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Predicting the rate of penetration (ROP) is critical for drilling optimization because maximization of ROP can greatly reduce
expensive drilling costs. In this work, the typical extreme learning machine (ELM) and an e	cient learning model, upper-layer-
solution-aware (USA), have been used in ROP prediction. Because formation type, rock mechanical properties, hydraulics, bit
type and properties (weight on the bit and rotary speed), and mud properties are the most important parameters that a
ect ROP,
they have been considered to be the input parameters to predict ROP. �e prediction model has been constructed using industrial
reservoir data sets that are collected from an oil reservoir at the Bohai Bay, China. �e prediction accuracy of the model has been
evaluated and compared with the commonly used conventional arti�cial neural network (ANN). �e results indicate that ANN,
ELM, and USAmodels are all competent for ROP prediction, while both of the ELM and USAmodels have the advantage of faster
learning speed and better generalization performance. �e simulation results have shown a promising prospect for ELM and USA
in the �eld of ROP prediction in new oil and gas exploration in general, as they outperform the ANNmodel. Meanwhile, this work
provides drilling engineers with more choices for ROP prediction according to their computation and accuracy demand.

1. Introduction

Drilling is an expensive and necessary operation for petro-
leum and gas exploration. �e ultimate aim in drilling oper-
ations is to increase drilling speed with less cost while main-
taining safety. However, because of the geological uncertainty
and many uncontrolled operational factors, the optimization
of drilling is still a large challenge for oil and gas industries
[1, 2]. In o
shore drilling, rate of penetration (ROP) is the
key parameter to optimize total rig hours. Because it can be
used for formation drillability estimation, reliable and fast
prediction of rate of penetration (ROP) is highly desirable.

In existing literature, some direct and indirect methods
are designed to evaluate the ROP. ROP mathematical models
can be used to outline changes of rock mechanical properties
and drilling parameters, bit types, and design on ROP. Bour-
goyne and Young (B&Y) proposed a ROP calculating model
considering eight functions, whereas the relevant parameters
need to be obtained bymultiple regression for each data entry,

and this equation is only adequate for roller-type rock bits [3].
In addition to B&Y’s equation,many authors try to �nd a sim-
ple link between ROP and rock properties because themajor-
ity of reservoir mechanical properties can be inferred from
well logs. Howarth et al. carried out a laboratory test program
for correlating the penetration rate with rock properties and
reported that penetration rate correlated well with the uniax-
ial compressive and tensile strength of the rock [4]. Kahra-
man introduced a strong correlation between penetration
rate and brittleness values obtained from uniaxial compres-
sive strength and tensile strength [5]. However, the applica-
tion of rock mechanical properties for ROP estimation can-
not reveal the real-time downhole conditions. �erefore, it is
necessary to use drilling data, but many operational parame-
ters of the drilling equipment are found to relate toROP. Some
authors performed statistical analyses using real-time drilling
data, such as weight bit on, bit rotational speed, torque, and
the e
ect of mud properties, and some of them obtained
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Table 1: Summary of ROP prediction models with arti�cial intelligence.

Reference Model
Input
number

Input layer Output layer

Zhang et al. [22] AHP and BPANN 9
UCS, bit size, bit type, drillability coe	cient, gross hours drilled,
WOB, RPM, drilling mud density, and AV (Apparent Viscosity)

ROP

Jahanbakhshi
et al. [13]

ANN 20

Di
erential pressure, hydraulics, hole depth, pump pressure, density
of the overlying rock, equivalent circulating density, hole size,

formation drillability, permeability and porosity, drilling �uid type,
plastic viscosity of mud, yield point of mud, initial gel strength of
mud, 10min Gel strength of mud bit type and its properties, weight

on the bit and rotary speed, bit wear, and bit hydraulic power

ROP

Bahari and
Seyed [11]

Fuzzy 4 UCS, rock quality designation, bit Load, and bit rotation ROP

Amar and
Ibrahim [25]

Radial-basis
function and ELM

7
Depth, bit weight, rotary speed, tooth wear, Reynolds number

function, ECD, and pore gradient
ROP

Bilgesu et al. [12] ANN 9
Formation drillability, formation abrasiveness, bearing wear, tooth

wear, pump rate, rotating time, rotary torque, WOB, and rotary speed
ROP

Bataee and
Mohseni [2]

ANN 4 Bit diameter, WOB, RPM, and mud weight ROP

Moran et al. [26] ANN 6 Rock strength, rock type, abrasion, WOB, RPM, and mud weight ROP and wear

Monazami et al.
[27]

