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Abstract

Existing algorithms based on scale invariant feature transform (SIFT) and Harris corners such as edge-driven

dual-bootstrap iterative closest point and Harris-partial intensity invariant feature descriptor (PIIFD) respectivley have

been shown to be robust in registering multimodal retinal images. However, they fail to register color retinal

images with other modalities in the presence of large content or scale changes. Moreover, the approaches need

preprocessing operations such as image resizing to do well. This restricts the application of image registration for

further analysis such as change detection and image fusion. Motivated by the need for efficient registration of

multimodal retinal image pairs, this paper introduces a novel integrated approach which exploits features of

uniform robust scale invariant feature transform (UR-SIFT) and PIIFD. The approach is robust against low content

contrast of color images and large content, appearance, and scale changes between color and other retinal image

modalities like the fluorescein angiography. Due to low efficiency of standard SIFT detector for multimodal images,

the UR-SIFT algorithm extracts high stable and distinctive features in the full distribution of location and scale in

images. Then, feature points are adequate and repeatable. Moreover, the PIIFD descriptor is symmetric to contrast,

which makes it suitable for robust multimodal image registration. After the UR-SIFT feature extraction and the PIIFD

descriptor generation in images, an initial cross-matching process is performed and followed by a mismatch

elimination algorithm. Our dataset consists of 120 pairs of multimodal retinal images. Experiment results show the

outperformance of the UR-SIFT-PIIFD over the Harris-PIIFD and similar algorithms in terms of efficiency and

positional accuracy.

Keywords: Scale invariance, Feature distinctiveness, Uniform spatial and scale distribution, Multimodal image

registration, Retinal images

1. Introduction
Digital retinal images are widely used in the diagnosis

and treatment of eye disorders such as glaucoma, dia-

betic retinopathy, and age-related macular degeneration

[1,2]. In most cases, this requires image registration (IR)

which is the process of geometrically aligning images of

the same scene. There are three groups of IR applica-

tions: image mosaicking, temporal registration, and

multimodal registration [3,4]. The first one aligns images

of different viewpoints of one scene to generate a wider

view of it. The second one aligns images of the same

scene obtained at different times to detect the changes.

The third one aligns images obtained by different sensors

to receive more complete information about the subject

and integrate their data. For example, superimposing the

unhealthy angiographic image on the red-free (RF) image

improves the pathological and visibility of structural infor-

mation of the second image for retina surgery [5]. Regis-

tration of the fluorescein angiographic (FA) and color

images is helpful for accurate determination of lesion

types and evaluation of various blood vessel abnormalities

[1,6].

A variety of image registration techniques are proposed

for retinal image registration (RIR) [7]. Tsai et al. [8] intro-

duced several RIR softwares and commercial packages on

the Web. Multimodal RIR methods are classified as area-
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based (AB) and feature-based (FB). Hybrid approaches

were also used [9,10].

AB methods choose a similarity metric and maximize

it to find parameters of transformation function. Most

common similarity measures in the context of multi-

modal RIR are mutual information (MI) [11,12], entropy

correlation coefficient (ECC) [13], and phase correlation

[14]. However, MI performance degrades when faced

with a large amount of changes in the texture of retinal

image and changes in scale [15]. There may be many

local maxima in the MI function, which cause problems

with optimization methods and lead to misalignment.

MI is also weak in registering image pairs with too small

overlaps. Therefore, ECC, a normalized measure of MI,

was used on the vascular tree to register small overlap-

ping images [13]. Its dependency on vessels restricts the

efficiency of registration techniques for low-quality ima-

ges. Phase-based methods are robust to lighting variations

[16]. However, they fail to register images with high trans-

lation and content changes [11]. AB methods are compu-

tationally intensive because of using the entire content of

images.

FB methods involve finding salient features like points,

vessels, and regions in image pairs to compute the corre-

spondences and parameters of the transformation func-

tion. FB methods utilize anatomical features like vessel

bifurcations [9,17,18], crossovers, endpoints of vessels,

and other point features like corners, points of high curva-

ture, and Lowe's keypoints to register images. Bifurcations

are invariant to intensity variations. However, their

localization may be inaccurate [19]. Even if algorithms

extract accurate bifurcation points, their extraction is diffi-

cult in low-quality and unhealthy images, and thus, they

are not repeatable and not well distributed for a robust

and accurate registration [20]. Corners and Lowe's

keypoints are independent of vasculature and easier to

detect than bifurcations in low-quality images [20].

