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Abstract: This work describes the development of a web recommender system implementing both 
collaborative filtering and content-based filtering. Moreover, it supports two differ-ent working modes, either 
sponsored or related, depending on whether websites are to be recommended based on a list of ongoing ad 
campaigns or in the user preferences. Novel recommendation algorithms are proposed and imple-mented, 
which fully rely on set operations such as union and intersection in order to compute the set of 
recommendations to be provided to end users. The recommender system is deployed over a real-time big 
data architecture designed to work with Apache Hadoop ecosystem, thus supporting horizontal scalability, 
and is able to provide recommendations as a service by means of a RESTful API. The performance of the 
recommender is measured, resulting in the system being able to provide dozens of recommendations in few 
milliseconds in a single-node cluster setup.

1. Introduction

This work describes the development of a system aimed at 
providing web recommendations to Internet users in real time. 
In order to generate these recommendations, the system 
requires the HTTP request for the web the user is currently 
browsing, a set of categorized URLs and a user profile con-
taining a set of URL categories and raw URLs, mapping those 
to some affinity values.
The recommender system will be able to provide recom-
mendations in two different working modes, either a related 
mode, where the recommended URLs are based on the user 
preferences and the current HTTP request, and a sponsored 
mode, where the recommended URLs are retrieved from a 
set of active ad campaigns while still considering the user 
preferences and the current HTTP request.
Moreover, the system will also provide both content-based 
recommendations, where recommended URLs are based on the 
user profile; and collaborative-based recommendations, where 
recommended URLs are based on the profiles of similar users.
The recommender system will be implemented using a scalable 
machine learning architecture suitable for big data real time 
analysis, deployed over a Hadoop cluster in order to provide 
scalability for an increasing number of URLs and users. 
Additionally, efficient recommendation algorithms are 
proposed which rely on the computing of set operations (such 
as union and intersection of sets) for most of their logic, thus 
offering low computational complexity.
This document is structured as follows: first, section 2 introduces 
some related work which is relevant to this paper.
Later, section 3 describes the big data architecture used 
for deploying the recommender system, as well as the input 
expected by the system and the output it generates; while 
section 4 provides a detailed description of the designed 
recommendation algorithms. Finally, a preliminar evaluation 
of the recommender system is performed by measuring its 
performance, results being discussed in section 5; and some 
conclusive remarks on this work are provided in section 6

2. State of the Art

Recommender systems have been widely used for years for 
many different purposes ranging from e-commerce (recom-
mending products to potential customers) to social networks 
(recommending possible friends or interests). While these 
techniques have been used for many years, the more recent 
appearance of big data has lead to more exhaustive studies on 
how high volume and velocity of data affect recommender 
systems, and how the latter can benefit from the prior. One of 
these studies is provided by Jamiy et al. [1]; and other was 
published by Amatriain [2], VP of Engineering at Netflix, 
where he revisits the problem of recommendation from a new 
perspective, finally discussing what big data has brought into 
the field. Amatriain has also published works explaining the 
models and large volume of data behind Netflix recom-
mendations [3], [4]; and has also tackled the problem of 
recommendations given large streams of data [5].
In the last years, specific techniques enabling recommen-
dations on big data have been studied. For instance, Xie et al. 
[6] propose a new approach for facing the problem of data 
sparsity in collaborative filtering, which is designed to work 
over the MapReduce framework; and Yu et al. [7], [8] have 
studied scalable parallel matrix factorization for recommender 
systems. More recently, Bokde et al. [9] have proposed an 
efficient algorithm for multi-criteria item-based collaborative 
filtering involving dimensionality reduction implemented over 
Apache Mahout, a scalable machine learning framework.
Moreover, the number of applications of scalable recom-
mender systems has also grown in the last years and involves 
now many different areas. Sun et al, for instance, propose a 
MapReduce-based recommender system for e-commerce [10]; 
Han et al. [11] have proposed a big data model for recom-
mendation in social networks; and Jiang and Xu [12] have 
presented a big-data framework for doctor recommendation.
There are many works using the Hadoop ecosystem for 
supporting item-based recommender systems. It is the case, for 
instance, of Bhatia and Prasad [13], Verma et al. [14], Kumar
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Fig. 1. Scalable machine learning architecture used for supporting the recommender system

and Pandey [15] and Vinodhini et al. [16] who use Apache
Hadoop and Apache Mahout for building general-purpose
recommender systems. Meanwhile, Meng et al. have used
Hadoop MapReduce for keyword-aware [17] and preference-
aware [18] service recommendation.

. ramework
This section will first describe the big data architecture used for 
real-time recommendation and how the recommender uses this 
architecture. Later, it will delve into the format of the input 
accepted by the system and the output it generates.

