
1 Introduction

An efficient animation
of wrinkled cloth
with approximate implicit
integration

Young-Min Kang1,
Jeong-Hyeon Choi1,
Hwan-Gue Cho1,
Do-Hoon Lee2

1 Department of Computer Science, Pusan National
University, Kumjeong-gu, Pusan, 609–735,
South Korea
e-mail: {ymkang, jhchoi, hgcho}@pearl.cs.pusan.ac.kr
2 Department CEa of Computer Engineering, Miryang
National University, Korea
e-mail: dhlee@arang.miryang.ac.kr

This paper presents an efficient method for creating the

animation of flexible objects. The mass-spring model

was used to represent flexible objects. The easiest ap-

proach to creating animation with the mass-spring model

is the explicit Euler method, but the method has a serious

weakness in that it suffers from an instability problem.

The implicit integration method is a possible solution, but

a critical flaw of the implicit method is that it involves

a large linear system. This paper presents an approximate

implicit method for the mass-spring model. The proposed

technique updates with stability the state of n mass points

in O(n) time when the number of total springs is O(n).

In order to increase the efficiency of simulation or re-

duce the numerical errors of the proposed approximate

implicit method, the number of mass points must be as

small as possible. However, coarse discretization with

a small number of mass points generates an unrealistic

appearance for a cloth model. By introducing a wrinkled

cubic spline curve, we propose a new technique that gen-

erates realistic details of the cloth model, even though

a small number of mass points are used for simulation.

Key words: Cloth animation – Mass spring
model – Implicit method – Realistic detail –
Wrinkled curve

Correspondence to: Y.-M. Kang

For physically based modeling, the mass-spring
model is a simple and powerful approach for repre-
senting flexible objects such as cloth. There are many
techniques for simulating flexible objects (Carignan
et al. 1992; Provot 1995; Terzopoulos et al. 1987;
Volino et al. 1995), and they use various models such
as the finite element model (Celniker and Gossard
1991), and the deformable surface model (Wang et
al. 1998). There are trade-offs between realism and
efficiency. Some researchers have studied the real-
istic representation of flexible objects (Breen et al.
1994; Eberhardt et al. 1996), and others have tried
to efficiently generate the motion of flexible ob-
jects (Baraff and Witkin 1998; Desbrun et al. 1999).
Among these models, the mass-spring model is the
easiest and the most intuitive.
Various techniques have been introduced to use the
mass-spring model to simulate or animate flexible
objects (Chen et al. 1998; Desbrun et al. 1999; Provot
1995). An animation technique based on the mass-
spring model can be formulated as a simple ordinary
differential equation. It is easy to calculate the force
on each mass point, and we can animate the mass
point by numerically integrating the force. The ex-
plicit Euler integration is the simplest approach to the
numerical integration procedure, but it requires very
small time steps for simulation or animation because
this approach suffers severely from the instability
problem (Kass 1995).
The implicit method is a well-known solution to
the instability problem in numerical analysis (Naka-
mura 1991). Recently, Baraff and Witkin (1998)
have exploit the implicit integration method to take
large time steps during cloth simulation. Because
this method can significantly reduce the simulation
time, the implicit method is regarded as the best
choice for the interactive animation of mass-spring-
based objects. However, the implicit method also
has a problem in that a large linear system must be
solved. Although the implicit method elegantly in-
sures that the spring forces will be stably integrated,
the large linear system involved in the method is
a major obstruction to real-time animation. Desbrun
et al. (1999) propose an efficient method of cloth
animation with a precomputed inverse matrix (i.e.,
a precomputed filter). However, the method also suf-
fers from intensive computation because the inverse
matrix may not be sparse.
This paper presents a fast and stable animation tech-
nique that updates with stability the state of n mass
points in O(n) time for the real-time animation of

The Visual Computer (2001) 17:???–???
c© Springer-Verlag 2001

Young-Min Kang
The Visual Computer Journal, 2001. Springer-Verlag. (to appear)

2 Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration

Fig. 1. Snapshots of cloth animation

flexible objects as shown inTS
b Fig. 1. The adap-

tive time step strategy and the dynamic modification
of animation parameters, such as mass or stiffness,
are not restricted in our model. In addition, we con-
sidered the wrinkles for the sake of a realistic ap-
pearance, and also implemented interaction between
flexible objects and air in order to generate plausible
motion of the cloth.