Although corner points may be sufficient and uniformly

distributed in some retinal image modalities, they are not

highly distinctive, repeatable, and scale invariant in the

presence of color, and the FA image pairs with high

content or scale changes [21] (Figure 1). Scale changes in

multimodal retinal images are because of different resolu-

tions of images and changes in the distance between the

camera and the head.

Recently, Lowe's scale invariant feature transform

(SIFT) algorithm [22] has been widely used for FB image

registration. SIFT uses scale-space theory [23] to find

important keypoints of image robust to scale changes.

However, it is unable to identify adequate, stable, repea-

table, and uniformly distributed features in multimodal

retinal images [20,24]. Therefore, the edge-driven dual-

bootstrap iterative closest point algorithm (ED-DB-ICP)

[25] incorporated Lowe's keypoints with centerline

points or edge points to register the RF images and FA

sequences. Although estimating transformation parame-

ters and determining correspondences are done at the

same time using only one initial correct match [26], the

approach is inadequate for registration of some multi-

modal retinal image pairs with scale changes, and when

there are homogeneous non-vascular regions in high-

resolution color images in contrast to texture regions of

high-resolution FA images. An improved version of

SIFT, i.e., mSIFT uses color information for extracting

sufficient feature points [23]. However, it is inapplicable

for multimodal images.

Regardless of feature point type, FB matching methods

automatically find correspondences between two sets of

features. Finding correspondences comprises methods

using spatial relations after prematching, and methods

using robust descriptors of features followed mismatch

elimination. The former category used simple feature

descriptor such as MI around feature points [13] or

angle-based descriptor around bifurcations [26-29] to

compute initial matches. Then, they used robust align-

ment algorithm to choose the best subset of matched

Figure 1 Distribution of features for the Harris corner detector in a color image. Corner points (i.e., red plus signs) are detected on non-

vascular or pathological areas. This degrades feature matching performance due to non-repeatable locations in the second image in spite of

vessels which are depicted in all modalities.
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points against incorrect matches and multiple matches.

The methods involved graph matching [30,31], self-

organizing maps [32], expectation maximization [33,34],

Hough transform [28], and relaxation labeling [6]. The

methods require sufficient feature points to perform

efficiently. Moreover, using invariant descriptors based

on anatomical feature point information in low-quality

or unhealthy retinal images limits sufficient detectable

points. In addition, angle-based descriptors based on

orientation and width information may be similar, and

the points will not be distinctive.

Most image registration methods are based on local

feature descriptor matching techniques. They consist of

feature point detection, building local descriptors around

the detected feature points and matching these descrip-

tors. A review of local descriptors for feature matching

can be found in [35]. SIFT is a popular local descriptor

[22,36-38]. After extracting Lowe's keypoints in SIFT, a

main orientation is assigned to the points. Descriptors

are relative to this orientation and thus achieve invari-

ance to image rotation. SIFT uses a nearest neighbor

distance ratio strategy to match feature vectors.

There are two problems related to SIFT-based multi-

modal RIR in the sections of feature detector and

descriptor. Recently, some improvements of feature

descriptor part like restricted SIFT [39] and partial inten-

sity invariant feature descriptor (PIIFD) [20] achieved

satisfactory results. However, SIFT detector suffers from

the quantity, quality, and distribution of extracted points

particularly in the registration of multimodal images like

angiographic and color images wherein there are

low-contrast color images or scale, content, and appear-

ance changes between multimodal images. This paper im-

proves the multimodal RIR by extracting well-distributed

repeatable, reliable, and precisely aligned point pairs. The

organization of this paper is as follows: The first part

describes problems related to multimodal SIFT-based RIR.

The second section presents the proposed integrated

matching algorithm which makes robust multimodal RIR.

Then, experimental results illustrate the effects of the

proposed improvement.

2. Problems related to the SIFT algorithm when

applied to multimodal RIR
This part describes three problems of the SIFT-based

retinal image registration and introduces related proposed

solutions in the literature. These problems related to the

feature detector, feature descriptor, and elimination of

outliers are due to non-linear intensity changes among

multimodal retinal images and the existence of repetitive

patterns in the retinal images.