ANN 13

Drill collar outside diameter, drill collar length, kick of point,
azimuth, inclination angle, weight on bit, �ow rate, bit rotation speed,
mud weight, solid percent, plastic viscosity, yield point, and measured

depth

ROP

a certain degree of success [6–9]. As a matter of fact, there
is no exact relation between ROP, rock mass properties,
and di
erent drilling variables because not only do a large
number of uncertain drilling variables in�uence ROPbut also
the relationships between ROP and the a
ecting factors are
complex and highly nonlinear. �us, some so� computing
technologies such as neural networks have been applied to
ROP prediction in recent years [10]. �e �exibility of this
method allows engineers to analyze a wide range of infor-
mation and deliver high-quality ROP prediction. Bahari and
Seyed applied GA to determine constant coe	cients of Bour-
goyne and Young’s ROP model [11]. Table 1 shows current
ROPpredictionmodels with arti�cial intelligence.�e results
revealed that the ANN model exhibited better performance
to predict penetration rate than the prediction performance
of multiple regression models. In addition, neural networks
can yield good correlation coe	cients even if fewer data are
available from �led measurements [12–15]. However, tradi-
tional ANN still has some signi�cant shortcomings, such as a
slow training process and the possibility of trapping in local
extrema, which lead to dissatisfactory predictions.�erefore,
it is necessary to introduce new algorithms that can poten-
tially further improve ROP prediction accuracy.

�e extreme learning machine (ELM) proposed by
Huang et al. is a fast algorithm for single hidden-layer feedfor-
ward neural networks (SLFNs) [16, 17]. �e way ELM trains
SLFN is that it �rst randomly generates theweights of the hid-
den layer and then calculates the weights of the output layer
by solving a linear system using the least square method.�is
learning algorithm is extremely fast and has good prediction
accuracy. It has been proved in theory and in practice that this

algorithm can generate good generalization performance in
most cases at speeds much faster than traditionally popular
feedforward neural network learning algorithms. Until now,
ELM has been widely studied and applied extensively by
researchers and it has demonstrated good generalization and
prediction performance inmany real-life applications [18, 19].
Many algorithms such as evolutionary ELM and enhanced
random search-based incremental ELM (EI-ELM) have been
proposed to optimize the network structure. �e above algo-
rithms choose all or part of the hidden-layer weights ran-
domly and select the candidate ones with the LSE (Least
Squares Estimation). However, themodel parameters in these
algorithms are not e	cient enough because only the value
of the objective function is used in the search process. USA
(upper-layer-solution-aware algorithm), an improved ver-
sion of the ELM algorithm, gives an optimization of the
number of hidden-layer nodes and the parameters modeling
the problem [20]. Once the weights of the hidden layer are
determined, those of the output layer can be determined as
a certain function using the closed-form solution. �erefore,
what we need to search for at each epoch along the gradient
direction is just the weights of the hidden layer. However, the
study of ELM and USA in drilling ROP prediction is rare.

�is paper concentrates on ROP estimation using bit type
and its properties, mud type and mud viscosity, formation
parameters such as rock strength, formation drillability, and
formation abrasiveness, and some critical drilling equipment
operational parameters such as pump pressure, WOB, and
rotary speed based on the previous drilled wells data with the
ELM and USA model. �e developed ELM and USA model
are shown to be e	cientwith respect to accuracy and running
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time compared to traditionalANNmodels.�ey thus provide
a more reliable and faster real-time tool for predicting ROP
in new wells.

2. Artificial Neural Networks and
Extreme Learning Machines

2.1. Methodology of Arti	cial Neural Networks. Arti�cial
neural networks (ANNs) are e	cient models in approximat-
ing the unknown nonlinear functions, seeking to simulate
human brain behavior by processing data on a trial-and-error
basis. Because of their powerful ability in approximation and
generalization, ANNs have been widely used in petroleum
engineering, with applications to bit selection, reservoir
characterization, EOR (enhanced oil recovery), hydraulic
fracturing candidate selection, and so forth [21–24].

�enetwork structures of ANNs aremade up of a number
of neurons which are distributed in layers based on their
di
erent functions. Generally, a complete neural network
consists of three di
erent types on layers, namely, an input
layer, one ormore hidden layers, and an output layer in which
each layer includes a preset number of neurons. It has been
rigorously proved that ANN can approximate any continuous
function with an arbitrary precision. And ANN is thus a uni-
versal approximator. �e direction of the information trans-
mission in feedforward neural networks is from input neu-
rons through activation of the hidden neurons to the outputs.
For supervised learning, the connecting weights of the layers
are updated in the training procedure by minimizing the
objective function between the networks’ actual outputs and
the desired value. Actually, there are many di
erent ways to
ful�ll the training of an ANN model: back-propagation (BP)
algorithm is themost popular one. It is a typical type of super-
vised learning strategy in machine learning �eld. In general,
the BP method uses the following steps: for a given speci�c
input sample, the actual output is obtained through the infor-
mation transferring on layers one by one. If the error between
the produced and the desired outputs is acceptable, then stop
training. If the error is not acceptable in the previous step,
then the weights are changed on the interconnections that go
into the output layer. Next, an error value is calculated for all
of the neurons in the hidden layer that is just below the output
layer. �en, the weights are adjusted for all interconnections
that go into the hidden layer. �e process is continued until
the last layer of weights has been adjusted.

