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Abstract—In cloud computing, data owners host their data on cloud servers and users (data consumers) can access the data from

cloud servers. Due to the data outsourcing, however, this new paradigm of data hosting service also introduces new security challenges,

which requires an independent auditing service to check the data integrity in the cloud. Some existing remote integrity checkingmethods

can only serve for static archive data and, thus, cannot be applied to the auditing service since the data in the cloud can be dynamically

updated. Thus, an efficient and secure dynamic auditing protocol is desired to convince data owners that the data are correctly stored in

the cloud. In this paper, we first design an auditing framework for cloud storage systems and propose an efficient and privacy-preserving

auditing protocol. Then, we extend our auditing protocol to support the data dynamic operations, which is efficient and provably secure in

the random oracle model. We further extend our auditing protocol to support batch auditing for both multiple owners and multiple clouds,

without using any trusted organizer. The analysis and simulation results show that our proposed auditing protocols are secure and

efficient, especially it reduce the computation cost of the auditor.

Index Terms—Storage auditing, dynamic auditing, privacy-preserving auditing, batch auditing, cloud computing

Ç

1 INTRODUCTION

CLOUD storage is an important service of cloud comput-
ing [1], which allows data owners (owners) to move

data from their local computing systems to the cloud. More
and more owners start to store the data in the cloud [2].
However, this new paradigm of data hosting service also
introduces new security challenges [3]. Owners would
worry that the data could be lost in the cloud. This is
because data loss could happen in any infrastructure, no
matter what high degree of reliable measures cloud service
providers would take [4], [5], [6], [7], [8]. Sometimes, cloud
service providers might be dishonest. They could discard
the data that have not been accessed or rarely accessed to
save the storage space and claim that the data are still
correctly stored in the cloud. Therefore, owners need to be
convinced that the data are correctly stored in the cloud.

Traditionally, owners can check the data integrity based
on two-party storage auditing protocols [9], [10], [11], [12],
[13], [14], [15], [16], [17]. In cloud storage system, however,
it is inappropriate to let either side of cloud service
providers or owners conduct such auditing, because none
of them could be guaranteed to provide unbiased auditing
result. In this situation, third-party auditing is a natural
choice for the storage auditing in cloud computing. A third-
party auditor (auditor) that has expertise and capabilities
can do a more efficient work and convince both cloud
service providers and owners.

For the third-party auditing in cloud storage systems,
there are several important requirements that have been

proposed in some previous works [18], [19]. The auditing
protocol should have the following properties: 1) Confiden-
tiality. The auditing protocol should keep owner’s data
confidential against the auditor. 2) Dynamic auditing. The
auditing protocol should support the dynamic updates of
the data in the cloud. 3) Batch auditing. The auditing
protocol should also be able to support the batch auditing
for multiple owners and multiple clouds.

Recently, several remote integrity checking protocols
were proposed to allow the auditor to check the data
integrity on the remote server [20], [21], [22], [23], [24], [25],
[26], [27], [28]. Table 1 gives the comparisons among some
existing remote integrity checking schemes in terms of the
performance, the privacy protection, the support of dy-
namic operations and the batch auditing for multiple
owners and multiple clouds. From Table 1, we can find
that many of them are not privacy preserving or cannot
support the data dynamic operations, so that they cannot be
applied to cloud storage systems.

In [23], the authors proposed a dynamic auditing
protocol that can support the dynamic operations of the
data on the cloud servers, but this method may leak the
data content to the auditor because it requires the server to
send the linear combinations of data blocks to the auditor.
In [24], the authors extended their dynamic auditing
scheme to be privacy preserving and support the batch
auditing for multiple owners. However, due to the large
number of data tags, their auditing protocols may incur a
heavy storage overhead on the server. In [25], Zhu et al.
proposed a cooperative provable data possession scheme
that can support the batch auditing for multiple clouds and
also extend it to support the dynamic auditing in [26].
However, their scheme cannot support the batch auditing
for multiple owners. That is because parameters for
generating the data tags used by each owner are different,
and thus, they cannot combine the data tags from multiple
owners to conduct the batch auditing. Another drawback is
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that their scheme requires an additional trusted organizer to
send a commitment to the auditor during the multicloud
batch auditing, because their scheme applies the mask
technique to ensure the data privacy. However, such
additional organizer is not practical in cloud storage
systems. Furthermore, both Wang’s schemes and Zhu’s
schemes incur heavy computation cost of the auditor, which
makes the auditor a performance bottleneck.

In this paper, we propose an efficient and secure
dynamic auditing protocol, which can meet the above-
listed requirements. To solve the data privacy problem, our
method is to generate an encrypted proof with the challenge
stamp by using the Bilinearity property of the bilinear
pairing, such that the auditor cannot decrypt it but can
verify the correctness of the proof. Without using the mask
technique, our method does not require any trusted
organizer during the batch auditing for multiple clouds.
On the other hand, in our method, we let the server
compute the proof as an intermediate value of the
verification, such that the auditor can directly use this
intermediate value to verify the correctness of the proof.
Therefore, our method can greatly reduce the computing
loads of the auditor by moving it to the cloud server.

