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An e�ient and transparent thread

migration sheme in the PM2 runtime system

Gabriel Antoniu, Lu Bougé, and Raymond Namyst

LIP, ENS Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07, Frane.
Contat: fGabriel.Antoniu,Lu.Bouge,Raymond.Namystg�ens-lyon.fr.

Abstrat. This paper desribes a new iso-address approah to the dy-
nami alloation of data in a multithreaded runtime system with thread
migration apability. The system guarantees that the migrated threads
and their assoiated stati data are reloated exatly at the same virtual
address on the destination nodes, so that no post-migration proessing
is needed to keep pointers valid. In the experiments reported, a thread
an be migrated in less than 75�s.

1 Introdution

Multithreading has proven useful to implement massively parallel ativities in
distributed systems, sine it provides an e�ient way of overlapping ommuni-
ation and omputation. When the appliation behavior is hardly preditable
at ompile time, dynami load balaning beomes essential. It an be ahieved
by transparently migrating omputation threads from the overloaded nodes to
the underloaded ones. In the implementation desribed below, a thread an be
migrated aross the Myrinet network in less than 75 �s.

Migrating a thread usually means moving the thread stak, but sometimes
may also mean moving the stati data used by the thread. In this respet, sev-
eral migration approahes have been implemented in the existing multithreaded
systems, depending on the rationale underlying the use of thread migration. In
Ariadne [8℄, threads are migrated to get lose to the remote data they use. Stati
data never moves. On migration, the thread stak is reloated at a usually dif-
ferent address on the destination node, suh that pointers need to be updated.
As shown in 2, several problems annot be solved by this approah. In Milli-
pede [7℄, thread migration is direted by a load balaning module integrated
in the system, whereas stati data get moved only when they get aessed by
remote threads. The threads and their data are always reloated at the same
virtual addresses on all nodes. Yet, thread reation is expensive, therefore the
number of onurrent threads is statially �xed at initialization. In both systems
mentioned above, data are shared and an be aessed by more than one thread.
UPVM [4℄ provides thread migration for PVM appliations, in order to support
load balaning. Threads have private heaps, for private dynami alloations.
Thread reation is expensive in this system, too, sine it is arried out by means
of a global synhronization. Besides, the size of the thread private heaps is �xed
at thread reation: the amount of data that a thread an alloate is limited.



Our interest in iso-address alloation and migration stems from data-parallel
ompiling. Consequently, our study fouses on the ase in whih data are not
shared: they belong to some unique thread and thus have to follow it on migra-
tion. Our iso-address alloator has been implemented in the PM2 multithreaded
runtime system [10℄, whih serves as a runtime support for two data-parallel om-
pilers [1℄. We target appliations having to exeute on homogeneous lusters of
workstations or PCs interonneted by a high-speed network (e.g., Myrinet [9℄).

This paper is strutured as follows. In setion 2, we give a quik desription of
PM2: a multithreaded runtime system providing thread migration. An overview
of our iso-address approah is given in setion 3 and some implementation details
are presented in setion 4. Setion 5 shows some performane �gures. Finally,
setion 6 summarizes our main results and points out what we intend to address
in the near future.

2 PM2: a multithreaded runtime system with thread
migration

PM2 is a multithreaded runtime system espeially designed to serve as a runtime
support for highly parallel irregular appliations. In suh appliations, threads
may need to start or terminate at arbitrary moments during the exeution. At
the same time, the system has to e�iently ope with a large number of onur-
rent threads. Therefore, PM2 provides very e�ient primitives to handle these
operations: reation, destrution and ontext swithing. A distintive feature of
PM2 is thread migration. Sine the exeution of irregular appliations may lead
to severe load imbalanes, thread migration an be used to support the imple-
mentation of load balaning poliies based on dynami ativity redistribution.