Some essential shortcomings of BP method are continu-
ally encountered in many real applications, for example, slow
convergence speed and prone to being stuck in a local min-
imum. �us, the standard BP algorithm sometimes shows
poor performance on practical applications which mainly
stems from employing the standard gradient descent method
to adjust the weights. As a result, there are many di
erent
variants that have emerged in recent decades. �e com-
monly used variants based on di
erent optimizing strategies
are with Levenberg-Marquardt (LM); the conjugate gradi-
ent method with Powell-Beale, Fletcher-Reeves, and Polak-
Ribiere updates; the gradient descent method with momen-
tum term, penalty term, and adaptive learning rate; Bayesian
regulation; and scaled conjugate gradient [28].
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Figure 1: Structure and schematic diagramof the ELMmethod used
in this paper.

2.2. Methodology of Extreme Learning Machines

2.2.1. Conventional Extreme Learning Machines. ELM was
originally proposed to train a single hidden-layer feedfor-
ward neural network (SLFN) and later extended to more
generalized SLFNs where the hidden layer may not be
made of homogeneous neurons. Some obstacles that back-
propagation neural networks faced, such as the slow training
speed, the sensitivity to the selection of the parameters, and
the high possibility to be trapped in local minima, can be
avoided using ELM. Figure 1 illustrates the structure of the
ELMmethod.

Neural networks are used universally for feature extrac-
tion, clustering, regression, and classi�cation and require
little human intervention in most cases. Inspired by bio-
logical learning characteristics, to overcome the challenging
problems encountered by BP algorithms, ELM development
sets �t hidden-layer neurons while randomly choosing the
parameters at the initialization period.

�e learning e	ciency and e
ectiveness of ELM were
established in 2005, while its universal approximation capabi-
lity was rigorously proved later.�e correspondence between
speci�c biological neural con�gurations consequently appea-
red in the literature.

Unlike other randomness-based training methods/net-
work models, the hidden weights can be randomly deter-
mined before the learning process, and all of the hidden neu-
rons are independent of the training samples and one another
in ELM. Once determined, both the hidden neurons and the
hidden weights need not be tuned, although they are impor-
tant and crucial for training. Moreover, ELM has good gener-
alization ability, as the architecture of ELM is robust enough
and has enough hidden neurons for the given problems,
which is not the case for conventional learning methods
highly dependent on the data.

Because the connecting weights between the input and
the hidden layer do not need to be tuned, we use a simple
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model with one output node as an example and give the
output of the ELM as follows:

�� (�) = �∑
�=1

��ℎ� (�) = ℎ (�) �, (1)

in which � = [�1, . . . , ��]� denotes the output weights con-
necting the hidden layer and the output layer, and ℎ(�) =[ℎ1(�), . . . , ℎ�(�)] is the hidden-layer output with respect to
input �. ℎ(�) is a feature mapping. In fact, if the input is in�-dimensional space, ℎ(�)maps it to �-dimensional hidden-
layer feature space. For binary classi�cation applications
using ELM, the function of the output is

�� (�) = sign [ℎ (�) �] . (2)

ELM o�en leads to a smaller training error with the
smaller norm of weights compared with the traditional
learning algorithm.According to Bartlett’s theory, the smaller
weights make a great contribution to a better generalization
performance of neural networks with similar training errors.
What makes ELM particularly noteworthy is that the values
of the weights need not be adjusted during the training.
�e values of the input weights are randomly chosen at the
beginning of the training procedure and stay �xed, while the
weights of the output layer are calculated by searching for the
least square solution of the following objective function.

�e training error and the norm of the output weights
ELMminimization are as follows:

Minimize:
����H� − �����2��������� , (3)

whereH is the output matrix of the hidden layer.
�e main purpose of ELM is to minimize the training

error as well as the norm of connecting output layer weights.
According to the theory of linear systems, the weights
between the hidden layer and the output layer are calculated
using the following equation [17]:

� = H
†�, (4)

where H† is the Moore-Penrose pseudoinverse of matrix H

and � = [1, 2, . . . , �]�.
We can summarize the ELM training algorithm as follows

[17]:

(1) Set the hidden node parameters randomly, for exam-
ple, input weights �� and biases �� with the certain
hidden nodes, � = 1, 2, . . . , �.

(2) Calculate the hidden-layer output matrix H through
the input and the weights as well as the biases.