Our original contributions can be summarized as follows:

1. We design an auditing framework for cloud storage
systems and propose a privacy-preserving and
efficient storage auditing protocol. Our auditing
protocol ensures the data privacy by using crypto-
graphy method and the Bilinearity property of the
bilinear pairing, instead of using the mask techni-
que. Our auditing protocol incurs less communica-
tion cost between the auditor and the server. It also
reduces the computing loads of the auditor by
moving it to the server.

2. We extend our auditing protocol to support the data
dynamic operations, which is efficient and provably
secure in the random oracle model.

3. We further extend our auditing protocol to support
batch auditing for not only multiple clouds but also
multiple owners. Our multicloud batch auditing
does not require any additional trusted organizer.
The multiowner batch auditing can greatly improve
the auditing performance, especially in large-scale
cloud storage systems.

The remaining of this paper is organized as follows: In
Section 2, we describe definitions of the system model and
security model. In Section 3, we propose an efficient and
inherently secure auditing protocol and extend it to support
the dynamic auditing in Section 4. We further extend our
auditing protocol to support the batch auditing for multiple
owners and multiple clouds in Section 5. Section 6 give the
performance analysis of our proposed auditing protocols in
terms of communication cost and computation cost. The
security proof will be shown in the supplemental file, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.
278. In Section 7, we give the related work on storage
auditing. Finally, the conclusion is given in Section 8.

2 PRELIMINARIES AND DEFINITIONS

In this section, we first describe the system model and
give the definition of storage auditing protocol. Then, we
define the threat model and security model for a storage
auditing system.

2.1 Definition of a System Model

We consider an auditing system for cloud storage as shown
in Fig. 1, which involves data owners (owner), the cloud
server (server), and the third-party auditor (auditor). The
owners create the data and host their data in the cloud.
The cloud server stores the owners’ data and provides the
data access to users (data consumers). The auditor is a
trusted third-party that has expertise and capabilities to
provide data storage auditing service for both the owners
and servers. The auditor can be a trusted organization
managed by the government, which can provide unbiased
auditing result for both data owners and cloud servers.
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Fig. 1. System model of the data storage auditing.

TABLE 1
Comparison of Remote Integrity Checking Schemes

n is the total number of data blocks of a file; t is the number of challenged data blocks in an auditing query; s is the number of sectors in each data
block; � is the probability of block/sector corruption (suppose the probability of corruption is the same for the equal size of data block or sector).



Before describing the auditing protocol definition, we
first define some notations as listed in Table 2.

Definition 1 (Storage auditing protocol). A storage auditing

protocol consists of the following five algorithms:

1. KeyGenð�Þ ! ðskh; skt; pktÞ. This key generation
algorithm takes no input other than the implicit
security parameter �. It outputs a secret hash key
skh and a pair of secret-public tag key ðskt; pktÞ.

2. TagGenðM; skt; skhÞ ! T . The tag generation algo-
rithm takes as inputs an encrypted fileM, the secret tag
key skt, and the secret hash key skh. For each data block
mi, it computes a data tag ti based on skh and skt. It
outputs a set of data tags T ¼ ftigi2½1;n�.

3. ChallðMinfoÞ ! C. The challenge algorithm takes
as input the abstract information of the data Minfo

(e.g., file identity, total number of blocks, version
number, time stamp, etc.). It outputs a challenge C.

4. ProveðM;T; CÞ ! P. The prove algorithm takes as
inputs the file M, the tags T , and the challenge from
the auditor C. It outputs a proof P.

5. VerifyðC;P; skh; pkt;MinfoÞ ! 0=1. The verification
algorithm takes as inputs P from the server, the secret
hash key skh, the public tag key pkt, and the abstract
information of the data Minfo. It outputs the auditing
result as 0 or 1.

2.2 Definition of a Security Model

We assume the auditor is honest but curious. It performs
honestly during the whole auditing procedure, but it is
curious about the received data. But the sever could be
dishonest and may launch the following attacks:

1. Replace attack. The server may choose another valid
and uncorrupted pair of data block and data tag
ðmk; tkÞ to replace the challenged pair of data block
and data tag ðmi; tiÞ, when it already discarded mi

or ti.
2. Forge attack. The server may forge the data tag of

data block and deceive the auditor, if the owner’s
secret tag keys are reused for the different versions
of data.

3. Replay attack. The server may generate the proof
from the previous proof or other information, with-
out retrieving the actual owner’s data.

3 EFFICIENT AND PRIVACY-PRESERVING AUDITING

PROTOCOL

In this section, we first present some techniques we applied
in the design of our efficient and privacy-preserving
auditing protocol. Then, we describe the algorithms and
the detailed construction of our auditing protocol for cloud
storage systems. The correctness proof will be shown in the
supplemental file, available online.