In a PM2 appliation, there is a single (heavy) proess running at eah node
and eah suh proess may ontain tens of thousands of threads. We often iden-
tify this ontainer proess with the node running it. At the simplest level, a PM2
thread is an exeution �ow managing a set of resoures, i.e., its state desriptor
and its private exeution stak. The ode to be exeuted by the threads is repli-
ated on eah node (SPMD approah) and is not part of the thread. Again, we
emphasize that we do not onsider the aspets of data sharing between threads
in this paper, nor the problem of a thread using global proess resoures suh
as �les, network interfaes, et. In this setting, migrating a thread simply means
moving the thread resoures from the (heavy) proess running on the loal node
to another (heavy) proess loated on some remote node. In PM2, the migration
operation is arried out in three main steps:

1. The thread gets stopped (frozen) and its resoures get opied to a ommu-
niation bu�er. The memory area storing the resoures is set free.

2. The bu�er ontents get sent to the destination node through the network.

3. An adequate memory area is alloated on the destination node, the thread
resoures are opied into it, and the thread exeution is resumed.



In PM2, any thread may �deide� to migrate to another node at any arbitrary
point during its exeution. It may also be preemptively migrated by another
thread running on the same node. This latter property is essential, sine it en-
sures that appliation threads may be transparently migrated aross the nodes.
Consequently, a generi module implemented outside the running appliation
ould balane the load by migrating the appliation threads. The threads are
unaware of their being migrated and keep on running irrespetive of their loa-
tion.

Soure ode:
void p1()

{

int x;

x = 1;

pm2_printf("value = %dnn", x);

pm2_migrate(marel_self(), 1);
pm2_printf("value = %dnn", x);

}

Exeution:
[node0℄ value = 1

[node1℄ value = 1

Fig. 1. Thread migration without pointers.

Soure ode:
void p2()

{

int x;

int *ptr = &x;

x = 1;

pm2_printf("value = %dnn", *ptr);

pm2_migrate(marel_self(), 1);

pm2_printf("value = %dnn", *ptr);

}

Exeution:
[node0℄ value = 1

Segmentation fault

Fig. 2. Thread migration in the presene of
pointers to stak data

An example of thread migration is given on Figure 1. Assume that a thread
running on node 0 alls proedure p1. The thread delares a loal variable x,
writes the value 1 to this variable, then prints it. Next, the thread migrates to
node 1 and prints the value of the variable x again. At run time, we an see
that the value 1 is displayed in both ases, before and after migration. The loal
variable x gets automatially moved to node 1, sine it is stored in the thread
stak.

A di�ulty turns up as soon as a migrating thread makes use of pointers.
Suh a situation is illustrated on Figure 2. Here, the thread whih alls p2 reads
variable x through pointer ptr. After migration, there is no guarantee that vari-
able x is still loated at address ptr and the exeution (most probably!) fails.

One way to takle this problem is to update all referenes to stak data after
migration, before the thread resumes its exeution by adding some o�set to all
pointers. Two ategories of pointers to stak data require suh post-migration
proessing: the impliit pointers generated by the ompiler in order to hain
the stak frames and the expliit pointers used by the programmer. The former
may be identi�ed using some knowledge about the way they are generated by
the ompiler, whereas the latter need to be expliitly delared to the system, in



order to enable their update after migration. Suh an approah was implemented
in the early versions of PM2, whih provided primitives to register/unregister
user-level pointers. When a thread moved to another node, all its registered
pointers were updated (Figure 3).

Soure ode:
void p2()

{

int x;

int *ptr = &x;

unsigned int key;

key = pm2_register_pointer(&ptr);
x = 1;

pm2_printf("value = %d\n", *ptr);

pm2_migrate(marel_self(), 1);

pm2_printf("value = %d\n", *ptr);

pm2_unregister_pointer(key);
}

Exeution:
[node0℄ value = 1

[node1℄ value = 1

Fig. 3. Thread migration with registered
pointers

Soure ode:
void p3 ()

{

int *t =

(int *)mallo (100 * sizeof(int));

t[10℄ = 1;

pm2_printf("value = %d\n", t[10℄);

pm2_migrate(marel_self(), 1);

pm2_printf("value = %d\n", t[10℄);

}

Exeution:
[node0℄ value = 1

Segmentation fault

Fig. 4. Thread migration with pointers to heap
data

Clearly, this approah does not extend to omplex appliations. Moreover it
does not ope with resoures loated outside of the stak, suh as heap data
dynamially alloated by the mallo primitive of the C language. Figure 4 shows
a thread whih alls mallo to alloate some memory area, writes (potentially
large) data into this area, migrates, and eventually tries to read at the same
virtual address. The program obviously fails, sine the alloated data has not
been migrated.