2 The mass-spring model and stable
integration

The mass-spring model is a simple technique for rep-
resenting flexible objects. The model represents an
object as a set of mass points that are linked to each
other by springs. The forces caused by the springs in-
duce the movement of mass points, and the springs
can be arbitrarily constructed. This is a very intuitive
approach to the representation of cloth.

Mass points are easily animated with the explicit Eu-
ler integration. However, due to the instability prob-
lem, the simple explicit Euler integration cannot be
used unless the time step h is very small. Thus, the
explicit method requires too much time to animate
the mass-spring model (Desbrun et al. 1999; Kass
1995; Nakamura 1991).

2.1 The implicit method for stable animation

The implicit method is a solution to the instability
problem. By using the implicit Euler method, we can
stably update the state of each mass point as follows:

vt+h
i = vt

i + Ft+h
i

h

mi
(1)

xt+h
i = xt

i +vt+h
i h,

where vt
i denotes the velocity of the ith mass point

at time t, and Ft+h
i is the force acting on the mass

point at time t + h (i.e., the force at the next time
step). Similarly, xt

i denotes the location of the ith
mass point at time t, mi is the mass of the ith mass
point, and h denotes the interval between the ani-
mation steps. Because this integration method stably
updates the state of the mass-spring model, a large
time step can be taken for animation. Therefore, the
implicit method is the best choice for real-time or in-
teractive animation systems.
However, the implicit Euler method involves Ft+h

i ,
which can be approximated with a first-order deriva-
tive as follows:

Ft+h = Ft + ∂F
∂x

∆xt+h, (2)

where Ft denotes the internal forces consisting of
all the internal forces Ft

i on the ith mass point
(i.e., Ft = [Ft

1, Ft
2, · · · , Ft

n]T), and similarly, ∆xt =
[∆xt

1,∆xt
2, · · · ,∆xt

n]T. Because ∂F/∂x is a negated
Hessian matrix of the system (Desbrun et al. 1999),
we will henceforth denote ∂F/∂x as H.
Since ∆xt+h = xt+h − xt = (vt +∆vt+h)h, the first
equation of implicit update in (1) can be rewrit-
ten as:(

I − h2

m
H

)
∆vt+h = (Ft +h Hvt)

h

m
(3)

where ∆vt+h is vt+h − vt . If ∆vt+h can be calcu-
lated, the velocity and location of each mass point
at the next step can easily be updated with (1). The

Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration 3

animation of flexible objects is finally reduced to
finding the value of ∆vt+h . In (3), h Hvt represents
additional forces. As mentioned by Desbrun et al.
(1999), these additional forces are viscosity forces
and can easily be calculated as

(h Hvt)i = h
∑

(i, j)∈E

ki j (v
t
j −vt

i), (4)

where E is the set of spring edges between mass
points.
Despite the stability of the implicit method, the
method has a critical weakness in that (3) involves
a I − (h2/m)H, which is an O(n × n)-sized ma-
trix. Because of this matrix, a large linear system
must be solved in order to update the state of the
model. A modified conjugate-gradient method has
been used to alleviate the computation, but it is still
far from the interactive animation of a mass-spring
model (Baraff and Witkin 1998).
In order to alleviate the computational burden of the
implicit method, Desbrun et al. (1998) propose an
efficient method that approximates the Hessian ma-
trix H. In the method, Hi j , the entry of the Hessian
matrix at the ith row and the jth column, was approx-
imated as Hi j = ki j , and Hii = −∑

j
=i ki j , where
ki j denotes the stiffness constant of the spring be-
tween the ith and the jth mass points. ki j is 0 when
the ith and the jth mass springs are not linked. Then,
the matrix (I − (h2/m)H)−1 remains constant dur-
ing animation. The inverse matrix of I − (h2/m)H
was precomputed and used as a force filter for the
cloth animation. This technique uses simple calcula-
tions and produces stable results. Their method can
be expressed as