3.1 Overview of Our Solution

The main challenge in the design of data storage auditing
protocol is the data privacy problem (i.e., the auditing protocol
should protect the data privacy against the auditor.). This is
because: 1) For public data, the auditor may obtain the data
information by recovering the data blocks from the data
proof. 2) For encrypted data, the auditor may obtain content
keys somehow through any special channels and could be
able to decrypt the data. To solve the data privacy problem,
our method is to generate an encrypted proof with the
challenge stamp by using the bilinearity property of the
bilinear pairing, such that the auditor cannot decrypt it, but
the auditor can verify the correctness of the proof without
decrypting it.

Although the auditor has sufficient expertise and cap-
abilities to conduct the auditing service, the computing
ability of an auditor is not as strong as cloud servers. Since
the auditor needs to audit for many cloud servers and a large
number of data owners, the auditor could be the perfor-
mance bottleneck. In our method, we let the server compute
the proof as an intermediate value of the verification
(calculated by the challenge stamp and the linear combina-
tions of data blocks), such that the auditor can use this
intermediate value to verify the proof. Therefore, ourmethod
can greatly reduce the computing loads of the auditor by
moving it to the cloud server.

To improve the performance of an auditing system,
we apply the data fragment technique and homomorphic
verifiable tags in our method. The data fragment technique
can reduce number of data tags, such that it can reduce the
storage overhead and improve the system performance. By
using the homomorphic verifiable tags, no matter how
many data blocks are challenged, the server only responses
the sum of data blocks and the product of tags to the
auditor, whose size is constant and equal to only one data
block. Thus, it reduces the communication cost.

3.2 Algorithms for Auditing Protocol

Suppose a file F hasm data components as F ¼ ðF1; . . . ; FmÞ.
Each data component has its physical meanings and can be
updated dynamically by the data owners. For public data
components, the data owner does not need to encrypted it,
but for private data component, the data owner needs to
encrypt it with its corresponding key.

Each data component Fk is divided into nk data blocks
denoted as Fk ¼ ðmk1;mk2; . . . ;mknk

Þ. Due to the security
reason, the data block size should be restricted by the
security parameter. For example, suppose the security level
is set to be 160 bit (20 Byte), the data block size should be
20 Byte. A 50-KByte data component will be divided into
2,500 data blocks and generate 2,500 data tags, which incurs
50-KByte storage overhead.
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TABLE 2
Notations



By using the data fragment technique, we further split
each data block into sectors. The sector size is restricted by
the security parameter. We generate one data tag for each
data block that consists of s sectors, such that less data tags
are generated. In the same example above, a 50-KByte data
component only incurs 50/s KByte storage overhead. In real
storage systems, the data block size can be various. That is,
different data blocks could have different number of
sectors. For example, if a data block mi will be frequently
read, then si could be large, but for those frequently
updated data blocks, si could be relatively small.

For simplicity, we only consider one data component in
our construction and constant number of sectors for each
data block. Suppose there is a data component M, which is
divided into ndata blocks, and each data block is further split
into s sectors. For data blocks that have different number of
sectors, we first select the maximum number of sectors smax

among all the sector numbers si. Then, for each data blockmi

with si sectors, si < smax, we simply consider that the data
blockmi has smax sectors by settingmij ¼ 0 for si < j � smax.
Because the size of each sector is constant and equal to the
security parameter p, we can calculate the number of data
blocks as n ¼ sizeofðMÞ

s�log p . We denote the encrypted data
component as M ¼ fmijgi2½1;n�;j2½1;s�.

Let GG1;GG2, and GGT be the multiplicative groups with
the same prime order p and e : GG1 �GG2 ! GGT be the
bilinear map. Let g1 and g2 be the generators of GG1 and GG2,
respectively. Let h : f0; 1g� ! GG1 be a keyed secure hash
function that maps the Minfo to a point in GG1.

Our storage auditing protocol consists of the following
algorithms:

KeyGenð�Þ ! ðpkt; skt; skhÞ. The key generation algo-
rithm takes no input other than the implicit security
parameter �. It chooses two random number skt; skh 2 ZZp

as the secret tag key and the secret hash key. It outputs the
public tag key as pkt ¼ gskt2 2 GG2, the secret tag key skt and
the secret hash key skh.

TagGenðM; skt; skhÞ ! T . The tag generation algorithm
takes each data component M, the secret tag key skt, and
the secret hash key skh as inputs. It first chooses s random
values x1; x2; . . . ; xs 2 ZZp and computes uj ¼ g

xj
1 2 GG1 for all

j 2 ½1; s�. For each data block miði 2 ½1; n�Þ, it computes a
data tag ti as

ti ¼ hðskh;WiÞ �
Y

s

j¼1

u
mij

j

 !skt

;

where Wi ¼ FIDki (the “k” denotes the concatenation
operation), in which FID is the identifier of the data and i
represents the block number of mi. It outputs the set of data
tags T ¼ ftigi2½1;n�.

