
 Open access Book Chapter DOI:10.1007/BFB0097934

An Efficient and Transparent Thread Migration Scheme in the PM2 Runtime System
— Source link

Gabriel Antoniu, Luc Bougé, Raymond Namyst

Institutions: École normale supérieure de Lyon

Published on: 12 Apr 1999 - International Parallel Processing Symposium

Topics: Win32 Thread Information Block, Thread safety, Thread (computing), Runtime system and
Virtual address space

Related papers:

 Performance evaluation of adaptive MPI

 TreadMarks: shared memory computing on networks of workstations

 Thread migration and its applications in distributed shared memory systems

 Distributed shared memory: a survey of issues and algorithms

 Memory coherence in shared virtual memory systems

Share this paper:

View more about this paper here: https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-
4fjgm34dpd

https://typeset.io/
https://www.doi.org/10.1007/BFB0097934
https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-4fjgm34dpd
https://typeset.io/authors/gabriel-antoniu-5og124mnir
https://typeset.io/authors/luc-bouge-4cbltl6tva
https://typeset.io/authors/raymond-namyst-3f37eal6ya
https://typeset.io/institutions/ecole-normale-superieure-de-lyon-uvwhpiee
https://typeset.io/conferences/international-parallel-processing-symposium-195l8ggv
https://typeset.io/topics/win32-thread-information-block-93u734xr
https://typeset.io/topics/thread-safety-26az7in6
https://typeset.io/topics/thread-computing-3sl9jakl
https://typeset.io/topics/runtime-system-3vmm6cou
https://typeset.io/topics/virtual-address-space-slex2ore
https://typeset.io/papers/performance-evaluation-of-adaptive-mpi-3vsbnv8531
https://typeset.io/papers/treadmarks-shared-memory-computing-on-networks-of-f8d1jl4sga
https://typeset.io/papers/thread-migration-and-its-applications-in-distributed-shared-3ikkolxguq
https://typeset.io/papers/distributed-shared-memory-a-survey-of-issues-and-algorithms-35awevj6dv
https://typeset.io/papers/memory-coherence-in-shared-virtual-memory-systems-4ahf6tw5wx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-4fjgm34dpd
https://twitter.com/intent/tweet?text=An%20Efficient%20and%20Transparent%20Thread%20Migration%20Scheme%20in%20the%20PM2%20Runtime%20System&url=https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-4fjgm34dpd
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-4fjgm34dpd
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-4fjgm34dpd
https://typeset.io/papers/an-efficient-and-transparent-thread-migration-scheme-in-the-4fjgm34dpd

HAL Id: inria-00565361
https://hal.inria.fr/inria-00565361

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient and Transparent Thread Migration Scheme
in the PM2 Runtime System

Gabriel Antoniu, Luc Bougé, Raymond Namyst

To cite this version:
Gabriel Antoniu, Luc Bougé, Raymond Namyst. An Efficient and Transparent Thread Migration
Scheme in the PM2 Runtime System. Proceedings of the 11 IPPS/SPDP’99 Workshops Held in
Conjunction with the 13th International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing, Apr 1999, Po Rico, Puerto Rico. pp.496–510. ฀inria-00565361฀

https://hal.inria.fr/inria-00565361
https://hal.archives-ouvertes.fr

An e�
ient and transparent thread

migration s
heme in the PM2 runtime system

Gabriel Antoniu, Lu
 Bougé, and Raymond Namyst

LIP, ENS Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07, Fran
e.
Conta
t: fGabriel.Antoniu,Lu
.Bouge,Raymond.Namystg�ens-lyon.fr.

Abstra
t. This paper des
ribes a new iso-address approa
h to the dy-
nami
 allo
ation of data in a multithreaded runtime system with thread
migration
apability. The system guarantees that the migrated threads
and their asso
iated stati
 data are relo
ated exa
tly at the same virtual
address on the destination nodes, so that no post-migration pro
essing
is needed to keep pointers valid. In the experiments reported, a thread

an be migrated in less than 75�s.

1 Introdu
tion

Multithreading has proven useful to implement massively parallel a
tivities in
distributed systems, sin
e it provides an e�
ient way of overlapping
ommuni-

ation and
omputation. When the appli
ation behavior is hardly predi
table
at
ompile time, dynami
 load balan
ing be
omes essential. It
an be a
hieved
by transparently migrating
omputation threads from the overloaded nodes to
the underloaded ones. In the implementation des
ribed below, a thread
an be
migrated a
ross the Myrinet network in less than 75 �s.