One way to solve this problem onsists in remalloating the data on the
destination node. In this ase, the programmer has to expliitly handle the data
paking and unpaking, and to manage the pointer updating as the alloation
address are usually di�erent from the original one. As in the ase of pointers
to stak data, this approah annot be used for arbitrarily omplex appliations
making use of a large number of pointers to heap data. Moreover, this approah
annot ope with ompiler-generated pointers in ase optimization options are
used, sine suh pointers are not registered and annot be updated. Fundamental
ompiler optimizations suh as using pointers instead of indies to san large
arrays are thus forbidden.



3 Our approah: the isomallo memory alloator

3.1 General overview

A muh better approah to the problem desribed in the previous setion is
to provide a mehanism able to guarantee that both the stak and the private,
dynamially alloated data of a thread an be migrated and remalloated at
the same virtual address on the destination node (iso-address alloation and
migration). The idea is to loally alloate storage areas in a system-wide, globally
onsistent way. The alloation mehanism must guarantee that eah range of
virtual addresses at whih memory has been mmapped at some node is kept free
on all the other nodes. Suh an approah has several advantages.

Simpliity The migration mehanism is simpli�ed, beause no post-migration
pointer update is neessary any longer.

Transpareny Appliations may make free use of pointers without having to
take into aount possible problems related to thread migration. User-level
pointers are always guaranteed to be safe.

Portability No ompiler knowledge about the thread stak struture is required,
sine the stak ontents remains exatly the same after migration. In parti-
ular, ompiler-generated pointers are migration-safe, too. Consequently, any
ompiler may be used and ompiler optimizations are allowed.

Preemptiveness Preemptive migration is possible, given that no assumption is
made about the thread state at migration time.

The isomallo alloation mehanism relies on a few basi priniples. These rules
ensure that eah node may use its globally reserved memory without having to
�inform� the other nodes. We thus avoid any synhronization when alloating
memory to threads.

1. The physial exeution environment is assumed to be homogeneous (same
type of proessor, same operating system). Moreover, all nodes have the same
memory mapping: the same binary ode is loaded on eah of them at the
same virtual address (so that no ode needs getting moved upon migration).
The (unique) proess stak is also loated at the same virtual address on all
nodes.

2. On eah node, all iso-address alloations take plae within a speial address
range alled iso-address area. We have loated it between the proess stak
and the heap (Figure 5). This zone orresponds to the same virtual range
on all nodes.

3. Separate ranges of virtual addresses within the iso-address area are globally
reserved for eah node, so that eah address may be used by a single node
at a time.

4. The atual memory alloation is arried out loally, within an address range
belonging to the node on whih the alloation request is made.
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3.2 The slot layer

In this improved view, a PM2 thread is an exeution �ow managing a set of
resoures, i.e., its state desriptor, its private exeution stak, and a series a
dynamially alloated sub-areas within the iso-address area. Let us introdue
some terminology at this point for the sake of larity. An address slot is a range
of virtual addresses within the iso-address area. A slot is free if no memory has
been mmapped at this address. Otherwise, it is busy, and we say that memory
has been alloated in this slot. Then, data may be stored within this slot of
virtual addresses. The iso-address disipline guarantees that a slot whih is busy
on a node is guaranteed to remain free on any other node.

Our goal is to design the management poliy so as to avoid inter-node syn-
hronization as far as possible and to remain ompatible with the heap man-
agement mehanisms of the ontainer (heavy) proess. To manage slots in a
onsistent system-wide manner, it is onvenient to give them a uniform size,
very muh like memory pages at the node level. The hoie of this size is obvi-
ously ruial and we will disuss it later. We introdue again some terminology.
At any point, exatly one agent, a node or a thread, is responsible for managing
a given slot. It is the owner of the slot. The slots owned by a node or a thread are
alled its private slots. A slot owner is responsible for mmapping or unmmaping
memory at this slot of addresses, and reading or writing data. Nobody but the
owner is allowed to use the slot.
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Fig. 6. Slot ownership may hange due to migration. In this example, a thread is reated
and aquires a slot owned by the loal node to store its stak (Step 1). The thread
aquires other slots from the loal node, to store its private data (Step 2). The thread
migrates along with its slots (Step 3). The thread dies and its slots are aquired by the
destination node (Step 4).