ChallðMinfoÞ ! C. The challenge algorithm takes the
abstract information of the data Minfo as the input. It selects
some data blocks to construct the Challenge Set Q and
generates a random number vi 2 ZZ�

p for each chosen data
blockmiði 2 QÞ. Then, it computes the challenge stampR ¼
ðpktÞ

r by randomly choosing a number r 2 ZZ�
p. It outputs the

challenge as C ¼ ðfi; vigi2Q; RÞ.
ProveðM;T; CÞ ! P. The prove algorithm takes as inputs

the data M and the received challenge C ¼ ðfi; vigi2Q; RÞ.

The proof consists of the tag proof TP and the data proof DP .
The tag proof is generated as

TP ¼
Y

i2Q

tvii :

To generate the data proof, it first computes the sector linear
combination of all the challenged data blocks MPj for each
j 2 ½1; s� as

MPj ¼
X

i2Q

vi �mij:

Then, it generates the data proof DP as

DP ¼
Y

s

j¼1

eðuj; RÞ
MPj :

It outputs the proof P ¼ ðTP;DP Þ.
VerifyðC;P; skh; pkt;MinfoÞ ! 0=1. The verification algo-

rithm takes as inputs the challenge C, the proof P, the secret
hash key skh, the public tag key pkt, and the abstract
information of the data component. It first computes the
identifier hash values hðskh;WiÞ of all the challenged data
blocks and computes the challenge hash Hchal as

Hchal ¼
Y

i2Q

hðskh;WiÞ
rvi :

It then verifies the proof from the server by the following
verification equation:

DP � eðHchal; pktÞ ¼ e
�

TP; gr2
�

: ð1Þ

If the above verification equation (1) holds, it outputs 1.
Otherwise, it outputs 0.

3.3 Construction of Our Privacy-Preserving
Auditing Protocol

As illustrated in Fig. 2, our storage auditing protocol
consists of three phases: owner initialization, confirmation
auditing, and sampling auditing. During the system initializa-
tion, the owner generates the keys and the tags for the data.
After storing the data on the server, the owner asks the
auditor to conduct the confirmation auditing to make sure
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Fig. 2. Framework of our privacy-preserving auditing protocol.



that their data is correctly stored on the server. Once
confirmed, the owner can choose to delete the local copy of
the data. Then, the auditor conducts the sampling auditing
periodically to check the data integrity.

Phase 1: Owner initialization. The owner runs the key
generation algorithm KeyGen to generate the secret hash
key skh, the pair of secret-public tag key ðskt; pktÞ. Then, it
runs the tag generation algorithm TagGen to compute the
data tags. After all the data tags are generated, the owner
sends each data component M ¼ fmigi2½1;n� and its
corresponding data tags T ¼ ftigi2½1;n� to the server together
with the set of parameters fujgj2½1;s�. The owner then sends
the public tag key pkt, the secret hash key skh, and the
abstract information of the data Minfo to the auditor, which
includes the data identifier FID, the total number of data
blocks n.

Phase 2: Confirmation auditing. In our auditing construc-
tion, the auditing protocol only involves two-way commu-
nication: Challenge and Proof. During the confirmation
auditing phase, the owner requires the auditor to check
whether the owner’s data are correctly stored on the server.
The auditor conducts the confirmation auditing phase as

1. The auditor runs the challenge algorithm Chall to
generate the challenge C for all the data blocks in the
data component and sends the C ¼ ðfi; vigi2Q; RÞ to
the server.

2. Upon receiving the challenge C from the auditor, the
server runs the prove algorithm Prove to generate the
proof P ¼ ðTP;DP Þ and sends it back to the auditor.

3. When the auditor receives theproofP from the server,
it runs the verification algorithm Verify to check the
correctness of P and extract the auditing result.

The auditor then sends the auditing result to the owner.
If the result is true, the owner is convinced that its data are
correctly stored on the server, and it may choose to delete
the local version of the data.

Phase 3: Sampling auditing. The auditor will carry out the
sampling auditing periodically by challenging a sample set
of data blocks. The frequency of taking auditing operation
depends on the service agreement between the data owner
and the auditor (and also depends on how much trust the
data owner has over the server). Similar to the confirmation
auditing in Phase 2, the sampling auditing procedure also
contains two-way communication as illustrated in Fig. 2.

Suppose each sector will be corrupted with a probability
of � on the server. For a sampling auditing involved with t
challenged data blocks, the probability of detection can be
calculated as

Prðt; sÞ ¼ 1� ð1� �Þt�s:

That is this t-block sampling auditing can detect any data
corruption with a probability of Prðt; sÞ.

4 SECURE DYNAMIC AUDITING

In cloud storage systems, the data owners will dynamically
update their data. As an auditing service, the auditing
protocol should be designed to support the dynamic data,
as well as the static archive data. However, the dynamic

operations may make the auditing protocols insecure.
Specifically, the server may conduct two following attacks:
1) Replay attack. The server may not update correctly the
owner’s data on the server and may use the previous
version of the data to pass the auditing. 2) Forge attack.
When the data owner updates the data to the current
version, the server may get enough information from the
dynamic operations to forge the data tag. If the server could
forge the data tag, it can use any data and its forged data tag
to pass the auditing.