∆vt+h =
(

I − h2

m
H

)−1
F̃th

m
, (5)

where F̃ is the sum of the spring forces and the vis-
cosity forces (i.e., F̃t = Ft +h Hvt).
The precomputed filter method is faster than the
general implicit method. However, the inverse ma-
trix of I − (h2/m)H is not necessarily a sparse ma-
trix, even though I − (h2/m)H is sparse. Moreover,
the adaptive time-step strategy cannot be applied
to the precomputed filter method, and the mass or
stiffness cannot be dynamically changed because
the calculation of the inverse matrix requires much
time. This is why we did not use the precomputed
filter.

2.2 An approximation method for interactive
animation

We can update the velocity change of the ith mass
point by considering only the linked mass points be-
cause Hi j is 0 when the ith and the jth mass points
are not linked with a spring. Therefore, the implicit
update scheme (3) can be rewritten as
(

1− h2 Hii

mi

)
∆vi − h2

mi

∑
(i, j)∈E

(Hi j∆v j) = F̃t
i h

mi
. (6)

We adopted the approximate Hessian described by
Desbrun et al. for the simplicity. If the uniform
spring constant k is assumed for all the spring links,
and ni denotes the number of neighboring mass
points that are linked to the ith mass point, the
Hessian matrix can be rewritten as Hi j = k and
Hii = −kni . The update formula can then be rewrit-
ten as

mi +h2kni

mi
∆vt+h

i = F̃t
i h

mi
+ h2k

∑
(i, j)∈E ∆vt+h

j

mi
.

Therefore, ∆vt+h
i can be expressed as follows:

∆vt+h
i = F̃t

i h + kh2 ∑
(i, j)∈E ∆vt+h

j

mi + kh2ni
. (7)

However, ∆vt+h
i cannot be calculated directly by (7)

because the equation contains an unknown ∆vt+h
j ,

the velocity changes of the jth mass points that
are linked to the ith mass point in the next state.
In order to calculate ∆vt+h

i , the velocity change
of the ith mass point at the next step, the veloc-
ity change of the jth mass point at the next step is
approximated.
∆vt+h

j can be expressed as

∆vt+h
j = F̃t

jh +h2 ∑
(j,l)∈E k jl∆vt+h

l

m j +h2
∑

(j,l)∈E k jl
. (8)

When the term, h2 ∑
(j,l)∈E k jl∆vt+h

l , is dropped, an

approximation of ∆vt+h
j remains:

∆vt+h
j � F̃t

jh

m j +h2
∑

(j,l)∈E k jl
. (9)

4 Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration

By using this approximation and assuming the uni-
form stiffness k, we can rewrite the update formula
for ∆vt+h

i as

∆vt+h
i = F̃t

i h +h2k
∑

(i, j)∈E F̃t
jh/(m j +h2kn j)

mi +h2kni
,

(10)

where ni is the number of mass points that are linked
to the ith mass point by springs, and n j is the number
of mass points linked to the jth mass point.
Since ∆F̃t

j is already known, the velocity change
of the ith mass point at the next step can be calcu-
lated directly. This means that we can generate the
approximate motion of flexible objects without solv-
ing the linear system that was a major obstruction
to interactive animation. Since we update the ve-
locity changes of a mass point by considering only
a small number of linked mass points, it is obvious
that our model works in O(n) time and is faster than
the precomputed inverse matrix method or any gen-
eral implicit integration. Moreover, the mass, time
step, or stiffness can easily be changed during ani-
mation without any additional computations. These
dynamic changes of parameters cannot be achieved
when the precomputed inverse matrix is used. It is
easy to modify (10) for general cases where the stiff-
ness values of springs differ from each other. We
have tested the approximate motion of flexible ob-
jects and found that our model generates stable ani-
mation results.