At initialization time, eah slot is owned by a unique node and is free. When
a thread is reated, the loal node gives the thread a slot to store its initial
resoures: this slot is from now on owned by the thread. When isomalloating
data dynamially, a thread aquires additional slots from the loal node. Notie
that all this hange of ownership do not require any synhronization between
nodes whatsoever. A thread is assoiated with the list of its private slots where
it stores its resoures. On migration, these slots migrate along with the thread,
whih still owns them after the migration, though the memory is alloated at
another node. At any point, a thread may release slots. They are then given to
the node the thread is urrently visiting. This node may be di�erent from the
node from whih they have been aquired. On dying, a thread releases all the
slots it urrently owns. This slot life yle is illustrated on Figure 6. Observe



that the size of the slots and their initial distribution among nodes is ompletely
irrelevant at this point. We will disuss the hoie of this distribution later.

3.3 The blok layer

Sine our goal is to provide an alloation funtion ompatible with the mallo
C primitive, the isomallo alloator has been re�ned so as to ope with arbitrarily-
sized zones of memory. This leads to a new onept: the blok. A medium-sized
slot may ontain multiple small-sized bloks.

Conversely, when large request are to be handled, a blok may streth over
multiple ontiguous slots. If the urrent loal node owns the neessary number
of ontiguous slots, this alloation is arried out the same way as a simple,
single-slot alloation. The set of ontiguous slots is simply merged into a large
slot. Otherwise, the node has to enter a negotiation with other nodes to buy
from them the neessary set of ontiguous slots. As suh an operation involves
synhronization and mutual exlusion, it is learly muh more expensive than
�usual�, loal alloations. Everything has to be done to keep it exeptional. It is of
ourse possible to inrease the slot size de�ned at initialization. It is muh more
e�ient to adjust the initial distribution of slots so as to favor the ontiguity of
the slots owned by nodes. We disuss these aspets further in Setion 4.1.

3.4 The programming interfae

The PM2 high-level programming interfae provides two primitives by means
of whih threads may alloate (respetively release) memory in the iso-address
area: pm2_isomallo and pm2_isofree. These primitives have the same prototype
as the lassi C funtions mallo and free:

void *pm2_isomallo(size_t size);

void pm2_isofree(void *addr);

A thread must all pm2_isomallo instead of mallo to alloate memory for pri-
vate, non-shared data that are required to migrate with the thread. PM2 guar-
antees that all data stored at addresses returned by pm2_isomallo follow the
alling thread in ase of migration. All addresses alloated by pm2_isomallo
have to be set free through a all to pm2_isofree. Using these primitives en-
sures that all referenes to the address areas handled by them remain valid and
that aesses to the orresponding data are migration-safe. Migration is thus
transparent and the migrating threads may use pointers in an arbitrary way.

An example of ode using pm2_isomallo is given in �gure 7. Let us suppose
that the proedure p4 is alled by a thread running on node 0. The thread
alloates memory bloks in the iso-address zone through suessive alls to
pm2_isomallo and reates a linked list. Then, the thread begins to traverse the
list while printing its elements. When the 101st element is reahed, the thread
migrates to node 1 and ontinues the traversal. As we an notie in �gure 8,
the �rst 100 list elements are displayed on node 0, whereas the next ones are



displayed on node 1. All pointers in the list are still valid after migration, sine
PM2 guarantees that all bloks alloated by pm2_isomallo migrate with the
thread and keep the same virtual addresses.