2.1 Problems related to the feature detection part

There are two steps to implement the standard SIFT

detector algorithm:

1. Detecting extrema using scale-space theory. Scale-

space theory provides difference of Gaussian (DoG)

images for the SIFT to find scale invariant image

pixels in all locations and scales (Figure 2). Scale-

space L(x, y, σ) of image I is given by a convolution

of the Gaussian kernel G(x, y, σ) with image I. The

Figure 2 Scale-space for an FA image. Gaussian images in each octave are generated. Scale coefficients of scale layers in each octave

are demonstrated.
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scale-space pyramid is constructed by continuously

convolving the variable scale Gaussian G(x, y, kσ)

with I which results in the smoothed image L(x, y, σ).

The DoG image produces scale layers, and it is

defined as follows:

D x; y; σð Þ ¼ L x; y; kσð Þ−L x; y; σð Þ ð1Þ

Scale-space pyramids are produced in several octaves.

Lowe suggested k = 21 / LN [20], where LN is the number of

scale layers in each octave and set to three by Lowe. Image

size determines the number of octaves ON. Equation 2

presents the computation of the scale coefficient of the l,

the scale layer in the oth octave in the scale-space pyramid.

SCol ¼ σ02ðo−1þ
1

LN
Þ ¼ σ0k

LN o−1ð Þþl;

o ¼ 1; 2;…;ON; l ¼ 1; 2;…LN; k ¼ 21=LN;

σ0 ¼ 1:6:

ð2Þ

The extrema in the DoG pyramid will be found by

comparing each pixel to its eight neighbors at the same

scale layer, nine neighbors in the scale layer above, and

nine neighbors in the scale layer below (i.e., 26 in total).

2. Discarding unstable candidate points and refining

the location of points with subpixel accuracy. Lowe

fitted a 3-D quadratic surface to find the subpixel

location and scale of each extremum point X = [x, y, σ]T

as follows:

X̂ ¼ −
∂
2D−1

∂X2

∂D

∂X
: ð3Þ

In Equation 3, D is the derivative of DoG at candidate

points. This method also permits us to reject unstable

candidate points due to low difference with the neighboring

pixels. Therefore, poor contrast points (i.e., D X̂
� �

�

�

�

� < T c ,

where Tc = 0.03) are rejected. Then, the candidate points

which are lying at the edges are also eliminated using

principle curvature analysis. The principle curvatures can

be calculated from the Hessian matrix, and a threshold

Tr = 10 is considered in the eigenvalues of the Hessian

matrix to reject edge points above the threshold. Details

about SIFTcan be found in [22].

Although the SIFT detector produces distinctive and

repeatable scale invariance features in computer vision

applications, it fails to extract sufficient point features

for high-order transformations in multimodal retinal

images [20,40]. The different nature of multimodal

images causes high sensitivity in the SIFT parameters,

particularly Tc, which controls the number of extracted

point features. Most color retinal images, particularly

pathological retinal images, have low contrast between

structural information and background pixels. However,

the visibility of structural information is high in some

FA sequences due to imaging after the injection of a dye.

As illustrated in Figure 3 for unique Tc value, Lowe's

keypoint detector fails to detect or is unable to identify

well spatially distributed and adequate distinctive points

for color images. In some areas, SIFT produces a lot of

insignificant features. In other regions, the detected

features are too sparse. Although reducing the threshold

(i.e., 0) increases the number of features, they are not

useful as they mainly consist of non-stable and non-

uniform distributed points. Therefore, the non-uniform

distribution of feature points results in non-adequate

repeatable points to find correspondences. In angio-

graphic images, SIFT detects a number of redundant

features which, if all are used for matching, can lead to

high computational complexity. Redundancy of features

severely hampers matching performance when they are

not distinctive and results in the same descriptors for

close points and thus mismatches. Therefore, if many

correspondences are incorrect, they will produce an

incorrect transformation function. Moreover, when

matched feature points are near to each other, small

location errors may lead to large scale and rotation

estimation errors [20].

There is no unique Tc for different pairs of retinal

images. Moreover, the number of detected points in each

image is highly sensitive. To the best of our knowledge,

no attempt was made to determine Tc in standard SIFT

to control the detection of points for RIR. Some tech-

niques increase the number of detected feature points in

images when the SIFT detector fails to extract distinctive

and adequate features. Tsai et al. [25] incorporated vessel

centerline points or edge points to register low-quality

retinal image pairs. The approach requires enhancement

methods to extract sufficient points. Jupeng et al. [24]

used color information to increase the number of

detected Lowe's keypoints in color retinal images.