2.3 Stability of the proposed method

To verify the stability of our method, let us consider
a simple example where only two mass points (i and
j) of the same mass m are linked with a spring. This
is not a proof, but it illustrates why our method is
stable. Suppose that the rest length of the spring is
0, and the stiffness of the spring is k. For the sake
of simplicity, let us assume that the current velocity
of each mass point is [0, 0, 0]T. Then, no viscosity
forces are exerted on the mass points, and the force
acting on the mass points i and j can be calculated as

F̃t
i = −k(xt

i − xt
j) (11)

F̃t
j = −k(xt

j − xt
i) = −F̃t

i .

It is clear that the location of the mass points does
not diverge when |xt+h

i − xt+h
j | ≤ |xt

i − xt
j |. Since

ni = n j = 1, F̃j = −F̃i , and mi = m j = m, the loca-
tion of each mass point at the next step, (xt+h

i and
xt+h

j), can be calculated as

xt+h
i = xt

i + F̃t
i h − kh2 F̃t

i h/(m + kh2)

m + kh2
h (12)

xt+h
j = xt

j −
F̃t

i h − kh2 F̃t
i h/(m + kh2)

m + kh2 h.

Let u denote xt
i − xt

j . Then, F̃t
i can be expressed as

−ku, and the difference of the locations of the mass
points at the next step can be expressed as

xt+h
i − xt+h

j = u
(

1−2 · mkh2

(m + kh2)2

)
. (13)

It is clear that |xt+h
i − xt+h

j | is less than |xt
i − xt

j |
when 0 ≤ mkh2/(m + kh2)2 ≤ 1. It is trivial to show
that mkh2/(m + kh2)2 is larger than 0. Now, it is
only necessary to show that mkh2/(m + kh2)2 ≤ 1.
Because (m + kh2)2 is m2 + k2h4 + 2mkh2, it
can easily be found that (m + kh2)2 − mkh2 is
m2 + k2h4 + mkh2 and larger than 0. Therefore,
mkh2/(m + kh2)2 ≤ 1.

3 Realistic details

This section presents a new technique for generating
realistic details of cloth. Because the approximate
implicit method proposed in this paper determines
the next position of a mass point by considering the
positions of a limited number of linked neighbors,
undesirable results can be generated when a large
number of mass points are used to represent a cloth
model. In order to overcome the limitations of our
animation technique, we introduce a wrinkle genera-
tion method based on a cubic spline curve.

3.1 Generating a smooth surface with cubic
spline curves

As previously mentioned, our animation technique
suffers from numerical errors when cloth is dis-
cretized into too many mass points. Moreover, other
animation methods such as implicit integration or
precomputed filtering cannot efficiently generate the
motion of cloth when it is composed of too many

Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration 5

Key node

Internal node

Frame node

Mass-Spring Structure (key nodes) Frame nodes and internal nodes for wrinkle representation

2

3a 3b

Fig. 2. Three types of nodes used for representing our cloth model. The black spots are the key nodes, the white spots are the
frame nodes, and the gray spots are the internal nodes

Fig. 3a,b. Generating a smooth surface by a cubic spline: a a rendered cloth with the key nodes used during the simulation;
b a rendered cloth with the frame nodes and the internal nodes calculated with spline curves

mass points. We believe that the best way to ani-
mate cloth efficiently, regardless of the simulation
techniques, is a hybrid method that generates the
motion of a small number of important mass points
through a simulation technique and calculates the
locations of many other mass points by an inter-
polation method such as that of the cubic spline
curve.
We define three types of nodes that are used in
our cloth model: key nodes, frame nodes, and in-
ternal nodes. The key nodes are those the locations
of which are determined by an animation technique,
for example, the approximate implicit method. The
frame nodes are those that are located between two