Migrating a thread usually means moving the thread sta
k, but sometimes
may also mean moving the stati
 data used by the thread. In this respe
t, sev-
eral migration approa
hes have been implemented in the existing multithreaded
systems, depending on the rationale underlying the use of thread migration. In
Ariadne [8℄, threads are migrated to get
lose to the remote data they use. Stati

data never moves. On migration, the thread sta
k is relo
ated at a usually dif-
ferent address on the destination node, su
h that pointers need to be updated.
As shown in 2, several problems
annot be solved by this approa
h. In Milli-
pede [7℄, thread migration is dire
ted by a load balan
ing module integrated
in the system, whereas stati
 data get moved only when they get a

essed by
remote threads. The threads and their data are always relo
ated at the same
virtual addresses on all nodes. Yet, thread
reation is expensive, therefore the
number of
on
urrent threads is stati
ally �xed at initialization. In both systems
mentioned above, data are shared and
an be a

essed by more than one thread.
UPVM [4℄ provides thread migration for PVM appli
ations, in order to support
load balan
ing. Threads have private heaps, for private dynami
 allo
ations.
Thread
reation is expensive in this system, too, sin
e it is
arried out by means
of a global syn
hronization. Besides, the size of the thread private heaps is �xed
at thread
reation: the amount of data that a thread
an allo
ate is limited.

Our interest in iso-address allo
ation and migration stems from data-parallel

ompiling. Consequently, our study fo
uses on the
ase in whi
h data are not
shared: they belong to some unique thread and thus have to follow it on migra-
tion. Our iso-address allo
ator has been implemented in the PM2 multithreaded
runtime system [10℄, whi
h serves as a runtime support for two data-parallel
om-
pilers [1℄. We target appli
ations having to exe
ute on homogeneous
lusters of
workstations or PCs inter
onne
ted by a high-speed network (e.g., Myrinet [9℄).

This paper is stru
tured as follows. In se
tion 2, we give a qui
k des
ription of
PM2: a multithreaded runtime system providing thread migration. An overview
of our iso-address approa
h is given in se
tion 3 and some implementation details
are presented in se
tion 4. Se
tion 5 shows some performan
e �gures. Finally,
se
tion 6 summarizes our main results and points out what we intend to address
in the near future.

2 PM2: a multithreaded runtime system with thread
migration

PM2 is a multithreaded runtime system espe
ially designed to serve as a runtime
support for highly parallel irregular appli
ations. In su
h appli
ations, threads
may need to start or terminate at arbitrary moments during the exe
ution. At
the same time, the system has to e�
iently
ope with a large number of
on
ur-
rent threads. Therefore, PM2 provides very e�
ient primitives to handle these
operations:
reation, destru
tion and
ontext swit
hing. A distin
tive feature of
PM2 is thread migration. Sin
e the exe
ution of irregular appli
ations may lead
to severe load imbalan
es, thread migration
an be used to support the imple-
mentation of load balan
ing poli
ies based on dynami
 a
tivity redistribution.

In a PM2 appli
ation, there is a single (heavy) pro
ess running at ea
h node
and ea
h su
h pro
ess may
ontain tens of thousands of threads. We often iden-
tify this
ontainer pro
ess with the node running it. At the simplest level, a PM2
thread is an exe
ution �ow managing a set of resour
es, i.e., its state des
riptor
and its private exe
ution sta
k. The
ode to be exe
uted by the threads is repli-

ated on ea
h node (SPMD approa
h) and is not part of the thread. Again, we
emphasize that we do not
onsider the aspe
ts of data sharing between threads
in this paper, nor the problem of a thread using global pro
ess resour
es su
h
as �les, network interfa
es, et
. In this setting, migrating a thread simply means
moving the thread resour
es from the (heavy) pro
ess running on the lo
al node
to another (heavy) pro
ess lo
ated on some remote node. In PM2, the migration
operation is
arried out in three main steps:

1. The thread gets stopped (frozen) and its resour
es get
opied to a
ommu-
ni
ation bu�er. The memory area storing the resour
es is set free.

2. The bu�er
ontents get sent to the destination node through the network.

3. An adequate memory area is allo
ated on the destination node, the thread
resour
es are
opied into it, and the thread exe
ution is resumed.

In PM2, any thread may �de
ide� to migrate to another node at any arbitrary
point during its exe
ution. It may also be preemptively migrated by another
thread running on the same node. This latter property is essential, sin
e it en-
sures that appli
ation threads may be transparently migrated a
ross the nodes.
Consequently, a generi
 module implemented outside the running appli
ation

ould balan
e the load by migrating the appli
ation threads. The threads are
unaware of their being migrated and keep on running irrespe
tive of their lo
a-
tion.

Sour
e
ode:
void p1()

{

int x;

x = 1;

pm2_printf("value = %dnn", x);

pm2_migrate(mar
el_self(), 1);
pm2_printf("value = %dnn", x);

}

Exe
ution:
[node0℄ value = 1

[node1℄ value = 1

Fig. 1. Thread migration without pointers.

Sour
e
ode:
void p2()

{

int x;

int *ptr = &x;

x = 1;

pm2_printf("value = %dnn", *ptr);

pm2_migrate(mar
el_self(), 1);

pm2_printf("value = %dnn", *ptr);

}

Exe
ution:
[node0℄ value = 1

Segmentation fault

Fig. 2. Thread migration in the presen
e of
pointers to sta
k data

An example of thread migration is given on Figure 1. Assume that a thread
running on node 0
alls pro
edure p1. The thread de
lares a lo
al variable x,
writes the value 1 to this variable, then prints it. Next, the thread migrates to
node 1 and prints the value of the variable x again. At run time, we
an see
that the value 1 is displayed in both
ases, before and after migration. The lo
al
variable x gets automati
ally moved to node 1, sin
e it is stored in the thread
sta
k.