(3) Obtain the output weights matrix using (4).

�e orthogonalizationmethod, the iterativemethod, singular
value decomposition (SVD), and so forth can be used
to evaluate the Moore-Penrose pseudoinverse of a matrix
[24]. By the orthogonal projection method, we can obtain

H† = (H�H)−1H� when H�H is nonsingular and H† =
H�(HH�)−1 when HH� is nonsingular. In light of ridge
regression theory, we add a positive value to the diagonal of

H�H orHH� to make the resultant solution more stable and
tend to have better generalization performance.

According to ELM theory, there are many feature map-
ping functions that ℎ(�) may be designed to incorporate,
which gives ELM the ability to approximate any continuous
target function. �e actual activation functions of human
brain systems seem to be more like a nonlinear piecewise
continuous stimulation, though the actual functions remain
unknown. In fact, the ELM model is based on two major
theorems: universal approximation and classi�cation ability.

�eorem 1 (universal approximation theorem; see [16, 29]).
Given any bounded, nonconstant piecewise continuous func-
tion as the activation function in hidden neurons, if, by tuning
parameters of the hidden neuron activation function, SLFNs
can approximate any target continuous function, then, for any
continuous target function �(�) and any randomly generated

function sequence, {ℎ�(�)}��=1 lim�→∞‖∑��=1 ��ℎ�(�) − �(�)‖ =0 holds with probability one given the appropriate output
weights �.

According to the nonlinear activation function and piece-
wise linear combination, ELM can approximate any contin-
uous mapping and divide arbitrary disjoint regions of any
shapes with enough randomly hidden neurons based on
the nonlinear piecewise continuous activation functions and
their linear combinations. In particular, the theory basis for
the classi�cation capability of ELM is as follows.

�eorem2 (classi�cation capability theorem; see [17]). Given

feature mapping ℎ(�), if ℎ(�) is dense in �(��) or in �(�),
where � is a compact set of ��, then ELM with random
hidden-layer mapping ℎ(�) can separate arbitrary disjoint

regions of any shapes in �� or in�.

�is theorem implies that ELM with bounded noncon-
stant piecewise continuous functions has universal approx-
imation capability. While it does not require updating the
weights of hidden neurons in the training process, it is worth
mentioning that ELM ismore like the activation of the human
brain with the randomly generating hidden weights without
tuning.

2.2.2. Upper-Layer-Solution-Aware (USA) Algorithm Model.
X = [x1, . . . , x�, . . . , x	] is given as the set of input vectors,
and each vector is denoted by x� = [�1�, . . . , �
�, . . . , ���] in
which� is the dimension of the input vector and� is the total
sum of training samples. De�ne � as the number of hidden

units and � as the dimension of the output vector. y� = U�h�
is the output of the SHLNN. Among them, h� = �(W�x�) is
denoted as the hidden-layer output, U is denoted as weight�×�matrix at the upper layer,W is denoted as�×� weight
matrix at the lower layer, and �(⋅) is denoted as the kernel
function.
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Note that if x� and h� are augmented with ones, the bias
terms are implicitly represented in the above formulations.

T = [t1, . . . , t�, . . . , t	] is given as the target vectors and

each target is denoted by t� = [1�, . . . , 
�, . . . , ��]�, and the
parameters U andW are used to minimize the square error.

� = ‖Y − T‖2 = Tr [(Y − T) (Y − T)�] , (5)

where Y = [�1, . . . , ��, . . . , �	]. Note that the hidden-layer
valuesH = [h1, . . . , h�, . . . , h	] are also determined uniquely
if the lower-layer weights W are �xed. A�er setting the
gradient

���W = �Tr [(U�H − T) (U�H − T)�]
�U

= 2H (U�H − T)�
(6)

to zero, the upper-layer weights U can be determined to the
closed-form solution [20]:

U = (HH
�)−1HT

�. (7)

Note that (7) de�nes an implicit constraint between the set
of weights U and the set of weightsW, through hidden-layer
output H in the SHLNN. �is leads to a structure that our
new algorithms will use in optimizing the SHLNN.