#define NB_ELEMENTS 100000

#define NB_ITERATIONS 20000

typedef strut _item {int value; strut _item *next;} item;

[...℄

void p4() {

int j; item *head, *ptr;

/* Create a list. */

head = NULL;

for (j = 0; j < NB_ELEMENTS; j++) {

ptr = (item *) pm2_isomallo(sizeof(item));

ptr->value = j * 2 + 1; /* For example */

ptr->next = head; head = ptr;

}

pm2_printf("I am thread %p\n", marel_self());

[...℄

/* Print the list elements. */

j = 0; ptr = head;

while(ptr != NULL) {

if (j = 100) { /* Migrate! */

pm2_printf("Initializing migration from node %d\n", pm2_self());

pm2_migrate(marel_self(), 1);

pm2_printf("Arrived at node %d\n", pm2_self());

}

pm2_printf("Element %d = %d\n", j, ptr->value);

ptr = ptr->next; j++;

}

}

Fig. 7. Sample ode using pm2_isomallo. Proedure p4 is alled by a thread initially
running on node 0. After having alloated a few bloks in the iso-address area and
onstruted a linked list, the thread starts traversing the list. Arrived at element 100,
the thread migrates to node 1 and ontinues the traversal.

4 Implementation details

4.1 Basi requirements

In order to implement our iso-address alloation strategy, we had to address the
following points.



info%pm2load example1

[node0℄ I am thread eeff0020

[node0℄ Element 0 = 1

[node0℄ Element 1 = 3

[...℄

[node0℄ Element 99 = 199

[node0℄ Initializing migration

from node 0

[node1℄ Arrived at node 1

[node1℄ Element 100 = 201

[node1℄ Element 101 = 203

[node1℄ Element 102 = 205

Fig. 8. Exeution trae for the ode in Fig-
ure 7. The list traversal starts on node 0 and
ontinues on node 1. Using mallo instead
of pm2_isomallo would result in a memory
aess error (Figure 9), sine the list is not
migrated with the thread in this ase

info%pm2load example2

[node0℄ I am thread eeff0020

[node0℄ Element 0 = 1

[node0℄ Element 1 = 3

[...℄

[node0℄ Element 99 = 199

[node0℄ Initializing migration

from node 0

[node1℄ Arrived at node 1

[node1℄ Element 100 = -1797270816

[node1℄ Element 101 = 57654

Segmentation fault

Fig. 9. If the all to pm2_isomallo is re-
plaed by a all to mallo in the ode given
in �gure 7, an error ours when the thread
tries to aess its list after the migration

Iso-address area A spei� part of the virtual spae has to be dediated to iso-
address memory alloations on all nodes. To this purpose, we de�ned an
iso-address area situated between the proess stak and the heap (Figure 5).
This is possible sine all nodes are binary ompatible and run by the same
version of the operating system.

Global reservation, loal alloation The iso-address area is divided into �xed-
size virtual address slots, eah of whih is given to a unique node at initial-
ization. To implement this global reservation, eah node is provided with a
private bitmap whih identi�es the slots owned by the node (see 4.2). The
initial slot distribution pattern must ensure that no slot is shared by sev-
eral nodes. On eah node, atual, loal alloations may only take plae at
the slots owned by the aller. Memory alloation is done using the mmap
primitive, whih allows for memory alloation at spei�ed virtual addresses.

Slot distribution Initially, slots are distributed among the nodes aording to
some user-de�ned distribution pattern whih may be hosen so as to meet
the needs of the appliation. This hoie should be made suh that most
alloations be loal and negotiations are as seldom possible. In our urrent
implementation, slots are assigned to nodes in a round-robin fashion: slot i

belongs to node i mod p in a p-node on�guration. This hoie has been made
for simpliity, but it behaves rather poorly for multi-slot alloations. Nothing
prevents the user from hoosing other distributions. For instane, instead of
distributing single slots ylially among the nodes, one may distribute series
of ontiguous slots (blok-yli distribution). An extreme hoie is to split
the iso-adress area into p sub-areas, one for eah node, but these sheme is not
advisable if the heap of the ontainer proess needs to grow in unpreditable
ways. Observe that nothing prevents the system from triggering at any point



a global negotiation phase, where all nodes would simply exhange their (free)
slots to maximize the ontiguity,

Slot size As previously explained, the slot size was hosen so as to �t a thread
stak and was �xed to 64 kB, that is 16 pages. Thus, thread reation is a loal
operation (i.e., no negotiation is needed) irrespetive of the slot distribution,
sine a single slot is required. This is also valid for all alloations of bloks
smaller than a slot. As for larger alloations, details are given in Setion 4.4.