A di�
ulty turns up as soon as a migrating thread makes use of pointers.
Su
h a situation is illustrated on Figure 2. Here, the thread whi
h
alls p2 reads
variable x through pointer ptr. After migration, there is no guarantee that vari-
able x is still lo
ated at address ptr and the exe
ution (most probably!) fails.

One way to ta
kle this problem is to update all referen
es to sta
k data after
migration, before the thread resumes its exe
ution by adding some o�set to all
pointers. Two
ategories of pointers to sta
k data require su
h post-migration
pro
essing: the impli
it pointers generated by the
ompiler in order to
hain
the sta
k frames and the expli
it pointers used by the programmer. The former
may be identi�ed using some knowledge about the way they are generated by
the
ompiler, whereas the latter need to be expli
itly de
lared to the system, in

order to enable their update after migration. Su
h an approa
h was implemented
in the early versions of PM2, whi
h provided primitives to register/unregister
user-level pointers. When a thread moved to another node, all its registered
pointers were updated (Figure 3).

Sour
e
ode:
void p2()

{

int x;

int *ptr = &x;

unsigned int key;

key = pm2_register_pointer(&ptr);
x = 1;

pm2_printf("value = %d\n", *ptr);

pm2_migrate(mar
el_self(), 1);

pm2_printf("value = %d\n", *ptr);

pm2_unregister_pointer(key);
}

Exe
ution:
[node0℄ value = 1

[node1℄ value = 1

Fig. 3. Thread migration with registered
pointers

Sour
e
ode:
void p3 ()

{

int *t =

(int *)mallo
 (100 * sizeof(int));

t[10℄ = 1;

pm2_printf("value = %d\n", t[10℄);

pm2_migrate(mar
el_self(), 1);

pm2_printf("value = %d\n", t[10℄);

}

Exe
ution:
[node0℄ value = 1

Segmentation fault

Fig. 4. Thread migration with pointers to heap
data

Clearly, this approa
h does not extend to
omplex appli
ations. Moreover it
does not
ope with resour
es lo
ated outside of the sta
k, su
h as heap data
dynami
ally allo
ated by the mallo
 primitive of the C language. Figure 4 shows
a thread whi
h
alls mallo
 to allo
ate some memory area, writes (potentially
large) data into this area, migrates, and eventually tries to read at the same
virtual address. The program obviously fails, sin
e the allo
ated data has not
been migrated.

One way to solve this problem
onsists in remallo
ating the data on the
destination node. In this
ase, the programmer has to expli
itly handle the data
pa
king and unpa
king, and to manage the pointer updating as the allo
ation
address are usually di�erent from the original one. As in the
ase of pointers
to sta
k data, this approa
h
annot be used for arbitrarily
omplex appli
ations
making use of a large number of pointers to heap data. Moreover, this approa
h

annot
ope with
ompiler-generated pointers in
ase optimization options are
used, sin
e su
h pointers are not registered and
annot be updated. Fundamental

ompiler optimizations su
h as using pointers instead of indi
es to s
an large
arrays are thus forbidden.

3 Our approa
h: the isomallo
 memory allo
ator

3.1 General overview

A mu
h better approa
h to the problem des
ribed in the previous se
tion is
to provide a me
hanism able to guarantee that both the sta
k and the private,
dynami
ally allo
ated data of a thread
an be migrated and remallo
ated at
the same virtual address on the destination node (iso-address allo
ation and
migration). The idea is to lo
ally allo
ate storage areas in a system-wide, globally

onsistent way. The allo
ation me
hanism must guarantee that ea
h range of
virtual addresses at whi
h memory has been mmapped at some node is kept free
on all the other nodes. Su
h an approa
h has several advantages.

Simpli
ity The migration me
hanism is simpli�ed, be
ause no post-migration
pointer update is ne
essary any longer.

Transparen
y Appli
ations may make free use of pointers without having to
take into a

ount possible problems related to thread migration. User-level
pointers are always guaranteed to be safe.

Portability No
ompiler knowledge about the thread sta
k stru
ture is required,
sin
e the sta
k
ontents remains exa
tly the same after migration. In parti
-
ular,
ompiler-generated pointers are migration-safe, too. Consequently, any

ompiler may be used and
ompiler optimizations are allowed.

Preemptiveness Preemptive migration is possible, given that no assumption is
made about the thread state at migration time.

The isomallo
 allo
ation me
hanism relies on a few basi
 prin
iples. These rules
ensure that ea
h node may use its globally reserved memory without having to
�inform� the other nodes. We thus avoid any syn
hronization when allo
ating
memory to threads.