A. Architecture

The recommender system is built over a real-time machine 
learning architecture for big data recently introduced by Bal-
dominos et al. [19]. As shown in figure 1, this architecture 
comprises different modules aimed at storing big data, per-
forming batch and stream processing and displaying results; 
and can be operated using a RESTful API.

Figure 2 provides a more specific picture of how the proposed 
recommender system interacts with this architecture. In 
particular, raw logs are first introduced in HDFS, and a batch 
process periodically build clusters (using Mahout implemen-
tation of K-Means) of both websites and users. Websites are 
clustered using meta keywords and meta descriptions, while 
users (identified by IPs unless more accurate information is 
available) are clustered by the websites they visit. Resulting 
clusters are stored in HBase, as indexed row keys will enable 
efficient retrieval of the models required by the recommender 
system. The algorithms for computing recommendations are 
developed inside the stream machine learning module so that 
they can provide responses in real time.

B. Input

This section provides further detail on how the inputs of the 
algorithm are stored and formalized. These inputs involve the 
HTTP request of the user who will be recommended a website 
and the user profiles and web categories stored in the system, 
which result from the clustering process described before.

1) HTTP Request: The HTTP request is required for the
user who is going to receive a recommendation for visiting
another website. This request must contain the next informa-
tion: the user identifier (login information or, if unavailable,
the visitor IP), the URL of the website he/she is browsing,
additional navigation information (environment, timestamp,
etc.) and meta keywords and description of the website. The
HTTP request is introduced as a JSON document.

2) User Profile: The user profile for the user to be rec-
ommended is also required in order to provide interesting
recommendations. The user profile comprises an identifier and
a set of web categories and URLs, each of these sets containing
two affinity values. In the case of URLs, the first affinity
value represents the number of visits of the user to that URL,
while the second refers to the number of recommendations
accepted by the user for that URL. Similarly, those values
are computed for each web category by aggregation of the
affinities for each URL belonging to the category. The user
profiles are stored in Apache HBase, and figure 3 shows the
data model for the table. The user identifier determines the
row key of the entry, and qualifiers specify the URL or the
web category name. Column families starting by ‘r’ indicate
that the values they store for the affinities refer to the second
type of affinity described before, i.e., are computed from the
number of recommendations accepted by the user.

3) Web Categories: As already described, web categories
are obtained by a clustering process using Mahout’s imple-
mentation of K-Means, which periodically groups URLs with
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Fig. 2. Architecture of the web recommender system

Fig. 3. Data model for the HBase table storing user profiles

similar keywords and descriptions into the same cluster or
category. Once this process is completed, each category is
manually labelled with a human-readable name. In order to
retrieve web categories efficiently, these are stored in an HBase
table, whose model is described in table 4. While keywords
(kws) are not required by the recommender system, they are
used for the clustering process. The value for the category
represents the total affinity of users with that category.

4) User Communities: User communities, or groups of
users with similar browsing behaviors, are required for provid-
ing collaborative recommendations. Again, this information is
retrieved by a clustering process using K-Means, which groups
similar users into communities, this similarity being computed
from the set of URLs and web categories preferred by each
user, as well as their affinities. User communities are stored
in HBase, in a table whose data model is equivalent to that
described in figure 3 for user profiles, the only difference being
that the identifier refers to a group rather than a user.

5) Ad Campaigns: Optionally, when the recommender sys-
tem is working in the sponsored mode, it will require a set
of active ad campaigns that will provide the set of possible
URLs to be recommended. Each campaign stores a campaign
identifier, the URLs to be recommended by the campaign and
a priority value, so that some campaigns can be priorized over
others based on factors such as the investment of the advertiser
in the campaign. Ad campaigns are introduced into the system
as JSON documents, and are only required when sponsored
recommendations are requested.

C. Output

The algorithm generates a recommendation which is de-fined 
by a list of items, each one containing the URL to be 
recommended and a priority for the URL. In the case of 
sponsored recommendations, if no suitable recommendations 
were found in the ad campaigns then it is explicitly indicated.

. Algorithms
In order to provide recomendations in real-time, not only the 
architecture  must be scalable  but the  algorithms must

Fig. 4. Data model for the HBase table storing web categories

have low computational complexity. For this reason, algorithms
are designed in a way that most of the computations rely
on set operations, which can be performed very efficiently.
Before further details are provided, some terminology must
be introduced: a) req refers to the current HTTP request,
b) usr refers to the current user profile, c) ads refers to the
ongoing ad campaigns, d) com refers to the user community,
e) wAds specifies the weight of the ad campaign priority in
the recommendation priority, f) wAff specifies the weight of
the user affinity in the recommendation priority, g) recL refers
to a list of URLs which can be recommended for each web
category; and finally h) colL refers to a list of URLs which
can be recommended for each user category.