4.2 Managing slots

Eah node keeps trak of its private slots by means of a private bitmap. Eah
bit in this bitmap orresponds to a slot in the iso-address zone. Given that this
zone is typially as large as 3.5 GB and that a slot orresponds to 64 kB, the size
of suh a bitmap amounts to 7 kB. In eah bitmap, the bits are set to 1 if they
orrespond to slots owned by the loal node, otherwise they are set to 0. If a bit
is set to 1, the orresponding slot is free. If it is set to 0, the slot belongs either
to another node (and it is neessarily free) or to some loal or remote thread.

When a slot request is issued by a thread (for instane, when a thread is
reated or when it requires additional storage area), one of the slots owned by
the loal node is given to the thread and the orresponding bit is set to 0 in
the loal bitmap. The slot does not belong to the loal node any more. When
a slot is released by a thread (due to dynami release or to thread death), the
orresponding bit in the urrent loal bitmap is set to 1. Observe that the bitmaps
do not undergo any hange on thread migration, sine the migrating slots keep
being owned by the thread and the orresponding bits keep their 0-value on all
nodes. Notie also that, due to migration, a slot may be alloated on a node and
released on another, so that the destination node may eventually aquire slots
that it did not possess initially.

Threads manage their private slots in a double-linked list (Figure 10). This
is in ontrast with nodes whih manage their private slots by means of a bitmap.
Chaining the slots owned by a thread makes it muh easier to manipulate them
on migration. Atually, haining is arried out by means of pointers stored in
the slot headers. Given that the slot ontents get opied at the same virtual
address in ase of migration, these pointers remain valid and the haining is thus
preserved. As with user-level pointers, no post-migration proessing is neessary:
an iso-address opy is enough.

4.3 Alloating bloks

In ontrast to the traditional mallo/free primitives, whih deal with dynami
alloations in a ontiguous heap, pm2_isomallo and pm2-isofree manage allo-
ations of arbitrarily-sized bloks within a list of disontinuous slots. Eah slot
ontains a double-linked list of free bloks. Bloks have headers storing their
size, as well as pointers to the neighboring bloks in the list.

Blok alloations are arried out as follows. When a thread requires some
additional storage spae, its slots are searhed for a large enough free blok. In
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Fig. 10. Eah thread keeps its private slots in a double-linked list

the urrent implementation, a �rst-�t strategy is used, but other strategies ould
be onsidered as well, espeially if fragmentation is to be kept low. If no suitable
blok is found, a new free slot belonging to the urrent loal node is aquired
by the thread. It gets attahed to its slot list. Then, a new blok is alloated in
this new slot. This sheme works for all requests for bloks smaller than the slot
size, as long as the node owns at least one slot.

4.4 Coping with large-blok alloations

To ensure the ompatibility with mallo and free, our alloator an also ope
with arbitrarily-sized blok requests, larger than a slot. In order to satisfy suh
requests, the key point is to make up a larger slot out of n regular, ontiguous
slots and to alloate the blok inside this new slot (where n is the smallest number
of ontiguous slots that would be neessary). For this purpose, the following steps
are aomplished.

1. The slot bitmap of the loal node is sanned, in order to �nd the nees-
sary number of ontiguous slots. A �rst-�t strategy is used. If this searh is
suessful, the orresponding slots are given to the thread, whih uses them
to build up a large slot. This large slot gets attahed to the slot list of the
thread.

2. If the searh fails, a global negotiation phase among all the nodes is launhed.
The initiating nodes behave as follows.
(a) Enter a system-wide ritial setion. No other node is allowed to mod-

ify its slot bitmap within this setion. (It may still run its ode and
alloate/free bloks, as long as no slot management is neessary.)