1. The physi
al exe
ution environment is assumed to be homogeneous (same
type of pro
essor, same operating system). Moreover, all nodes have the same
memory mapping: the same binary
ode is loaded on ea
h of them at the
same virtual address (so that no
ode needs getting moved upon migration).
The (unique) pro
ess sta
k is also lo
ated at the same virtual address on all
nodes.

2. On ea
h node, all iso-address allo
ations take pla
e within a spe
ial address
range
alled iso-address area. We have lo
ated it between the pro
ess sta
k
and the heap (Figure 5). This zone
orresponds to the same virtual range
on all nodes.

3. Separate ranges of virtual addresses within the iso-address area are globally
reserved for ea
h node, so that ea
h address may be used by a single node
at a time.

4. The a
tual memory allo
ation is
arried out lo
ally, within an address range
belonging to the node on whi
h the allo
ation request is made.

~ 3,5 Go

<< 500 Mo

< 100 ko

Code

fixed

(UNIX) process stack

Local heap

Iso-address

Area

at compile time

Data

Fig. 5. All nodes have the same memory mapping. In parti
ular, the iso-address area

overs the same virtual address range on all nodes

3.2 The slot layer

In this improved view, a PM2 thread is an exe
ution �ow managing a set of
resour
es, i.e., its state des
riptor, its private exe
ution sta
k, and a series a
dynami
ally allo
ated sub-areas within the iso-address area. Let us introdu
e
some terminology at this point for the sake of
larity. An address slot is a range
of virtual addresses within the iso-address area. A slot is free if no memory has
been mmapped at this address. Otherwise, it is busy, and we say that memory
has been allo
ated in this slot. Then, data may be stored within this slot of
virtual addresses. The iso-address dis
ipline guarantees that a slot whi
h is busy
on a node is guaranteed to remain free on any other node.

Our goal is to design the management poli
y so as to avoid inter-node syn-

hronization as far as possible and to remain
ompatible with the heap man-
agement me
hanisms of the
ontainer (heavy) pro
ess. To manage slots in a

onsistent system-wide manner, it is
onvenient to give them a uniform size,
very mu
h like memory pages at the node level. The
hoi
e of this size is obvi-
ously
ru
ial and we will dis
uss it later. We introdu
e again some terminology.
At any point, exa
tly one agent, a node or a thread, is responsible for managing
a given slot. It is the owner of the slot. The slots owned by a node or a thread are

alled its private slots. A slot owner is responsible for mmapping or unmmaping
memory at this slot of addresses, and reading or writing data. Nobody but the
owner is allowed to use the slot.

owned by the thread

owned by the local node
Memory address space

Node 1/2

Thread

Node 1/2

Step 2

Node 2/2Node 2/2

Step 1

Node 1/2 Node 2/2

Step 4

Node 1/2

Step 3

Node 2/2

Data

Data

Stack
Stack

Stack

Data

Data

Fig. 6. Slot ownership may
hange due to migration. In this example, a thread is
reated
and a
quires a slot owned by the lo
al node to store its sta
k (Step 1). The thread
a
quires other slots from the lo
al node, to store its private data (Step 2). The thread
migrates along with its slots (Step 3). The thread dies and its slots are a
quired by the
destination node (Step 4).

At initialization time, ea
h slot is owned by a unique node and is free. When
a thread is
reated, the lo
al node gives the thread a slot to store its initial
resour
es: this slot is from now on owned by the thread. When isomallo
ating
data dynami
ally, a thread a
quires additional slots from the lo
al node. Noti
e
that all this
hange of ownership do not require any syn
hronization between
nodes whatsoever. A thread is asso
iated with the list of its private slots where
it stores its resour
es. On migration, these slots migrate along with the thread,
whi
h still owns them after the migration, though the memory is allo
ated at
another node. At any point, a thread may release slots. They are then given to
the node the thread is
urrently visiting. This node may be di�erent from the
node from whi
h they have been a
quired. On dying, a thread releases all the
slots it
urrently owns. This slot life
y
le is illustrated on Figure 6. Observe

that the size of the slots and their initial distribution among nodes is
ompletely
irrelevant at this point. We will dis
uss the
hoi
e of this distribution later.

3.3 The blo
k layer

Sin
e our goal is to provide an allo
ation fun
tion
ompatible with the mallo

C primitive, the isomallo
 allo
ator has been re�ned so as to
ope with arbitrarily-
sized zones of memory. This leads to a new
on
ept: the blo
k. A medium-sized
slot may
ontain multiple small-sized blo
ks.

Conversely, when large request are to be handled, a blo
k may stret
h over
multiple
ontiguous slots. If the
urrent lo
al node owns the ne
essary number
of
ontiguous slots, this allo
ation is
arried out the same way as a simple,
single-slot allo
ation. The set of
ontiguous slots is simply merged into a large
slot. Otherwise, the node has to enter a negotiation with other nodes to buy
from them the ne
essary set of
ontiguous slots. As su
h an operation involves
syn
hronization and mutual ex
lusion, it is
learly mu
h more expensive than
�usual�, lo
al allo
ations. Everything has to be done to keep it ex
eptional. It is of

ourse possible to in
rease the slot size de�ned at initialization. It is mu
h more
e�
ient to adjust the initial distribution of slots so as to favor the
ontiguity of
the slots owned by nodes. We dis
uss these aspe
ts further in Se
tion 4.1.