adjacent key nodes. The locations of the frame nodes
are not simulated during the simulation phase, but
simply calculated with the cubic spline curves. The
control points of the curves are the key nodes. The
third type of nodes are internal nodes, and their loca-
tions are also calculated with cubic spline curves; the
frame nodes are used as the control points. Figure 2
shows how the various types of nodes are linked to
each other.
By using the cubic spline curves, we can generate
a smooth surface, even though only a small num-
ber of mass points are used in the simulation phase.
This enables the motion of cloth to be generated ef-
ficiently, and reduces the numerical errors in our ap-

6 Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration

proximate method during the simulation. Figure 3
shows the effects of generating the frame and the in-
ternal nodes with cubic spline curves. We used only
100 mass points in the simulation phase (Fig. 3a) and
generated 2500 nodes to represent the cloth (Fig. 3b).
However, the cubic spline generates an excessively
smooth surface so that the result is far from a realistic
representation of the cloth. The following subsection
presents a technique that generates a plausible cloth
representation when only a small number of nodes
are given.

3.2 Generating realistic details through
wrinkled cubic spline curves

A cubic spline curve can be used to generate a smooth
surface of cloth by calculating the frame nodes and
the internal nodes, but the results do not closely
resemble real cloth. The undesirable result is due
to the incapability of the cubic spline curve to ex-
press detailed wrinkles. In order to represent real-
istic cloth wrinkles, we modified our method for
generating the frame and the internal nodes by
adding wrinkles to the cubic spline. The results of
the wrinkled cubic spline curves are much better
than those of the simple cubic spline curves. Fig-
ure 4 shows a result of the wrinkled cubic spline
curve.
Figure 5a shows the cubic spline curve, and Fig. 5b,
the wrinkled cubic spline curve. The wrinkled cubic
spline curve in Fig. 5b generally follows the curve
shown in Fig. 5a, and wrinkles are generated in seg-
ments where two adjacent control points are closer
than a given threshold. The closer the points are, the
more wrinkles are generated.
Wrinkles are generated according to the length of
each spline segment. If the distance between two
control points that generate one spline segment is
shorter than the rest length of a spring, the seg-
ment must have some wrinkles in order to preserve
the length. Since the focus of this study is not on
the exact simulation of cloth, but on the efficient
generation of a plausible motion of cloth, the strict
preservation of length is not important. Therefore,
we implemented a simple wrinkle model that can
generate plausible wrinkles. The wrinkle model cre-
ates wrinkles when the distance between two ad-
jacent control points is shorter than the rest length
of the virtual spring that links the points, assum-
ing that the frequency of wrinkles is proportional to

4

5a

5b
Fig. 4. The rendering result of cloth with wrinkled cubic
spline curves. The number of nodes used here is the same
as that in Fig. 3

Fig. 5a,b. A wrinkled cubic spline curve: a cubic spline;
b wrinkled cubic spline

the difference between the rest length and the actual
distance.
Let Q(t) be a cubic spline curve segment between
two control points, P1 and P2, with 0 ≤ t ≤ 1, and let
Q′(t) be the wrinkled spline curve segment between
the control points. Q′(t) is exactly the same curve as
Q(t) when the distance between the control points is
longer than the rest length. If the distance is shorter

Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration 7

a b c

Fig. 6a–c. Effects of wrinkles: a mass-spring structure; b wrinkle generation; c rendering result

than the length, Q′(t) can be expressed as

Q′(t) = Q(t)+w(t)A sin(ft)N(t) (14)

w(t) = 1/2−2(t −1/2)2

A = (l0 −|P1 − P2|)/2
f = c(l0 −|P1 − P2|)/l0,

where N(t) is the normal vector of the curve at t, l0 is
the rest length of the spring that links the points, and
c is the control parameter for the frequency of wrin-
kles. When this method is applied to the cloth model,
N(t) can be the normal vector of the cloth surface.
Figure 6 shows the effects of our wrinkle model. Fig-
ure 6a shows the wireframe images of the cloth when
only 100 (10 × 10) nodes are used for simulation;
Fig. 6b shows the results with 2500 nodes, the lo-
cations of which are calculated only with wrinkled
cubic spline curves; and Fig. 6c shows the final ren-
dering results based on the 2500 nodes.