Regularization techniques need to be used in actual
applications when hidden-layer matrix H is sometimes ill-

conditioned (i.e., HH� is singular) because solving (7) is
relatively simple. �e popular technique used in this study is
based on the ridge regression theory. Even more speci�cally,

by adding positive value I/# to the diagonal of HH�, (7) is
converted to

U = ( I# +HH
�)−1HT

�, (8)

where I is the identity matrix and # is a positive constant
(regularization coe	cient) that is used to control the degree
of regularization. �e �nal solution (8) actually minimizes‖U�H − T‖2 + #‖U‖2, in which #‖U‖2 is �2 regularization
term. Positive constant # is the regularization coe	cient.
It represents the relative importance of complexity-penalty

term ‖U‖2 with respect to empirical risk ‖U�H − T‖2. When# approaches zero, the model tends to an unconstrained
optimal problem, and then the solutions would be completely
determined from the training samples. When # is made
in�nitely large, this means that the training samples are unre-
liable, imposing weight U to be su	ciently of small values.
In real applications, regularization parameter # is set to be
a value somewhere between these two cases. �e reasonable
regularization parameter can e	ciently a
ect both of the
learning and prediction performance (generalization ability).
Solution (8) shows better stability and better generaliza-
tion performance than (7). Whenever the pseudoinverse is
involved, solution (8) can be used throughout the paper.

�e principle of this algorithm is very simple. Once
the lower-layer weights are determined, the upper-layer
weights can be determined explicitly by using the closed-form
solution (8). Based on this solution, at each epoch, all we
need to adjust along the gradient direction are the lower-layer
weights. Gradient ��/�W is obtained by considering upper-
layer weights U under W’s e
ect and the training objective
function is the square error. We can obtain the gradient by
treating U as a function ofW and plugging (7) into criterion
(5):

���W = �Tr [(U�H − T) (U�H − T)�]
�W = �Tr[([(HH�)−1HT�]�H − T)([(HH�)−1HT�]�H − T)�]

�W
= 2X [H� ∘ (1 −H)� ∘ [H† (HT

�) (ΤΗ†) − T
� (TH†)]] ,

(9)

in which H† = H�(HH�)−1 is the pseudoinverse of H and ∘
is the element-wise production.

In the derivation of (9), we used the fact that HH� and(HH�)−1 are symmetric. We also used the fact that

�Tr [(HH�)−1HT�TH�]
�H�

= −2H� (HH
�)−1HT

�
TH
� (HH

�)−1
+ 2T�TH� (HH

�)−1 .
(10)

�is algorithm updates W by using the gradient that is
de�ned directly in (9) as

W+1 = W + - ���W , (11)

where - is the learning rate. �e learning rate here means
the updating step which is widely used in solving optimal
problems. It shows how far the weights need to be moved in
the direction of the given gradient ��/�W and how to obtain
the newweightswhichminimizes the objective function.One
simple way is to set a positive constant value in the entire
training process. In this paper, we select the suitable learning
rate by means of many di
erent simulations. �is algorithm



6 Mathematical Problems in Engineering

uses the closed-form solution (8) to calculateU a�er updating
W.

�e algorithms proposed in this paper achieve signif-
icantly better classi�cation accuracy than ELM when the
same number of hidden units is used. To achieve the same
classi�cation accuracy, the algorithm requires only 1/16 of the
model, and, therefore, less test time is needed.

3. Input Data Selection

�e target research four wells were drilled at the Bohai Bay
basin,which is the largest oil and gas production base o
shore
in China. �e oil�eld has experienced many production
stages since 1963 and currently many projects are carried
out by China National O
shore Oil Corporation (CNOOC)
and ConocoPhillips China (COPC). To e
ectively increase
production and decrease drilling cost, drilling speed control
is necessary.

Due to drilling requirements and the similarity of wells
located close to one another, collecting past data and utilizing
the data in a useful manner have an important impact on
drilling cost reduction.�is means that optimum parameters
are always in e
ect. As a matter of fact, there are various
factors than can a
ect ROP. Previous studies show that the
ROP is largely dependent on some critical parameters, which
can be classi�ed into three types: rig/bit related parameters,
mud related parameters, and formation parameters. �e
rig/bit and mud related parameters can be manipulated, but
the formation parameters have to be handled di
erently.
Table 2 gives a brief classi�cation of some important drilling
parameters that a
ect ROP. To predict and optimize the
ROP, both controllable and uncontrollable parameters from
drilling reports were collected from daily drilling reports, lab
investigations, well log, and geological information.

Because it is impossible to treat all of the relevant drilling
parameters inROPprediction, it is necessary to choose essen-
tial data based on literature surveys and statistical analysis. It
was concluded that the rock properties, the drilling machine
parameters, and mud properties relate to the ROP. In fact, a
total of 18 drilling parameters were gathered in this study:
depth, torque, rotational per speed (RPM), weight on bit,
�ow rates, active PVT, pump pressure, hook load, di
erential
pressure, mud weight, mud viscosity, formation drillability,
formation abrasiveness, UCS, porosity, bit size, and bit type.