4.1 Our Solution

To prevent the replay attack, we introduce an index table
(ITable) to record the abstract information of the data. The
ITable consists of four components: Index, Bi, Vi, and Ti. The
Index denotes the current block number of data block mi in
the data component M. Bi denotes the original block
number of data block mi, and Vi denotes the current version
number of data block mi. Ti is the time stamp used for
generating the data tag.

This ITable is created by the owner during the owner
initialization and managed by the auditor. When the owner
completes the data dynamic operations, it sends an update
message to the auditor for updating the ITable that is stored
on the auditor. After the confirmation auditing, the auditor
sends the result to the owner for the confirmation that the
owner’s data on the server and the abstraction information
on the auditor are both up-to-date. This completes the data
dynamic operation.

To deal with the forge attack, we can modify the tag
generation algorithm TagGen. Specifically, when generat-
ing the data tag ti for the data block mi, we insert all the
abstract information into the data tag by setting Wi ¼
FIDkikBikVikTi, such that the server cannot get enough
information to forge the data tag from dynamic opera-
tions. The detailed proof will be given in the supple-
mental file, available online.

4.2 Algorithms and Constructions for Dynamic
Auditing

The dynamic auditing protocol consists of four phases:
owner initialization, confirmation auditing, sampling audit-
ing, and dynamic auditing.

The first three phases are similar to our privacy-
preserving auditing protocol as described in the above
section. The only differences are the tag generation algo-
rithm TagGen and the ITable generation during the owner
initialization phase. Here, as illustrated in Fig. 3, we only
describe the dynamic auditing phase, which contains three
steps: data update, index update, and update confirmation.

Step 1: Data update. There are three types of data update
operations that can be used by the owner: modification,
insertion, and deletion. For each update operation, there is
a corresponding algorithm in the dynamic auditing to
process the operation and facilitate the future auditing,
defined as follows:

Modifyðm�
i ; skt; skhÞ ! ðMsgmodify; t

�
i Þ. The modification

algorithm takes as inputs the new version of data block m�
i ,

the secret tag key skt, and the secret hash key skh. It
generates a new version number V �

i , new time stamp T �
i ,

and calls the TagGen to generate a new data tag t�i for data
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block m�
i . It outputs the new tag t�i and the update message

Msgmodify ¼ ði; Bi; V
�
i ; T

�
i Þ. Then, it sends the new pair of

data block and tag ðm�
i ; t

�
i Þ to the server and sends the

update message Msgmodify to the auditor.
Insertðm�

i ; skt; skhÞ ! ðMsginsert; t
�
i Þ. The insertion algo-

rithm takes as inputs the new data block m�
i , the secret tag

key skt, and the secret hash key skh. It inserts a new data
block m�

i before the ith position. It generates an original
numberB�

i , a new version number V �
i , and a new time stamp

T �
i . Then, it calls the TagGen to generate a new data tag t�i for

the new data block m�
i . It outputs the new tag t�i and the

update message Msginsert ¼ ði; B�
i ; V

�
i ; T

�
i Þ. Then, it inserts

the new pair of data block and tag ðm�
i ; t

�
i Þ on the server and

sends the update message Msginsert to the auditor.
DeleteðmiÞ ! Msgdelete. The deletion algorithm takes as

input the data block mi. It outputs the update message
Msgdelete ¼ ði; Bi; Vi; TiÞ. It then deletes the pair of data
block and its tag ðmi; tiÞ from the server and sends the
update message Msgdelete to the auditor.

Step 2: Index update. Upon receiving the three types of
update messages, the auditor calls three corresponding
algorithms to update the ITable. Each algorithm is designed
as follows:

IModifyðMsgmodifyÞ. The index modification algorithm
takes the update message Msgmodify as input. It replaces the
version number Vi by the new one V �

i and modifies Ti by the
new time stamp T �

i .

IInsertðMsginsertÞ. The index insertion algorithm takes as
input the update message Msginsert. It inserts a new record

ði; B�
i ; V

�
i ; T

�
i Þ in ith position in the ITable. It then moves the

original ith record and other records after the ith position in
the previous ITable backward in order, with the index

number increased by 1.
IDeleteðMsgdeleteÞ. The index deletion algorithm takes as

input the update message Msgdelete. It deletes the ith record
ði; Bi; Vi; TiÞ in the ITable and all the records after the ith

position in the original ITable moved forward in order, with
the index number decreased by 1.

Table 3 shows the change of ITable according to the

different type of data update operation. Table 3a describes
the initial table of the data M ¼ fm1;m2; . . . ;mng, and
Table 3b describes the ITable after m2 is updated. Table 3c

shows the ITable after a new data block is inserted before
m2, and Table 3d shows the ITable after m2 is deleted.

Step 3: Update confirmation. After the auditor updates the

ITable, it conducts a confirmation auditing for the updated
data and sends the result to the owner. Then, the owner can
choose to delete the local version of data according to the

update confirmation auditing result.