3.4 The programming interfa
e

The PM2 high-level programming interfa
e provides two primitives by means
of whi
h threads may allo
ate (respe
tively release) memory in the iso-address
area: pm2_isomallo
 and pm2_isofree. These primitives have the same prototype
as the
lassi
 C fun
tions mallo
 and free:

void *pm2_isomallo
(size_t size);

void pm2_isofree(void *addr);

A thread must
all pm2_isomallo
 instead of mallo
 to allo
ate memory for pri-
vate, non-shared data that are required to migrate with the thread. PM2 guar-
antees that all data stored at addresses returned by pm2_isomallo
 follow the

alling thread in
ase of migration. All addresses allo
ated by pm2_isomallo

have to be set free through a
all to pm2_isofree. Using these primitives en-
sures that all referen
es to the address areas handled by them remain valid and
that a

esses to the
orresponding data are migration-safe. Migration is thus
transparent and the migrating threads may use pointers in an arbitrary way.

An example of
ode using pm2_isomallo
 is given in �gure 7. Let us suppose
that the pro
edure p4 is
alled by a thread running on node 0. The thread
allo
ates memory blo
ks in the iso-address zone through su

essive
alls to
pm2_isomallo
 and
reates a linked list. Then, the thread begins to traverse the
list while printing its elements. When the 101st element is rea
hed, the thread
migrates to node 1 and
ontinues the traversal. As we
an noti
e in �gure 8,
the �rst 100 list elements are displayed on node 0, whereas the next ones are

displayed on node 1. All pointers in the list are still valid after migration, sin
e
PM2 guarantees that all blo
ks allo
ated by pm2_isomallo
 migrate with the
thread and keep the same virtual addresses.

#define NB_ELEMENTS 100000

#define NB_ITERATIONS 20000

typedef stru
t _item {int value; stru
t _item *next;} item;

[...℄

void p4() {

int j; item *head, *ptr;

/* Create a list. */

head = NULL;

for (j = 0; j < NB_ELEMENTS; j++) {

ptr = (item *) pm2_isomallo
(sizeof(item));

ptr->value = j * 2 + 1; /* For example */

ptr->next = head; head = ptr;

}

pm2_printf("I am thread %p\n", mar
el_self());

[...℄

/* Print the list elements. */

j = 0; ptr = head;

while(ptr != NULL) {

if (j = 100) { /* Migrate! */

pm2_printf("Initializing migration from node %d\n", pm2_self());

pm2_migrate(mar
el_self(), 1);

pm2_printf("Arrived at node %d\n", pm2_self());

}

pm2_printf("Element %d = %d\n", j, ptr->value);

ptr = ptr->next; j++;

}

}

Fig. 7. Sample
ode using pm2_isomallo
. Pro
edure p4 is
alled by a thread initially
running on node 0. After having allo
ated a few blo
ks in the iso-address area and

onstru
ted a linked list, the thread starts traversing the list. Arrived at element 100,
the thread migrates to node 1 and
ontinues the traversal.

4 Implementation details

4.1 Basi
 requirements

In order to implement our iso-address allo
ation strategy, we had to address the
following points.

info%pm2load example1

[node0℄ I am thread eeff0020

[node0℄ Element 0 = 1

[node0℄ Element 1 = 3

[...℄

[node0℄ Element 99 = 199

[node0℄ Initializing migration

from node 0

[node1℄ Arrived at node 1

[node1℄ Element 100 = 201

[node1℄ Element 101 = 203

[node1℄ Element 102 = 205

Fig. 8. Exe
ution tra
e for the
ode in Fig-
ure 7. The list traversal starts on node 0 and

ontinues on node 1. Using mallo
 instead
of pm2_isomallo
 would result in a memory
a

ess error (Figure 9), sin
e the list is not
migrated with the thread in this
ase

info%pm2load example2

[node0℄ I am thread eeff0020

[node0℄ Element 0 = 1

[node0℄ Element 1 = 3

[...℄

[node0℄ Element 99 = 199

[node0℄ Initializing migration

from node 0

[node1℄ Arrived at node 1

[node1℄ Element 100 = -1797270816

[node1℄ Element 101 = 57654

Segmentation fault

Fig. 9. If the
all to pm2_isomallo
 is re-
pla
ed by a
all to mallo
 in the
ode given
in �gure 7, an error o

urs when the thread
tries to a

ess its list after the migration

Iso-address area A spe
i�
 part of the virtual spa
e has to be dedi
ated to iso-
address memory allo
ations on all nodes. To this purpose, we de�ned an
iso-address area situated between the pro
ess sta
k and the heap (Figure 5).
This is possible sin
e all nodes are binary
ompatible and run by the same
version of the operating system.