4 An air-interaction model for
plausible animation

In order to generate realistic animation of thin flex-
ible objects, two kinds of forces, drag force and lift
force, must be considered. The magnitude of drag
force is known to be

|FD| = 1

2
CD�|V |2S sin θ, (15)

where |FD| denotes the magnitude of the drag force,
CD is the drag force coefficient, � is the density of
a fluid, V is the velocity of an object relative to the
fluid, S is the area of the object surface, and θ is the
angle between V and the surface. The direction of the
drag force is opposite to that of the velocity.
Similarly, the magnitude of the lift force can be ex-
pressed as

|FL | = 1

2
CL�|V |2S cos θ, (16)

8 Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration

a b c d

Fig. 7a–d. Flag in wind: a 50 cm×50 cm flag is tied to a pole, and the wind is blowing from left to right. The velocity of the
wind is 40 m/s, K D is 0.01, and KL is 0.01. Our air-interaction model generated very plausible animation of a thin object:
a t = 0; b t = 1; c t = 2; d t = 3

where |FL | denotes the magnitude of the lift force,
and CL is the lift force coefficient. The direction of
the lift force is perpendicular to the direction of the
velocity.
When N̂i denotes the unit normal of the ith mass
point, and v̂i denotes vi/|vi |, the angle between N̂i

and v̂i is π/2− θ. Thus, |N̂ · v̂i | is sin θ (= cos(π/2
− θ)). Therefore, the drag force is proportional to
|N̂ · v̂i |. Because the direction of the drag force is op-
posite to the direction of the velocity, the drag force
was implemented as

FDi = −KD|N̂i · v̂i ||vi |2v̂i, (17)

where KD is the control parameter for the drag force.
To implement the lift force, its direction must first be
determined. Because the direction of the lift force is
perpendicular to the direction of the velocity Ui , the
direction of the lift force on the ith mass point, was
determined as

Ñi = N̂i, if N̂i · v̂i > 0

− N̂i, otherwise (18)

Ui = (Ñi × v̂i)× v̂i .

Since the direction of the lift force has already been
determined, only the magnitude of the lift force
needs to be determined. The lift force FLi on the ith
mass point was implemented as

FLi = (KL cos θ|vi |2)Ui, (19)

where KL is the control parameter for the lift force.
The effects of drag and lift forces caused by wind can
easily be taken into account by calculating the rela-
tive velocity of each mass point with respect to air.

Figure 7 shows the animation results when the drag
force and the lift force are considered. The velocity
of the wind is 40 m/s, KD is 0.01, and KL is 0.01. As
seen in the figure, our model generated a very plausi-
ble scene.

5 Experimental results

We implemented an animation system for thin flex-
ible objects by using the OpenGL and the Open In-
ventor library on SGI Indigo2 and O2 machines
with R10000 processors. The system was imple-
mented with the techniques proposed in this pa-
per. However, the mass-spring model has limita-
tions in representing flexible objects because it
shows superelastic effects. The inverse dynamics
process for adjusting the superelongated springs
should be considered when the mass-spring model
is used. We adopted the techniques proposed by
Provot (1995).
Our technique generated real-time animation of flex-
ible objects with hundreds of mass points at the
frame rate of 30 Hz or 60 Hz. We were also able
to generate interactive animation with more mass
points (i.e., thousands of mass points).
We compared the results of precomputed filter-
ing proposed by Desbrun et al. with those of our
approximation. Figure 8 shows that the velocity
changes calculated by our model is very simi-
lar to those calculated by the precomputed filter.
In Fig. 8, a virtual human moves a flag and the
velocity change of each mass point is drawn as
a line segment. Two clusters of line segments rep-
resent the velocity changes calculated with the

Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration 9

8

9a 9b 9c

Fig. 8. A comparison between the precomputed filter method and the proposed approximation: a character moves a flag and
the velocity change of each mass point is shown as a line segment. Two clusters of line segments represent velocity changes
calculated with precomputed filtering (top) and those approximated by the proposed technique (middle)

Fig. 9a–c. The results of cubic spline curves and wrinkled cubic spline curves: a an original mass-spring structure; b the result
generated by cubic spline curves; c the result generated by wrinkled cubic spline curves

precomputed filter (top) and those approximated
by the proposed technique (middle). The veloc-
ity changes calculated by both methods are sim-
ilar in magnitude and direction. Thus, our model
generates the stable motion of the mass-spring
model, similar to the case of the precomputed filter
method.
Figure 9 shows the rendering results of different de-
tails. The results shown in column a are rendered
with only 100 key nodes; those in column b are ren-
dered with the key nodes, the frame nodes, and the

internal nodes with cubic spline curves; and those
in column c are rendered with wrinkled cubic spline
curves.
Figure 10 shows the animation results when the pro-
posed techniques are used. The motion of the char-
acter was captured by a motion capture system, and
the motion of the flag shown in the figure was gener-
ated by applying our techniques. One hundred nodes
were used to generate the important movements of
the flags, and the locations of 2400 frame nodes and
internal nodes were calculated with the wrinkled cu-

10 Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration

Fig. 10. Animation results: 100 key nodes are used as mass points for the proposed approximate implicit method, and the
frame nodes and the internal nodes are generated with the wrinkled cubic spline curves. The total number of nodes for the
scenes is 2500

bic spline for creating a plausible appearance of the
flags.

6 Conclusion

We have proposed an approximation method of im-
plicit integration for the stable and rapid animation
of a mass-spring model, and we have also shown
the results produced with an animation system im-
plemented with the proposed techniques. Physical
correctness was not a major concern of our work;
we were only interested in rapid and plausible ani-
mation of flexible objects. The experimental results
show that our technique produces very plausible an-
imation of flexible objects.
Our technique is very stable because we exploit the
filtering property of the implicit method. Moreover,
our method is as fast as the explicit method in the
calculation of the next state because ours does not in-
volve linear system solving, which is a bottleneck in
the implicit method. Another important advantage of
our technique is that it is very intuitive and easy to
implement because it calculates the next state with
a direct update formula. Moreover, our technique al-
lows adaptive time steps, and dynamic modifications
of physical parameters such as mass and stiffness.
The biggest flaw of our method is that undesirable re-
sults can be generated when a large number of mass
points are used for simulation because the proposed
method computes the location of each mass point

by considering only its linked neighbors. In order to
solve this problem, we introduced a new technique
that generates realistic details of the cloth model
when a small number of mass points are given. The
technique employs the wrinkled cubic spline curve,
which generates a curve that is similar to the cu-
bic spline curve, but involves wrinkles according to
the distance between two adjacent control points. By
using the wrinkled cubic spline curve, we could effi-
ciently generate cloth motion with a small number of
mass points and render realistic details of cloth with
the wrinkled curve. Our technique can be applied to
various animation systems that require the interac-
tive animation of flexible objects.

Acknowledgements. This work was supported in part by the Ministry
of Information and Communication of Korea: The Support Project for
University Foundation Research 2000, supervised by CEc (IITA).