A. Content-Based Filtering

1) Sponsored Mode: The pseudocode for retrieving spon-
sored content-based recommendations is shown in figure 5.
This algorithm first checks whether the URL in the HTTP
request is categorized. In case it is not, two different actions
may happen: either to a) provide a sponsored collaborative rec-
ommendation, in case the user is categorized or to b) provide
a default sponsored recommendation if he/she is not.

In case the HTTP request is categorized, then the intersec-
tion between the URLs in the ad campaigns and the URLs
in the recommended list for that web category is computed.
Again, if this intersection is empty, one of the previous actions
is taken based on whether the user is categorized or not.
Otherwise the recommendation is built from these URLs, and
priorities are asigned to each of them based on the weighted
average of the priority of the ad campaign containing that URL
and the user affinity with the web category of the URL.

2) Related Mode: The pseudocode for retrieving related
content-based recommendations is shown in figure 6. In sum-
mary, the algorithm first checks whether the URL in the HTTP
request is categorized. If it is not, two different actions may
happen: either to a) provide a related collaborative recommen-
dation, in case the user is categorized or to b) provide a default
related recommendation if he/she is not.

In case the HTTP request is categorized, then the recom-
mended list for that web category is retrieved. Again, if this
list is empty, one of the previous actions is taken based on
whether the user is categorized or not. If the recommended
list is not empty, then the recommendation is built from URLs
in this list, and priorities are asigned to each of them based
on the user affinity with the web category of the URL.

B. Collaborative Filtering

1) Sponsored Mode: The pseudocode for retrieving spon-
sored collaborative recommendations is shown in figure 7.
In summary, the algorithm first checks whether the user
is categorized and, if he/she is not, a sponsored content-
based recommendation is provided. Otherwise the intersection
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Fig. 5. WebR.Sp.Cont Pseudocode for retrieving sponsored content-based
recommendations

between URLs in the ad campaigns and the URLs in the
collaborative list for that user category is computed. If this
intersection is empty, then URLs from ad campaigns with
common web categories in the collaborative list for the user
category are retrieved. If the resulting list of URLs is also
empty, then a default sponsored recommendation is provided.

If the list is not empty, then the recommendation is built
from the URLs in this list, and priorities are asigned to each
of them based on the weighted average of the priority of the
ad campaign containing that URL and the user affinity with
the web category of the URL.

2) Related Mode: The pseudocode for retrieving related
collaborative recommendations is shown in figure 8. In sum-
mary, the algorithm first checks whether the user is categorized
and, if he/she is not, a related content-based recommendation
is provided. If the user is categorized, then URLs in the
collaborative list for that user category are computed. If this list
is empty, then URLs in the recommended list with categories
in the collaborative list for the user profile will be retrieved. If
the resulting list of URLs is also empty, then a default related
recommendation will be provided.

If the list is not empty, then the recommendation is built
from URLs in this list, and priorities are asigned to each of
them based on the user affinity with the category of the URL.

C. Default Recommendations

When the HTTP request or the users are not categorized,
or the recommended or collaborative lists are incomplete, then

Fig. 6. WebR.Rel.Cont Pseudocode for retrieving related content-based
recommendations

Fig. 7. WebR.Sp.Col Pseudocode for retrieving sponsored collaborative
recommendations

there is not enough information for providing a recommenda-
tion. This case will happen frequently when the system begins
operating, due to the effect of cold start. In this case, de-
fault (or uncategorized) recommendations are provided. These
recommendations are not expected to be as suitable as the
previous ones, yet they avoid the fact of not providing any
recommendation at all.
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Fig. 8. WebR.Rel.Col Pseudocode for retrieving related collaborative
recommendations

Fig. 9. WebR.Sp.Default Pseudocode for retrieving default sponsored
recommendations

1) Sponsored Mode: The pseudocode for providing default
sponsored recommendations is shown in figure 9. In summary,
the algorithm computes the intersection between the URLs
from the ad campaings and the whole recommended list. Then,
the recommendation is built from the URLs in this list, and
priorities are asigned to each of them based on the weighted
average of the priority of the ad campaign containing that URL
and the user affinity with the web category of the URL. It
should be noticed that the recommendation can be empty, as
long as there are no common URLs between the recommended
list and the ad campaigns.

2) Related Mode: The pseudocode for providing default
related recommendations is shown in figure 10. In summary,
the algorithm retrieves the whole recommended list for the
user. Then, the recommendation is built from URLs in this
list, and priorities are asigned to each of them based on the
user affinity with the web category of the URL. It should be
noticed that the recommendation will only be empty if the
recommended list for the user is empty as well.

