, such as the fraction of bases
with the reference allele in heterozygous samples (allele balance)
and the correlation between observed alleles and the read direc-
tion (strand bias). The complete list of features is provided in
Supplemental Table 1. Most of these become progressively more
informative as they are cumulated acrossmany samples. For exam-
ple, observing that 75% of basesmatch the reference allele in a sin-
gle heterozygous sample is not strong evidence of an artifact, but
the same observation averaged acrossmanyheterozygotes can sug-
gest systematic biases due to mapping artifacts or the existence of
nearby complex variants.

One possible approach for combiningmany features together
for variant filtering is to set thresholds for each feature based on ex-
pert knowledge (“hard filtering”). This is extremely laborious to
calibrate and hard to replicate across different data sets. We utilize
a machine-learning-based approach, based on support vector ma-
chines (SVM) that combine all available features into a variant

quality score (Cortes and Vapnik 1995). GotCloud uses an open-
source implementation of SVM, libSVM (Chang and Lin 2011).

To train the classifier, we first generate a list of positive and
negative examples. We utilize external information to generate a
list of likely true positives and use an initial set of hard filters to
generate a list of likely false positives. By default, the list of likely
true positives is the union of array-based polymorphic sites
identified from the HapMap Project (The International HapMap
Consortium 2007) and the 1000 Genomes Project (Li et al. 2011;
The 1000 Genomes Project Consortium 2012). Lists of likely false
positives are seeded with sites that fail multiple stringent hard-fil-
ters, set as shown in Supplemental Table 1. The SVM classifier de-
fines a decision boundary in the high-dimensional coordinate
space defined by all available features,maximizing the distance be-
tween the decision boundary and the likely true false positives.We
utilize the commonly used radial basis function (RBF) kernel
(Amari and Wu 1999).

GotCloud also offers the ability to transfer a SVMmodel to an-
other data set. This is especially useful for small targeted sequenc-
ing experiments where sufficient positive and negative examples
might not be available for training (because of limited overlap
with HapMap or 1000 Genome site lists, for example). Once a
SVM classifier is trained on a large data set, themodel can be stored
andreused for filteringofother smaller-sized sequencing studies. In
our experience,model-transfer SVMwill likely performbetter than
self-trained SVM when the target region is <1 Mb.

Haplotype-aware genotype refinement

The final step of the GotCloud pipeline is genotype refinement. In
this step, genotype calls are refined using haplotype information.
This step is based on the observation that genotypes at any site are
likely to be similar for individuals that share a stretch of sequence
(or haplotype) surrounding that site. In the 1000 Genomes Project
Consortium analyses, haplotype-based genotype refinement im-
proved genotype accuracy of low-coverage whole-genome data,
resulting in genotype accuracies for low-coverage data that were
similar to those for deeply sequenced exomes (The 1000
Genomes Project Consortium2012), in sites shared bymultiple in-
dividuals. Haplotype-based genotype refinement is especially use-
ful for improving genotype accuracy for low-coverage whole-
genome sequences and also for phasing whole-genome sequences
for any coverage, although at the expense of additional computa-
tional cost (Table 1). The procedure is less useful for targeted
exome sequencing, because identifying shared haplotypes is chal-
lenging without long contiguous stretches of sequence.

GotCloud uses two tools for genotype refinement: Beagle
(Browning and Yu 2009) and ThunderVCF (Li et al. 2011). Beagle
is computationally efficient, but the resulting haplotypes can be
made more accurate by additionally running ThunderVCF, which
is based on a model used by MaCH (Li et al. 2010). As shown
in the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2012), initializing ThunderVCF with Beagle-phased
haplotypes further improves genotype accuracies of Beagle-phased
haplotypes, and is much faster than running ThunderVCF alone
from random haplotypes. This two-step approach is implemented
in GotCloud’s genotype refinement pipeline.