(1) �e bit type/size can a
ect ROP in a given for-
mation. Roller cone bits generally have three cones
that rotate around their axis while teeth are milled
out of the matrix or inserted. �e teeth combine
crushing and shearing to fracture the rock. Drag
bits usually consist of a �xed cutter mechanism that
can be cutting blades, diamond stones, or cutters.
Today, polycrystalline diamond compact (PDC) is the
most commonly used drag bit with PDC, diamond
impregnated, or diamond hybrid cutters mounted
on the bit blades/body. Drag bits disintegrate rock
primarily through shearing. �e di
erence in the
design of roller cone and drag bits and di
erent
rock disintegration methods requires di
erent ROP

models. �us, the e
ects of the bit type are included
in this model.

(2) Operational parameters such as pump pressure and
di
erential pressure are the most important oper-
ational hydraulic parameters a
ecting ROP. Pump
pressure is sometimes increased to achieve a higher
penetration rate for a certain depth of advance while
keeping rotation constant. In addition, the mechani-
cal factors of weight on the bit and rotary speed have
linear relationships with ROP. �e increase in weight
on the bit can push the bit teeth or cutters further
down into a formation and disintegrate more rocks,
resulting in faster ROP. Bit rotation can be increased
to obtain higher penetration rate, keeping the bit load
constant.

(3) Formation mechanical characteristics are uncontrol-
lable variables for controlling ROP values. In general,
decreasing the penetration rate is greatly attributed
to increase of depth because by increasing the depth,
rock strength increases and porosity decreases. More-
over, the larger indirect drilling resistance that results
from larger UCS and hardness will also limit the
depth of cut for a given set of bit design and applied
operating parameters.�ere are twomain reasons for
selecting rock strength as the representative of rock
properties. One is that the rock strength is calculated
by a function of depth, density, and porosity; another
is that this parameter can be computed by logging
data or triaxial compressive experiments and scratch
tests in a lab if core samples are available.

(4) �e aim of drilling mud is to remove the loose
rock chips away from the bit face while the bits
cool. �erefore, drilling weight, mud rheology, and
solid content are con�rmed as an important factor
in ROP by some studies. ROP basically decreased
by increasing mud viscosity, solid content, and mud
weight.

In addition to the above parameters, some comprehensive
parameters such as formation drillability and abrasiveness
also need to be considered because these parameters can
provide some important information sources about ROP
prediction that cannot be described by conventional drilling
data. More importantly, the model inputs should be easily
acquired in real time, recorded from the respective measure-
ment gauges on the rig. Using additional parameters as inputs
can result in a large network size and consequently slow
down running speed and e	ciency. �us, bit size, bit type,
bit wear, UCS, formation drillability, formation abrasiveness,
rotational per speed, WOB, pump pressure, mud viscosity,
andmud density were selected as 11 inputs for neural network
simulation. �e data set used in this paper consists of more
than 5000 measurements taken from this area at di
erent
wells and with di
erent drilling rigs. Figure 2 illustrates three
types of PDC bits in the drilling operation in this area.

It should be noted that data can very o�en be non-
numeric. Because neural networks cannot be trained with
nonnumeric data, it is necessary to translate nonnumeric
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Table 2: ROP related drilling parameters classi�cation.

Rig and bit related parameters Formation parameters Drilling �uid properties

Weight on bit (WOB) Local stresses Mud weight

Torque Hardness Viscosity

Rotary speed (RPM) Mineralogy Filtrate loss

Flow rates Porosity and permeability Solid content

Pump stroke speed (SPM) Formation abrasiveness Gel strength

Pump pressure Drillability Mud pH

Hook load Depth Yield point

Bit wear Temperature

Type of the bit Uncon�ned compressive strength (UCS)

Figure 2: �ree types of PDC drilling bits.

data into numeric data. In this study, formation drillability,
formation abrasiveness, bit size, and bit type are nonnu-
meric. Numbering classes are used in this study to perform
nonnumeric translation. �e formation drillability ranged
between 30 and 75.�ehighest number represents the highest
drillability and the lower drillability was for hard formations
such as shales. �e formation abrasiveness ranged between
1 and 8, where 8 signi�es the highest abrasive formation. In
addition, bit type is assigned between 1 and 12 where 12 is
related to the bit type that has highest ROP average value.
�e bit wear values are determined between 0 and 9, where
9 indicates that a tooth is completely worn out. Table 3 shows
the results for the recorded parameters and their ranges.

4. Experimental Design

4.1. Model Architecture. Determining the optimal size of
the neural network model is complex. An overly complex
network tends to memorize the data without learning to
generalize to new situations. It concentrates too much on the
data presented for learning and tends toward modeling the
noise. �e total number of ROP in target wells is summed
up to 5500. �e training subset constitutes 75% of the total
data and testing subsets that include 25% of the total data.
As mentioned above, inputs of neural networks include 10

Table 3: Summary of results for the recorded parameters.