References

1. Baraff D, Witkin A (1998) Large steps in cloth simulation.
(SIGGRAPH ’98) Comput Graph CEd :43–52

2. Breen D, House D, Wozny M (1994) Predicting the drape of
woven cloth using interacting particles. (SIGGRAPH ’94)
Comput Graph CEd :365–372

3. Carignan M, Yang Y, Thalmann N, Thalmann D (1992)
Dressing animated synthetic actors with complex de-
formable clothes. (SIGGRAPH ’92) Comput Graph CEd :99–
104

4. Celniker G, Gossard D (1991) Deformable curve and
surface finite-elements for free-form shape design. (SIG-
GRAPH ’91) Comput Graph CEd :257–266

Y.-M. Kang et al.: An efficient animation of wrinkled cloth with approximate implicit integration 11

5. Chen Y, Zhu Q, Kaufman A (1998) Physically based an-
imation of volumetric objects. Proceedings of Computer
Animation ’98, CEe , pp 154–160

6. Desbrun M, Schröder P, Barr A (1999) Interactive ani-
mation of structured deformable objects. Proceedings of
Graphics Interface ’99CEf

7. Eberhardt B, Weber A, Strasser W (1996) A fast, flexi-
ble, particle-system model for cloth draping. IEEE Comput
Graph Appl 16:52–59

8. Kass M (1995) An introduction to continuum dynamics
for computer graphics. SIGGRAPH Course Notes vol CEg .
ACM SIGGRAPH

9. Nakamura S (1991) Initial value problems of ordinary dif-
ferential equations. In: Applied numerical methods with
software. Prentice-Hall, pp 289–350CEh

10. Provot X (1995) Deformation constraints in a mass-spring
model to describe rigid cloth behavior. Graphics Interface
CEd :147–154

11. Terzopoulos D, Platt J, Barr A (1987) Elastically de-
formable models. (SIGGRAPH ’87) Comput Graph CEd :
205–214

12. Volino P, Courchesne M, Thalmann N (1995) Versatile
and efficient techniques for simulating cloth and other
deformable objects. (SIGGRAPH ’95) Comput Graph
CEd :137–144

13. Wang B, Wu Z, Sun Q, Yuen M (1998) A deformation
model of thin flexible surfaces. Proceedings of WSCG ’98,
pp 440–446CEi

YOUNG-MIN KANG is a PhD
student in the Department of
Computer Science at Pusan Na-
tional University, Pusan, Korea.
He received his MSc and BSc
degrees in Computer Science
from Pusan National University
in 1999 and 1996, respectively.
His research interests include
computer animation and simula-
tion. He is currently working on
the simulation and animation of
flexible objects and is also inter-
ested in the efficient control of
nonautonomous objects.

JEONG-HYEON CHOI re-
ceived his BSc degree in Physics
from Pusan National Univer-
sity in 1995. He received his
MSc degree in Computer Sci-
ence from Pusan National Uni-
versity in 2000, and is currently
a PhD student in the Depart-
ment of Computer Science at
Pusan National University. His
current research interests include
computer animation and bioin-
formatics.

HWAN-GUE CHO received
his BSc degree in Computer Sci-
ence and Statistics from Seoul
National University, Seoul, South
Korea, in 1984. He also received
his MSc and PhD degrees in
Computer Science from the Ko-
rea Advanced Institute of Sci-
ence and Technology (KAIST)
in 1986 and 1990, respectively.
Since 1990, he has been a fac-
ulty member of the Department
of Computer Science at Pusan
National University. In 1994, he

was a visiting scholar at the Max Planck Institute for Infor-
matics in Saarbrücken, Germany. His main research areas are
algorithm design and analysis, and computational geometry.
Currently, he is conducting research on flexible object anima-
tion and bioinformatics, especially phylogenetics.

DO-HOON LEE received his
BSc degree in Computer Science
and Statistics from Pusan Na-
tional University, Pusan, Korea,
in 1986. He also received his
MSc and PhD degrees in Com-
puter Science from Pusan Na-
tional University, in 1992 and
1998, respectively. Since 1995,
he has been a faculty member
of the Department of Computer
Engineering, Miryang National
University, Korea. He is also the
Director of Advanced Technol-
ogy in Information and Commu-

nication Institute at Miryang National University. His research
interests include virtual reality, human animation, and compres-
sion.