Experimental setup

To evaluate the performance of the GotCloud pipeline, we ana-
lyzed Chromosome 20 across 1000 low-coverage (∼6x) genomes
and 1000 deep exomes. Low-coverage genomes were randomly
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selected from Phase 3 data of the 1000 Genomes Project and have
an average sequencing depth of 5.9× (standard deviation: 2.7).
Exomes were randomly selected from Phase 1 data of the 1000
Genomes Project and have an average on target depth of 86× (stan-
dard deviation: 35). For the targeted sequencing experimentwith a
1 Mb or smaller region, we randomly selected from the Phase 3
exomes, by randomly selecting up to 1 Mb of regions within the
exome target region. For comparison, we also ran analyses using
theGATKUnifiedGenotyper (DePristo et al. 2011) with default op-
tions. Overall runtimes were estimated using a four-node cluster
with 48 physical CPU cores, running 40 parallel sessions. For the
1000 sample GATK experiment, we used Chromosome 20 data
and extrapolated the number into the whole genome due to larger
memory footprints. Peak memory usages are measured by averag-
ing over Chromosome 20 using 5-Mb chunks. When evaluating
the sensitivity of variant discovery, we used HumanExome
BeadChip variants polymorphic in the sequenced samples, exclud-
ing variants included in the Omni2.5 arrays that are also used for
positive labels in SVM filtering.

Software availability

The GotCloud pipeline is available for public download (http://
www.gotcloud.org) and is prepared for several different cloud com-
puting environments, including the AmazonWeb Services (AWS)
Elastic Computer Cloud (EC2). It is also possible to run GotCloud
on single machines for small projects.

Acknowledgments

We thank the 1000 Genomes Project Consortium for making the
sequence data publicly available. We thank Michael Boehnke for
valuable feedback on the manuscript. This research was funded
through grants from the National Institutes of Health (National
Human Genome Research Institute; U01 HG006513).

References

The 1000Genomes Project Consortium. 2012. An integratedmap of genetic
variation from 1,092 human genomes. Nature 491: 56–65.

Amari S, Wu S. 1999. Improving support vector machine classifiers bymod-
ifying kernel functions. Neural Netw 12: 783–789.

Browning BL, Yu Z. 2009. Simultaneous genotype calling and haplotype
phasing improves genotype accuracy and reduces false-positive as-
sociations for genome-wide association studies. Am J Hum Genet 85:
847–861.

Chang CC, Lin CJ. 2011. LIBSVM: a library for support vector machines.
ACM Trans Intell Syst Technol 2: 27:1–27:27.

Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn 20:
273–297.

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. 2011. A frame-
work for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet 43: 491–498.

FuW,O’Connor TD, JunG, KangHM, Abecasis G, Leal SM, Gabriel S, Rieder
MJ, Altshuler D, Shendure J, et al. 2013. Analysis of 6,515 exomes reveals
the recent origin of most human protein-coding variants. Nature 493:
216–220.

The International HapMap Consortium. 2007. A second generation human
haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

Jun G, Filckinger M, Hetrick KN, Romm JM, Doheny KF, Abecasis GR,
Boehnke M, Kang HM. 2012. Detecting and estimating contamination
of human DNA samples in sequencing and array-based genotype data.
Am J Hum Genet 91: 839–848.

Li H. 2011. A statistical framework for SNP calling, mutation discovery, as-
sociationmapping and population genetical parameter estimation from
sequencing data. Bioinformatics 27: 2987–2993.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. 2010. MaCH: using sequence
and genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol 34: 816–834.

Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. 2011. Low-coverage se-
quencing: implications for design of complex trait association studies.
Genome Res 21: 940–951.

Li B, Zhan X, Wing M, Anderson P, Kang HM, Abecasis GR. 2013. QPLOT: a
quality assessment tool for next generation sequencing data. Biomed Res
Int 2013: 865181.

Tennessen JA, BighamAW,O’Connor TD, FuW, Kenny EE, Gravel S,McGee
S, Do R, Liu X, JunG. 2012. Evolution and functional impact of rare cod-
ing variation from deep sequencing of human exomes. Science 337:
64–69.

Wang Y, Lu J, Yu J, Gibbs RA, Yu F. 2013. An integrative variant analysis
pipeline for accurate genotype/haplotype inference in population
NGS data. Genome Res 23: 833–842.

Zhao M, Lee W, Garrison EP, Marth GT. 2013. SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applications. PLoS One 8:
e82138.

Received March 31, 2014; accepted in revised form April 13, 2015.

Efficient and scalable variant calling framework

Genome Research 925
www.genome.org

http://www.gotcloud.org
http://www.gotcloud.org
http://www.gotcloud.org
http://www.gotcloud.org
http://www.gotcloud.org
http://www.gotcloud.org