Parameters Ranges

Bit size/inch 5.813∼8.5
Bit type 1–12

Bit wear 0–9

UCS/psi 2412∼21487
Formation drillability 30–75

Formation abrasiveness 1–8

Rotational per speed/rpm 84∼126
WOB/103 lbs 24∼69
Drilling mud type 1∼3
Mud viscosity/cp 1∼70
Pump pressure/psi 1651–3765

ROP 26.6∼120.5
parameters, while the ROP is the only element in the output
layer. Figure 3 is the developed neural network architecture.

4.2.Model Performance Indicators. �eperformances of neu-
ral network models are assessed by means of the correction
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Figure 3: Schematic of architecture of the ELM network model. Node number of the input layer is 10, and ROP are the only node at the
output layer.

coe	cient (�2), mean absolute error (MAE), root mean
square error (RMSE), and variance accounted for (VAF)
performance indicators.�2 represents the proportion of the overall variance
explained by the model, which can be calculated as

�2 = 1 − ∑��=1 (� (��) − ��)2∑��=1 � (��)2 − ∑��=1 (��)2 /6 . (12)

�ese performance indicators can give a sense of how
good the performance of a predictive model is relative to the
actual value.

MSE can be described as

MSE = 16
�∑
�=1

(� (��) − ��)2 . (13)

�e RMSE is conventionally used as an error function
for quality monitoring of the model. Model performance
increases as RMSE decreases. RMSE can be calculated by the
following equation:

RMSE = √ 16
�∑
�=1

(� (��) − ��)2. (14)

VAF is o�en used to evaluate the correctness of a model,
by comparing the measured values with the estimated output
of the model. VAF is computed by the following equation:

VAF = (1 − var [� (��) − ��]
var� (��) ) × 100, (15)

where, for (12)–(15),�� is themeasured data and�(��)denotes
the predicted data, ��, . . . , �� are the input parameters, and 6
is the total data number.

4.3. Model Parameters Selection. As for the ANN, ELM, or
USA models, the kernel function and the number of hidden
nodes are critical parameters for neural network accuracy.

�e accuracy with di
erent hidden layers was compared
in terms of RMSE performance indicators. When the kernel
function is determined, then increase the hidden numbers
incrementally until 100 is reached. Figure 4(a) illustrates
the accuracy comparison with di
erent nodes for the ANN,
ELM, and USA models, respectively. As for the ELM model,
the MSE between prediction results and measured values
decreases as the node number of the hidden layer gradually
increases with more than 65 nodes. As for the USA model,
the MSE between prediction results and measured values
also decreases as the node number of the hidden layer
gradually increases, except for individual volatility points. As
for the ANNmodel, the MSE between prediction results and
measured values was observed in a �uctuant trend as the
node number of the hidden layer gradually increases, which
indicates that the choice of hidden nodes can greatly a
ect
�nal accuracy.

Four types of kernels have been tested using a training
data set for the ELM model, and they are the sigmoid func-
tion, radial-basis function, hardlim function, and triangular
function. Figure 4(b) shows the accuracy comparison with
di
erent kernel functions for the ELM model. Among the
four kernels for the ELM model, the sigmoid-based model
comes to the threshold �rst when the node number is set to
40, while an over�tting problem appears as the node number
exceeds 60.�e hardlim-based, triangular-based, and radial-
basis based models display a similar trend. However, it
seems that the node number might exceed 60 when the
minimum errors are close to the threshold for the hardlim-
based model. For the triangular-based model, the RMSE
reaches the lowest point at 3.11%when the node number is set
as 85, while the RMSE reaches the lowest point at 3.12% when
the node number is set as 95 for radial-basis based models.
Figure 4(c) shows the accuracy comparison with di
erent
kernel functions for the USAmodel. Observe that the radial-
basis basedmodel comes to the threshold �rst when the node
number is set as 65. As for the hardlim-based model, it seems
that the node number might exceed 60 when the minimum
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Figure 4: (a) �e RMSE change with the increase of hidden layers; (b) comparison of RMSE with di
erent kernel functions for the ELM
network model; (c) comparison of RMSE with di
erent kernel functions for the USA network model.

errors are close to the threshold, which is similar to the
ELMmodel.�e triangular-based and sigmoid-basedmodels
display a similar trend: the RMSE reaches the lowest point
at 3.11% when the node number is set as 80 for the sigmoid
model, while the RMSE reaches the lowest point at 3.48%
when the node number is set as 94 for the tribasis based
models.

For comparison, the classical ANN model was also used
in this paper, and the sigmoid kernel is selected in the
ANN model. �e applied ANN architecture is a feedforward
neural network, which is a network structure in which
the information will propagate in one direction from input

to output. A back-propagation algorithm with Levenberg-
Marquardt training function has been used for training.
�is algorithm can approximate any nonlinear continuous
function to an arbitrary accuracy. Based on the experimental
tests, and when the node number of the hidden layer is set as
36, the ANN network model can obtain the best prediction
accuracy.