5 BATCH AUDITING FOR MULTIOWNER AND

MULTICLOUD

Data storage auditing is a significant service in cloud
computing that helps the owners check the data integrity on
the cloud servers. Due to the large number of data owners,

the auditor may receive many auditing requests from
multiple data owners. In this situation, it would greatly
improve the system performance, if the auditor could

combine these auditing requests together and only conduct
the batch auditing for multiple owners simultaneously. The

previous work [25] cannot support the batch auditing for
multiple owners. That is because parameters for generating
the data tags used by each owner are different, and thus, the

auditor cannot combine the data tags from multiple owners
to conduct the batch auditing.

On the other hand, some data owners may store their
data on more than one cloud servers. To ensure the

owner’s data integrity in all the clouds, the auditor will
send the auditing challenges to each cloud server that

hosts the owner’s data and verify all the proofs from them.
To reduce the computation cost of the auditor, it is
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Fig. 3. Framework of auditing for dynamic operations.

TABLE 3
ITable of the Abstract Information of Data M



desirable to combine all these responses together and do
the batch verification.

In the previous work [25], the authors proposed a
cooperative provable data possession for integrity verifica-
tion inmulticloud storage. In theirmethod, the authors apply
the mask technique to ensure the data privacy, such that it
requires an additional trusted organizer to send a commit-
ment to the auditor during the commitment phase in
multicloud batch auditing. In our method, we apply the
encryption method with the bilinearity property of the
bilinear pairing to ensure the data privacy, rather than
the mask technique. Thus, our multicloud batch auditing
protocol does not have any commitment phase, such that our
method does not require any additional trusted organizer.

5.1 Algorithms for Batch Auditing for Multiowner
and Multicloud

Let O be the set of owners and S be the set of cloud servers.
The batch auditing for multiowner and multicloud can be
constructed as follows:

Phase 1: Owner initialization. Each owner Okðk 2 OÞ runs
the key generation algorithm KeyGen to generate the pair of
secret-public tag key ðskt;k; pkt;kÞ and a set of secret hash key
fskh;klgl2S . That is, for different cloud servers, the owner has
different secret hash keys. We denote each data component
as Mkl, which means that this data component is owned
by the owner Ok and stored on the cloud server Sl. Suppose
the data component Mkl is divided into nkl data blocks,
and each data block is further split into s sectors. (Here,
we assume that each data block is further split into the same
number of sectors. We can use the similar technique
proposed in Section 3.2 to deal with the situation that each
data block is split into different number of sectors.) The
owner Ok runs the tag generation algorithm TagGen to
generate the data tags Tkl ¼ ftkl;igi2½1;nkl�

as

tkl;i ¼ hðskh;kl;Wkl;iÞ �
Y

s

j¼1

u
mkl;ij

k;j

 !skt;k

;

where Wkl;i ¼ FIDklkikBkl;ikVkl;ikTkl;i.

After all the data tags are generated, each owner Okðk 2

OÞ sends the data componentMkl ¼ fmkl;ijg
k2O;l2S
i2½1;nkl�;j2½1;s�

and

the data tags Tkl ¼ ftkl;ig
k2O;l2S
i2½1;nkl�

to the corresponding server

Sl. Then, it sends the public tag key pkt;k, the set of secret

hash key fskhl;kgl2S , the abstract information of data

fMinfo;klgk2O;l2S to the auditor.
Phase 2: Batch auditing for multiowner and multicloud. Let

Ochal and Schal denote the involved set of owners and cloud
servers involved in the batch auditing, respectively. The
batch auditing also consists of three steps: batch challenge,
batch proof, and batch verification.

Step 1: Batch challenge. During this step, the auditor runs
the batch challenge algorithm BChall to generate a batch
challenge C for a set of challenged owners Ochal and a set
of clouds Schal. The batch challenge algorithm is defined
as follows:

BChallðfMinfo;klgk2O;l2SÞ ! C. The batch challenge algo-
rithm takes all the abstract information as input. It selects a
set of owners Ochal and a set of cloud servers Schal. For each
data owner Okðk 2 OchalÞ, it chooses a set of data blocks as

the challenged subset Qkl from each server Slðl 2 SchalÞ. It
then generates a random number vkl;i for each chosen data
block mkl;iðk 2 Ochal; l 2 Schal; i 2 QklÞ. It also chooses a
random number r 2 ZZ�

p and computes the set of challenge
stamp fRkgk2Ochal¼pkr

t;k
. It outputs the challenge as

C ¼ ðfClgl2Schal
; fRkgk2Ochal

Þ;

where Cl ¼ fðk; l; i; vkl;iÞgk2Ochal
.

Then, the auditor sends each Cl to each cloud server
Slðl 2 SchalÞ together with the challenge stamp fRkgk2Ochal

.
Step 2: Batch proof. Upon receiving the challenge, each

server Slðl 2 SchalÞ generates a proof Pl ¼ ðTPl; DPlÞ by
using the following batch prove algorithm BProve and
sends the proof Pl to the auditor.

BProveðfMklgk2Ochal
, fTklgk2Ochal

, Cl; fRkgk2Ochal
Þ ! Pl.