(b) Gather the loal bitmaps of all nodes.
() Compute an global or taking all bitmaps as operands.
(d) Searh for the �rst series n ontiguous available slots in this global bitmap

and �buy� the non-loal slots. It su�es to mark these slots are marked
with �1� in the bitmap of the requesting node and �0� in the bitmap of
their original owner node.

(e) Send bak the updated bitmaps to their respetive nodes.
(f) Exit the system-wide ritial setion.



Notie that the same algorithm may be used if a node has run out of slots. It
simply enables a node to buy slots from some other nodes.

A global negotiation is obviously an expensive operation, beause of the
global ommuniation required. It should therefore be kept as exeptional as
possible. Two main fators have an impat on the frequeny of these negotiations:
the slot size and the initial slot distribution. Sine all single-slot alloations are
guaranteed to be loal, the slot must be large enough to avoid multiple-slot
alloations as muh as possible. On the other hand, even for suh alloations,
negotiation may be avoided if the neessary number of ontiguous slots are loally
available. It is therefore important to hoose a �good� initial slot distribution,
in order to avoid negotiations even more. Observe that there is no restrition
whatsoever on the initial distribution.

Notie also that the manipulation of the bitmaps on the loal node may be
ompletely arbitrary. It is in partiular possible for the loal node to to take
advantage of a negotiation phase to �pre-buy� slots in prevision of foreseeable
large alloation requests. It is also possible to ompletely restruture the slot
distribution at the system level, for instane by grouping ontiguous free slots
as muh as possible on the various nodes. The only requirement is that eah slot
present in the bitmaps must �nally belong to exatly one node.

5 Performane and optimizations

We present here some results obtained on our PoPC luster. Eah node onsists
of a 200 MHz PentiumPro proessor. The operating system is Linux 2.0.36.
The nodes are interonneted by a Myrinet network from Myriom [9℄ aessed
through the BIP low-level ommuniation interfae [12℄.

The time needed to migrate a thread with no stati data between two nodes
is less than 75 �s. It was measured by means of a thread ping-pong between two
nodes. This time inludes paking the thread resoures, transferring them over
the network, alloating the memory on the destination node and unpaking the
resoures. Notie that no post-migration proessing whatsoever is needed thanks
to our iso-address approah. This time should be ompared to the 150 �s reported
for the migration of a null thread in Ative Threads [13℄. This performane
�gure is partly due to the very e�ient Madeleine ommuniation layer used by
PM2 [2℄.

Using the pm2_isomallo funtion instead of the usual mallo indues a non-
signi�ant overhead for the requests of bloks larger than one slot, as shown in
Figure 11. This overhead is mainly due to the negotiation automatially required
by any multi-slot alloation when the slots are distributed in a round-robin way
(whih is the ase in our experiment). This negotiation takes 255 �s in a 2-node
on�guration when using BIP/Myrinet. If the underlying arhiteture provides
more than 2 nodes, another 165 �s should be added per extra node. Notie that,
for large alloations, this overhead is small and rather insigni�ant ompared to
the total alloation time (see Figure 11, bottom). We an thus onlude that our
approah sales well.
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Fig. 11. Compared performane of mallo and pm2_isomallo for respetively small and
large requests in a 2-node on�guration.

6 Conlusion and future work

To validate our approah, we have integrated the iso-address alloation primi-
tives in the runtime libraries used by two data-parallel ompilers [3, 6℄. These
ompilers have been previously modi�ed, in order to generate multithreaded ode
for PM2 [11, 1℄. Thanks to our new alloator, the runtime ode responsible for
thread migration was signi�antly simpli�ed. Given that pre- and post-migration
proessing were redued, we ould notie an improvement of our virtual proessor
migration time. We are urrently working on these aspets.

A number of optimizations have been onsidered on top of the general sheme
presented. Instead of unmmapping a slot eah time it is released, we keep a num-



ber of mmapped empty slots in a proess-wide ahe. This saves the mmapping
time at the next slot alloation. When migrating a slot attahed to a thread, it
is su�ient to send its internally alloated bloks. Additional details on the ur-
rent implementation and a downloadable version an be found at http://www.
ens-lyon.fr/�rnamyst/pm2.html.
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