5. Results and Discussion

When the parameters for the neural networkmodel are �nally
settled, the next step is to validate the model using a testing
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Table 4: �e calculated performance indicators for ANN, ELM, and USA model.

Data set Performance indicator ANN ELM USA

Training

RMSE 1.51 0.95 0.78

MAE 7.5 4.2 2.1

VAF 96.88 100 100�2 0.91 0.93 0.98

Testing

RMSE 3.56 3.11 2.76

MAE 12.7 9.7 7.65

VAF 91.88 92.82 94.52�2 0.90 0.92 0.94

data set. In this section, prediction performance is made
between ANN, ELM, and USAmodels, while training time is
recorded.�emodel accuracy can be evaluated by comparing

the calculated RMSE, VAF, MAE, and �2 performance indi-
cators for training and testing data sets presented in Table 3.
Due to random subdivision processes, the performances of
the models for training and validation data sets are slightly
di
erent. As seen from Table 4, the prediction performance
in terms of the prede�ned indices is better for the testing set

than for the training set. Overall, �2 values for the developed
models were more than 0.95 at the training phase, while, in

the case of the conventional ANN at the testing phase, �2
was found to be 0.9. �e high performance of the models
for the testing set can be considered to be an indication

of the good generalization capabilities of the models. �2
value greater than 0.9 indicates a very satisfactory model

performance, while �2 value between 0.8 and 0.9 indicates
an acceptable model. �erefore, all of the developed neural
networks are competent for ROP prediction. �2 of 0.99 for
both the ELMandUSAmodels in the training phase indicates

higher accuracy compared to the ANN model (�2 of 0.88).
Moreover, it also can be observed that the highest VAF of
94.52, the lowest RMSE of 2.76 andMAE of 7.65 belong to the
USAmodel, indicating that theUSA basedmodel gives better
prediction performance than the other models. In addition,
the ELM model can also produce acceptable results, which
yielded slightly fewer residual errors than the ANN models.
In other words, the deviation from the observed values of
penetration rate predicted by ELM is less than the deviation
of the ANNmodel’s prediction. Figure 5 shows the regression
analysis of the predicted and measured ROP by di
erent
models in both training and testing phases. According to
the running speed with the increase of hidden numbers in
Figure 6, the obvious di
erences are observed, concluding
that the cost time for the ELMmodel is less than the other two
models. To visualize the quality of the prediction, predicted
penetration rates and residual errors by di
erent models are
compared with themeasured ones for the overall data set and
shown in Figures 7 and 8, respectively. �is low deviation
obtained by three models also proves that ANN, ELM, and
USA are competent for ROP prediction. �us, the ELM and
USA methods can both achieve high accuracy and maintain
high running speeds. �is study shows that ELM technology
is a promising tool for ROP prediction, and this work can

be incorporated into a so�ware system that can be used in
drilling optimization guidance.

6. Conclusions

(1) �is study investigates the feasibility of ELM and its
variation, the USA model, for predicting the ROP
of o
shore drilling operations using recoded data.
�is ELM and USA models can successfully predict
ROP in real time, and this prediction can be used
as a reference range for drilling engineers identifying
drilling problems and making decisions.

(2) Choosing the relevant parameters is typically di	-
cult, and previous literature informed input selec-
tion. Input rock material properties are the uniaxial
compressive strengths of the di
erent rock types,
formation drillability, and abrasiveness, which can
be calculated from lab cores and well logging data.
Moreover, the pump pressure and di
erential pres-
sure are selected as important hydraulic parameters
that a
ect ROP, while RPM and WOB are treated as
the equipment operational parameters. In addition
to these parameters, drilling mud properties such
as mud viscosity and bit related parameters are
also involved in developing neural network models.
However, for systems with data values beyond the
range of this study or for a new bit, it is necessary to
develop new neural networks. Conversely, the wider
range of input can enable the neural network models
developed to have wider applications in select cases.

(3) �e results of the USAmodel were compared to those
of the classical ANN and ELM models. Performance
of the models was checked by using �2, MAE, RMSE,
and VAF performance indicators. According to the
performance indicators, all of the neural networks
are competent for ROP prediction, but the prediction
performances of the USA model were found to be
better than those of the other twomodels with respect
to accuracy, while the ELMmodel had the lowest run-
ning speed. Compared to conventional ANNmodels,
the result of this work shows the potential of some fast
and �exible neural network approaches to model the
ROP with high accuracy while maintaining running
speed. �erefore, drilling engineers can make better
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Figure 5: Regression analysis of the predicted and measured ROP.
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choices according to accuracy and computational
demand in practical use.
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