The batch prove algorithm takes as inputs the data
fMklgk2Ochal

, the data tags fTklgk2Ochal
, the received challenge

Cl, and the challenge stamp fRkgk2Ochal
. It generates the tag

proof TPl as

TPl ¼
Y

k2Ochal

Y

i2Qkl

t
vkl;i
kl;i :

Then, for each j 2 ½1; s�, it computes the sector linear
combination MPkl;j of all the chosen data blocks of each
owner Okðk 2 OchalÞ as

MPkl;j ¼
X

i2Qkl

vkl;i �mkl;ij;

and generates the data proof DPl as

DPl ¼
Y

s

j¼1

Y

k2Ochal

eðuk;j; RkÞ
MPkl;j :

It outputs the proof Pl ¼ ðTPl; DPlÞ.
Step 3: Batch verification. Upon receiving all the proofs

from the challenged servers, the auditor runs the following
batch verification algorithm BVerify to check the correctness
of the proofs.

BVerifyðC; fPlg; fskh;lkg; fpkt;kg; fMinfo;klgÞ ! 0=1. The
batch verification algorithm takes as inputs the challenge
C, the proofs fPlgl2Schal

, the set of secret hash keys
fskh;klgk2Ochal;l2Schal

, the public tag keys fpkt;kgk2Ochal
, and the

abstract information of the challenged data blocks
fMinfo;klgk2Ochal;l2Schal

. For each owner Okðk 2 OchalÞ, it com-
putes the set of identifier hash values fhðskh;kl;
Wkl;iÞgl2Schal;i2Qkl

for all the chosen data blocks from each
challenged server and use these hash values to compute a
challenge hash Hchal;k as

Hchal;k ¼
Y

l2Schal

Y

i2Qkl

hðskh;kl;Wkl;iÞ
rvkl;i :

When finished the calculation of all the data owners’
challenge hash fHchal;kgk2Ochal

, it verifies the proofs by the
batch verification equation as

Y

l2Schal

DPl ¼
e
�
Q

l2Schal
TPl; g

r
2

�

Q

k2Ochal
eðHchal;k; pkt;kÞ

: ð2Þ

If (2) is true, it outputs 1. Otherwise, it outputs 0.
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6 PERFORMANCE ANALYSIS OF OUR AUDITING

PROTOCOLS

Storage auditing is a very resource demanding service in
terms of computational resource, communication cost, and
memory space. In this section, we give the communica-
tion cost comparison and computation complexity com-
parison between our scheme and two existing works:
the Audit protocol proposed by Wang et al. [23], [24] and
the IPDP proposed by Zhu et al. [25], [26]. The storage
overhead analysis will be shown in the supplemental file,
available online.

6.1 Communication Cost

Because the communication cost during the initialization is
almost the same in these three auditing protocols, we only
compare the communication cost between the auditor and
the server, which consists of the challenge and the proof.

Consider a batch auditing with K owners and C cloud
servers. Suppose the number of challenged data block from
each owner on different cloud servers is the same, denoted
as t, and the data block are split into s sectors in Zhu’s IPDP
and our scheme. We do the comparison under the same
probability of detection. That is, in Wang’s scheme, the
number of data blocks from each owner on each cloud
server should be st. The result is described in Table 4.

From the table, we can see that the communication cost in
Wang’s auditing scheme is not only linear to C, K, t, s, but
also linear to the total number of data blocks n. As we know,
in large-scale cloud storage systems, the total number of
data blocks could be very large. Therefore, Wang’s auditing
scheme may incur high communication cost.

Our scheme and Zhu’s IPDP have the same total
communication cost during the challenge phase. During
the proof phase, the communication cost of the proof in our

scheme is only linear to C, but in Zhu’s IPDP, the
communication cost of the proof is not only linear to C and
K, but also linear to s. That is because Zhu’s IPDP uses the
mask technique to protect the data privacy, which requires to
send both the masked proof and the encrypted mask to the
auditor. In our scheme, the server is only required to send the
encrypted proof to the auditor and, thus, incurs less
communication cost than Zhu’s IPDP.

6.2 Computation Complexity

We simulate the computation of the owner, the server, and
the auditor on a Linux system with an Intel Core 2 Duo
CPU at 3.16 GHz and 4.00-GB RAM. The code uses the
pairing-based cryptography library version 0.5.12 to simu-
late our auditing scheme and Zhu’s IPDP scheme (Under
the same detection of probability, Wang’s scheme requires
much more data blocks than our scheme and Zhu’s scheme,
such that the computation time is almost s times more than
our scheme and Zhu’s IPDP, and thus, it is not compar-
able). The elliptic curve we used is a MNT d159 curve,
where the base field size is 159 bit and the embedding
degree is 6. The d159 curve has a 160-bit group order, which
means p is a 160-bit length prime. All the simulation results
are the mean of 20 trials.

6.2.1 Computation Cost of the Auditor

We compare the computation time of the auditor versus the
number of data blocks, the number of clouds, and the
number of owners in Fig. 4.