Global reservation, lo
al allo
ation The iso-address area is divided into �xed-
size virtual address slots, ea
h of whi
h is given to a unique node at initial-
ization. To implement this global reservation, ea
h node is provided with a
private bitmap whi
h identi�es the slots owned by the node (see 4.2). The
initial slot distribution pattern must ensure that no slot is shared by sev-
eral nodes. On ea
h node, a
tual, lo
al allo
ations may only take pla
e at
the slots owned by the
aller. Memory allo
ation is done using the mmap
primitive, whi
h allows for memory allo
ation at spe
i�ed virtual addresses.

Slot distribution Initially, slots are distributed among the nodes a

ording to
some user-de�ned distribution pattern whi
h may be
hosen so as to meet
the needs of the appli
ation. This
hoi
e should be made su
h that most
allo
ations be lo
al and negotiations are as seldom possible. In our
urrent
implementation, slots are assigned to nodes in a round-robin fashion: slot i

belongs to node i mod p in a p-node
on�guration. This
hoi
e has been made
for simpli
ity, but it behaves rather poorly for multi-slot allo
ations. Nothing
prevents the user from
hoosing other distributions. For instan
e, instead of
distributing single slots
y
li
ally among the nodes, one may distribute series
of
ontiguous slots (blo
k-
y
li
 distribution). An extreme
hoi
e is to split
the iso-adress area into p sub-areas, one for ea
h node, but these s
heme is not
advisable if the heap of the
ontainer pro
ess needs to grow in unpredi
table
ways. Observe that nothing prevents the system from triggering at any point

a global negotiation phase, where all nodes would simply ex
hange their (free)
slots to maximize the
ontiguity,

Slot size As previously explained, the slot size was
hosen so as to �t a thread
sta
k and was �xed to 64 kB, that is 16 pages. Thus, thread
reation is a lo
al
operation (i.e., no negotiation is needed) irrespe
tive of the slot distribution,
sin
e a single slot is required. This is also valid for all allo
ations of blo
ks
smaller than a slot. As for larger allo
ations, details are given in Se
tion 4.4.

4.2 Managing slots

Ea
h node keeps tra
k of its private slots by means of a private bitmap. Ea
h
bit in this bitmap
orresponds to a slot in the iso-address zone. Given that this
zone is typi
ally as large as 3.5 GB and that a slot
orresponds to 64 kB, the size
of su
h a bitmap amounts to 7 kB. In ea
h bitmap, the bits are set to 1 if they

orrespond to slots owned by the lo
al node, otherwise they are set to 0. If a bit
is set to 1, the
orresponding slot is free. If it is set to 0, the slot belongs either
to another node (and it is ne
essarily free) or to some lo
al or remote thread.

When a slot request is issued by a thread (for instan
e, when a thread is

reated or when it requires additional storage area), one of the slots owned by
the lo
al node is given to the thread and the
orresponding bit is set to 0 in
the lo
al bitmap. The slot does not belong to the lo
al node any more. When
a slot is released by a thread (due to dynami
 release or to thread death), the

orresponding bit in the
urrent lo
al bitmap is set to 1. Observe that the bitmaps
do not undergo any
hange on thread migration, sin
e the migrating slots keep
being owned by the thread and the
orresponding bits keep their 0-value on all
nodes. Noti
e also that, due to migration, a slot may be allo
ated on a node and
released on another, so that the destination node may eventually a
quire slots
that it did not possess initially.

Threads manage their private slots in a double-linked list (Figure 10). This
is in
ontrast with nodes whi
h manage their private slots by means of a bitmap.
Chaining the slots owned by a thread makes it mu
h easier to manipulate them
on migration. A
tually,
haining is
arried out by means of pointers stored in
the slot headers. Given that the slot
ontents get
opied at the same virtual
address in
ase of migration, these pointers remain valid and the
haining is thus
preserved. As with user-level pointers, no post-migration pro
essing is ne
essary:
an iso-address
opy is enough.

4.3 Allo
ating blo
ks

In
ontrast to the traditional mallo
/free primitives, whi
h deal with dynami

allo
ations in a
ontiguous heap, pm2_isomallo
 and pm2-isofree manage allo-

ations of arbitrarily-sized blo
ks within a list of dis
ontinuous slots. Ea
h slot

ontains a double-linked list of free blo
ks. Blo
ks have headers storing their
size, as well as pointers to the neighboring blo
ks in the list.

Blo
k allo
ations are
arried out as follows. When a thread requires some
additional storage spa
e, its slots are sear
hed for a large enough free blo
k. In

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

User-level data

Thread stack

Fig. 10. Ea
h thread keeps its private slots in a double-linked list

the
urrent implementation, a �rst-�t strategy is used, but other strategies
ould
be
onsidered as well, espe
ially if fragmentation is to be kept low. If no suitable
blo
k is found, a new free slot belonging to the
urrent lo
al node is a
quired
by the thread. It gets atta
hed to its slot list. Then, a new blo
k is allo
ated in
this new slot. This s
heme works for all requests for blo
ks smaller than the slot
size, as long as the node owns at least one slot.