Fig. 10. WebR.Rel.Default Pseudocode for retrieving default related
recommendations

. aluation
An evaluation of the web recommender system has been 
carried out in order to measure its performance both in terms of 
accuracy and efficiency. This section describes the 
experimental setup, the methodology and finally discusses the 
results obtained in the experiments.

A. Experimental Setup

In order to measure the quality of the recommender system, an 
internal pilot in Zed Worldwide was conducted with 120 
subjects over a period of 4 months and a total of about 600,000 
clicks, used to perform user clustering. A corpus of 456 URLs 
in English was used to train the model, with an average of 8 
keywords used for computing URLs categories according to 
IAB QAG Taxonomy [20], considering up to tier 2 categories.

For the purpose of measuring computational cost we have used 
a single-node cluster with 8 processing cores and 16GB of 
RAM virtualized over VMWare ESXi 5.0, and Hortonworks 
HDP 2.1 as the Hadoop distribution, which includes Hadoop 
2.4 and HBase 0.98. For deploying the web services we have 
configured JBoss AS 7. In this case, a larger synthetic dataset 
have been built based on URLs from DMOZ [21]. The 
experimental setup involves a dataset with 200,000 URLs 
clustered in 100 different categories, 10,000 users clustered in 
20 different profiles and 2,000 ad campaigns, each of them 
having one or more different ads.

B. Methodology

Regarding the quality evaluation, the URLs clustering 
proccess was run and manually adjusted in some cases when 
IAB keywords showed ambiguity or lead to bad clustering 
results, and the recommender model was built by incorporating 
the URLs and users categories. For testing the recommender 
system, a set of 40 URLs was used to check the quality of 
10 different recommendations provided to 4 different users. 
These recommendations were labelled as either “accurate”, 
“acceptable” or “wrong”.

For measuring the execution times of the recommender system 
we have performed three different experiments, the first one 
performing sequential requests and the other two performing 
10 and 30 concurrent requests respectively. For each 
experiment the recommender system is executed 5,000 times 
with different input parameters, combining different 
recommendation modes.
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TABLE I. AVERAGE AND MEDIAN TIMES (IN MS.) AS WELL AS

STANDARD DEVIATION FOR THE RECOMMENDER SERVICE, BOTH WITH

SEQUENTIAL AND WITH CONCURRENT (10 AND 30) REQUESTS

Average Median Std. Dev.

Sequential 447.77 435 47.84

Concurrent (10) 538.80 540 40.76

Concurrent (30) 802.93 792 89.58

C. Results and Discussion

The maximum frequency of accurate recommendations for a 
user was 71%, whereas the average frequencies for segmented 
users (those already assigned to a group) was 62%accurate 
recommendations, 14% acceptable recommendations and 24% 
wrong recommendations. With unclassified users, the starting 
performance was of about 10% accurate recommen-dations, 
this value increasing as the system learnt about the user, finally 
reaching accuracies similar to those for previously classified 
users.
The recommender system is very sensitive to the keywords 
defined in each IAB QAG category and to the quality of the 
URLs keywords. For this reason, it is expected than populating 
the model with a large dataset of categorized URLs and users 
affinities could improve the results significantly.
The results for the execution times are shown in table I, which 
displays the mean and median times measured in milliseconds 
and the standard deviation. It is noticeable that average 
response times are always under 1 second even when the 
service has to attend 30 concurrent requests. The small 
standard deviation and the fact that the difference between the 
mean and the median is small reflects that there are no big 
differences in the response time for the different calls.

6. Conclusions
This paper has presented a scalable web recommender sys-tem 
built over a machine learning big data architecture recently 
introduced in the IEEE CIBD. Besides a scalable architecture 
working over Apache Hadoop ecosystem, the algorithms for 
computing recommendations are computationally efficient as 
they rely on set operations for most of their computations.
The developed recommender system is able to provide both 
content-based and collaborative recommendations, which can 
be related to the page visited by the user, or be influenced by 
ongoing advertisement campaigns. The system periodically 
computes and updates a model containing web categories and 
user categories, by using Mahout implementation of K-Means 
clusterer in an offline fashion. This model is stored in HBase, 
so that data can be efficiently retrieved by row key in order to 
provide recommendations in real time.
An evaluation has been carried out resulting in the system 
being able to respond to 30 concurrent requests in under a 
second, in a single-node cluster; and providing about 62%
accurate and 14% acceptable recommendations. Further ex-
periments are left for future work, for checking how the 
recommender scales when the number of nodes is increased 
and provide a more extensive performance evaluation.
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