Fig. 4a shows the computation time of the auditor versus
the number of challenged data blocks in the single cloud and
single owner case. In this figure, the number of data blocks
goes to 500 (i.e., the challenged data size equals to 500KByte),
but it can illustrate the linear relationship between the
computation cost of the auditor versus the challenged data
size. From Fig. 4a, we can see that our scheme incurs less
computation cost of the auditor than Zhu’s IPDP scheme,
when coping with large number of challenged data blocks.

In real cloud storage systems, the data size is very large
(e.g., petabytes), our scheme apply the sampling auditing
method to ensure the integrity of such large data.
The sample size and the frequency are determined by the
service-level agreement. From the simulation results,
we can estimate that it requires 800 seconds to audit for
1-GByte data. However, the computing abilities of the
cloud server and the auditor are much more powerful than
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TABLE 4
Communication Cost Comparison of Batch Auditing for K

Owners and C Clouds

t is the number of challenged data blocks from each owner on each
cloud server; s is the number of sectors in each data block; n is the total
number of data blocks of a file in Wang’s scheme.

Fig. 4. Comparison of computation cost of the auditor (s ¼ 50).



our simulation PC, so the computation time can be

relatively small. Therefore, our auditing scheme is practical

in large-scale cloud storage systems.
Fig. 4b describes the computation cost of the auditor of

the multicloud batch auditing scheme versus the number of

challenged clouds. It is easy to find that our scheme incurs

less computation cost of the auditor than Zhu’s IPDP

scheme, especially when there are a large number of clouds

in the large-scale cloud storage systems.
Because Zhu’s IPDP does not support the batch auditing

for multiple owners, in our simulation, we repeat the

computation for several times that is equal to the number of

data owners. Then, as shown in Fig. 4c, we compare the

computation cost of the auditor between our multiowner

batch auditing and the general auditing protocol that does

not support the multiowner batch auditing (e.g., Zhu’s

IPDP). Fig. 4c also demonstrates that the batch auditing for

multiple owners can greatly reduce the computation cost.

Although in our simulation the number of data owners goes

to 500, it can illustrate the trend of computation cost of the

auditor that our scheme is much more efficient than Zhu’s

scheme in large-scale cloud storage systems that may have

millions to billions of data owners.

6.2.2 Computation Cost of the Server

We compare the computation cost of the server versus the

number of data blocks in Fig. 5a and the number of data

owners in Fig. 5b. Our scheme moves the computing loads

of the auditing from the auditor to the server, such that it

can greatly reduce the computation cost of the auditor.

7 RELATED WORK

To support the dynamic auditing, Ateniese et al. [29]

developed a dynamic provable data possession protocol

based on cryptographic hash function and symmetric key

encryption. Their idea is to precompute a certain number of

metadata during the setup period, so that the number of

updates and challenges is limited and fixed beforehand. In

their protocol, each update operation requires recreating all

the remaining metadata, which is problematic for large files.

Moreover, their protocol cannot perform block insertions

anywhere (only append-type insertions are allowed). Erway

et al. [22] also extended the PDP model to support dynamic

updates on the stored data and proposed two dynamic

provable data possession scheme by using a new version of

authenticated dictionaries based on rank information.

However, their schemes may cause heavy computation

burden to the server because they relied on the PDP scheme
proposed by Ateniese.

In [23], the authors proposed a dynamic auditing
protocol that can support the dynamic operations of the
data on the cloud servers, but this method may leak the data
content to the auditor because it requires the server to send
the linear combinations of data blocks to the auditor. In [24],
the authors extended their dynamic auditing scheme to be
privacy preserving and support the batch auditing for
multiple owners. However, due to the large number of data
tags, their auditing protocols will incur a heavy storage
overhead on the server. In [25], Zhu et al. proposed a
cooperative provable data possession scheme that can
support the batch auditing for multiple clouds and also
extend it to support the dynamic auditing in [26]. However,
it is impossible for their scheme to support the batch
auditing for multiple owners. That is because parameters for
generating the data tags used by each owner are different,
and thus, they cannot combine the data tags from multiple
owners to conduct the batch auditing. Another drawback is
that their scheme requires an additional trusted organizer to
send a commitment to the auditor during the batch auditing
for multiple clouds, because their scheme applies the mask
technique to ensure the data privacy. However, such
additional organizer is not practical in cloud storage
systems. Furthermore, both Wang’s schemes and Zhu’s
schemes incur heavy computation cost of the auditor, which
makes the auditing system inefficient.

8 CONCLUSION

In this paper, we proposed an efficient and inherently
secure dynamic auditing protocol. It protects the data
privacy against the auditor by combining the cryptography
method with the bilinearity property of bilinear paring,
rather than using the mask technique. Thus, our multicloud
batch auditing protocol does not require any additional
organizer. Our batch auditing protocol can also support the
batch auditing for multiple owners. Furthermore, our
auditing scheme incurs less communication cost and less
computation cost of the auditor by moving the computing
loads of auditing from the auditor to the server, which
greatly improves the auditing performance and can be
applied to large-scale cloud storage systems.
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