4.4 Coping with large-blo
k allo
ations

To ensure the
ompatibility with mallo
 and free, our allo
ator
an also
ope
with arbitrarily-sized blo
k requests, larger than a slot. In order to satisfy su
h
requests, the key point is to make up a larger slot out of n regular,
ontiguous
slots and to allo
ate the blo
k inside this new slot (where n is the smallest number
of
ontiguous slots that would be ne
essary). For this purpose, the following steps
are a

omplished.

1. The slot bitmap of the lo
al node is s
anned, in order to �nd the ne
es-
sary number of
ontiguous slots. A �rst-�t strategy is used. If this sear
h is
su

essful, the
orresponding slots are given to the thread, whi
h uses them
to build up a large slot. This large slot gets atta
hed to the slot list of the
thread.

2. If the sear
h fails, a global negotiation phase among all the nodes is laun
hed.
The initiating nodes behave as follows.
(a) Enter a system-wide
riti
al se
tion. No other node is allowed to mod-

ify its slot bitmap within this se
tion. (It may still run its
ode and
allo
ate/free blo
ks, as long as no slot management is ne
essary.)

(b) Gather the lo
al bitmaps of all nodes.
(
) Compute an global or taking all bitmaps as operands.
(d) Sear
h for the �rst series n
ontiguous available slots in this global bitmap

and �buy� the non-lo
al slots. It su�
es to mark these slots are marked
with �1� in the bitmap of the requesting node and �0� in the bitmap of
their original owner node.

(e) Send ba
k the updated bitmaps to their respe
tive nodes.
(f) Exit the system-wide
riti
al se
tion.

Noti
e that the same algorithm may be used if a node has run out of slots. It
simply enables a node to buy slots from some other nodes.

A global negotiation is obviously an expensive operation, be
ause of the
global
ommuni
ation required. It should therefore be kept as ex
eptional as
possible. Two main fa
tors have an impa
t on the frequen
y of these negotiations:
the slot size and the initial slot distribution. Sin
e all single-slot allo
ations are
guaranteed to be lo
al, the slot must be large enough to avoid multiple-slot
allo
ations as mu
h as possible. On the other hand, even for su
h allo
ations,
negotiation may be avoided if the ne
essary number of
ontiguous slots are lo
ally
available. It is therefore important to
hoose a �good� initial slot distribution,
in order to avoid negotiations even more. Observe that there is no restri
tion
whatsoever on the initial distribution.

Noti
e also that the manipulation of the bitmaps on the lo
al node may be

ompletely arbitrary. It is in parti
ular possible for the lo
al node to to take
advantage of a negotiation phase to �pre-buy� slots in prevision of foreseeable
large allo
ation requests. It is also possible to
ompletely restru
ture the slot
distribution at the system level, for instan
e by grouping
ontiguous free slots
as mu
h as possible on the various nodes. The only requirement is that ea
h slot
present in the bitmaps must �nally belong to exa
tly one node.

5 Performan
e and optimizations

We present here some results obtained on our PoPC
luster. Ea
h node
onsists
of a 200 MHz PentiumPro pro
essor. The operating system is Linux 2.0.36.
The nodes are inter
onne
ted by a Myrinet network from Myri
om [9℄ a

essed
through the BIP low-level
ommuni
ation interfa
e [12℄.

The time needed to migrate a thread with no stati
 data between two nodes
is less than 75 �s. It was measured by means of a thread ping-pong between two
nodes. This time in
ludes pa
king the thread resour
es, transferring them over
the network, allo
ating the memory on the destination node and unpa
king the
resour
es. Noti
e that no post-migration pro
essing whatsoever is needed thanks
to our iso-address approa
h. This time should be
ompared to the 150 �s reported
for the migration of a null thread in A
tive Threads [13℄. This performan
e
�gure is partly due to the very e�
ient Madeleine
ommuni
ation layer used by
PM2 [2℄.

Using the pm2_isomallo
 fun
tion instead of the usual mallo
 indu
es a non-
signi�
ant overhead for the requests of blo
ks larger than one slot, as shown in
Figure 11. This overhead is mainly due to the negotiation automati
ally required
by any multi-slot allo
ation when the slots are distributed in a round-robin way
(whi
h is the
ase in our experiment). This negotiation takes 255 �s in a 2-node

on�guration when using BIP/Myrinet. If the underlying ar
hite
ture provides
more than 2 nodes, another 165 �s should be added per extra node. Noti
e that,
for large allo
ations, this overhead is small and rather insigni�
ant
ompared to
the total allo
ation time (see Figure 11, bottom). We
an thus
on
lude that our
approa
h s
ales well.

0

1000

2000

3000

4000

5000

6000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

av
er

ag
e

al
lo

ca
tio

n
tim

e
(m

ic
ro

se
co

nd
s)

block size (bytes)

malloc
pm2_isomalloc

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

av
er

ag
e

al
lo

ca
tio

n
tim

e
(m

ic
ro

se
co

nd
s)

block size (bytes)

malloc
pm2_isomalloc

Fig. 11. Compared performan
e of mallo
 and pm2_isomallo
 for respe
tively small and
large requests in a 2-node
on�guration.

6 Con
lusion and future work

To validate our approa
h, we have integrated the iso-address allo
ation primi-
tives in the runtime libraries used by two data-parallel
ompilers [3, 6℄. These

ompilers have been previously modi�ed, in order to generate multithreaded
ode
for PM2 [11, 1℄. Thanks to our new allo
ator, the runtime
ode responsible for
thread migration was signi�
antly simpli�ed. Given that pre- and post-migration
pro
essing were redu
ed, we
ould noti
e an improvement of our virtual pro
essor
migration time. We are
urrently working on these aspe
ts.

A number of optimizations have been
onsidered on top of the general s
heme
presented. Instead of unmmapping a slot ea
h time it is released, we keep a num-

ber of mmapped empty slots in a pro
ess-wide
a
he. This saves the mmapping
time at the next slot allo
ation. When migrating a slot atta
hed to a thread, it
is su�
ient to send its internally allo
ated blo
ks. Additional details on the
ur-
rent implementation and a downloadable version
an be found at http://www.
ens-lyon.fr/�rnamyst/pm2.html.

Referen
es

1. L. Bougé, P. Hat
her, R. Namyst, and C. Perez. Multithreaded
ode generation for
a HPF data-parallel
ompiler. In Pro
. 1998 Int. Conf. Parallel Ar
hite
tures and
Compilation Te
hniques (PACT'98), ENST, Paris, Fran
e, O
tober 1998. Prelim-
inary version available at ftp://ftp.lip.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/
RR1998-43.ps.Z.

2. L. Bougé, J-F. Méhaut, and R. Namyst. Madeleine: an e�
ient and portable
om-
muni
ation interfa
e for multithreaded environments. In Pro
. 1998 Int. Conf. Par-
allel Ar
hite
tures and Compilation Te
hniques (PACT'98), pages 240�247, ENST,
Paris, Fran
e, O
tober 1998. IFIPWG 10.3 and IEEE. Preliminary version avaiable
at ftp://ftp.lip.ens-lyon.fr/pub/LIP/Rapports/RR/RR1998/RR1998-26.ps.Z.

3. Th. Brandes. Adaptor (HPF
ompilation system), developped at GMD-SCAI. Avail-
able at http://www.gmd.de/SCAI/lab/adaptor/adaptor_home.html.

4. J. Casas, R. Konuru, S. W. Otto, R. Prouty, and J. Walpole. Adaptive load
migration systems for PVM. In Pro
. Super
omputing '94, pages 390�399, Wash-
ington, D. C., November 1994. Available at http://www.m
s.vuw.a
.nz/�pmar/refs.
html#R545.

5. D. Cronk, M. Haines, and P. Mehrotra. Thread migration in the presen
e of
pointers. In Pro
. Mini-tra
k on Multithreaded Systems, 30th Intl Conf. on Sys-
tem S
ien
es, Hawaii, January 1997. Available at URL http://www.
s.uwyo.edu/
�haines/resear
h/
hant.

6. P. J. Hat
her. UNH C*. Available at http://www.
s.unh.edu/pjh/vstar/
star.html.
7. A. Itzkovitz, A. S
huster, and L. Shalev. Thread migration and its appli
ation in

distributed shared memory systems. J. Systems and Software, 42(1):71�87, July
1998. Available at http://www.
s.te
hnion.a
.il/Labs/Millipede/.

8. E. Mas
arenhas and V. Rego. Ariadne: Ar
hite
ture of a portable threads sys-
tem supporting mobile pro
esses. Software: Pra
ti
e & Experien
e, 26(3):327�356,
Mar
h 1996.

9. Myri
om. Myrinet link and routing spe
i�
ation. Available at http://www.myri.

om/myri
om/do
ument.html, 1995.

10. R. Namyst. PM2: an environment for a portable design and an e�
ient exe
ution
of irregular parallel appli
ations. Phd thesis, Univ. Lille 1, Fran
e, January 1997.
In Fren
h.

11. C. Perez. Load balan
ing HPF programs by migrating virtual pro
essors. In Se
ond
Int. Workshop on High-Level Progr. Models and Supportive Env. (HIPS'97), pages
85�92, April 1997.

12. B. Touran
heau and L. Prylli. BIP messages. Available at http://lhp
a.univ-lyon1.
fr/bip.html.

13. B. Weissman, B. Gomes, J. W. Quittek, and M. Holtkamp. E�
ient �ne-grain
thread migration with A
tive Threads. In Pro
eedings of IPPS/SPDP 1998, Or-
lando, Florida, Mar
h 1998. Available at http://www.i
si.berkeley.edu/�sather/
Publi
ations/ipps98.html.