Although it increased matched feature points using color

information in detection and distinctive description, it is

inapplicable to multimodal images. Chen et al. [20]

utilized Harris corner points. They claimed that corners

are sufficient, uniformly distributed, computationally

efficient, and easy to implement. However, the Harris

corner detector has no control over the spatial distribu-

tion of the extracted points, and its repeatability rate

decreases when there are scale changes beyond 1.5

between images or in the presence of pathological color

images. Zheng et al. [41] detected Salient feature regions

(SFR) in structural information, like vessels based on a

saliency metric including adaptive variance and gradient

field entropy. Therefore, it is robust to background

changes and pathologies in the retina in contrast to

point detectors and anatomical feature extractors. The
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authors claimed that their method detects repeatable

regions with least overlapping areas and thus result in a

distinctive description of regions in contrast to the

description of points when their surrounding areas may

be overlapped. However, the saliency metric for

extracting SFR does not perform on color images as well

as the RF or auto-fluorescence (AF) images. This is due

to the similarity of some abnormalities to vessels, and

the low contrast between vessels and background of

color retinal images which results in a similarity of color

of vessels to color of background. Regardless of image

modality, the above approaches often tend to produce

misregistration results in the case of the FA (AF) with

color fundus images of our dataset which have scale and

content changes.

Standard SIFT does not have control over extraction

of sufficient scale invariant feature points. However,

reliable scale invariant point matching, particularly for

multimodal images (e.g., color and the FA images),

requires an adequate number of extracted features in

each scale. The non-uniform distribution of points

degrades the efficient number of the scale invariance

features, too. Figure 3 shows a non-uniform distribution

of the standard SIFT features for multimodal retinal

image pairs in different octaves and scale layers.

2.2 Problems related to feature description part

The application of the SIFT descriptor faces incorrect

matches in multimodal RIR and angiographic sequences

with non-linear intensity differences. The reason is that

SIFT uses a gradient orientation histogram to calculate

the main orientation and descriptors [22]. However, in

multimodal images, the gradient orientation of corre-

sponding points may be in opposite directions [20].

Some papers have addressed this drawback by either

extracting the descriptor from the structural information

(i.e., edges) of images or gradient mirroring [39].

Structural information such as blood vessels is

depicted in every modality, and it remains the same for

corresponding regions in multimodal images. Yuping

et al. [40] and Tsai et al. [25] utilized SIFT on edge

responses by only using gradient edge magnitude. This

method detects several SIFT features but it requires

preprocessing, including noise removal and contrast

enhancement. The ED-DB-ICP addressed non-linear

intensity changes by incorporating the SIFT on gradient

Figure 3 Non-uniform distribution of features. Original SIFT point detector in different scale layers of octaves for color and corresponding FA

images for Tc = 0.03. It is required to set Tc manually for various retinal image pairs to achieve repeatable points. (a, b) Image-space distribution.

The original SIFT fails to extract adequate features or distinctive ones in color images while detects a lot of redundant features in FA images

(boundary points are masked). (c, d) Scale-space distribution. There are inadequate features in some scales which decrease the scale invariance

image matching.
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magnitudes and shape context (SC) to increase the

distinctiveness of keypoints especially in flat areas. SC is

invariant to rotation and scale and robust to linear and

non-linear changes due to using edge points [42]. Rank

order-matched keypoints were used in the ICP algorithm

to find the parameters of the transformations. In situa-

tions where there are no reliable edges or structural

content changes in the image pairs, SC fails to describe

efficiently.

The SFR [41] used histograms of gradients and geomet-

ric information of gradients to describe SFRs. Contrast

reversal was handled by rotating coarse-matched regions

continuously to find the best rotation angle where the

similarity of regions was high. Next, a clustering technique

was performed to exclude fine-matched SFRs. The authors

reported a better performance of their method in terms of

speed in comparison to the ED-DB-ICP, but it was not

invariant to non-linear intensity changes of the FA

sequences or color and the FA image pairs.

Gradient mirroring [39] is also invariant to contrast

reversals in multimodal images. It combines opposite

gradient directions in the same bin for multimodal

image pairs in the SIFT descriptor. However, it is less

distinctive due to the reduced dimension of the SIFT

which leads to low performance of matching. In order to

achieve a more distinctive feature descriptor in multi-

modal images of brain registration, symmetric SIFT

describes Lowe's keypoints [43]. The same idea in the

PIIFD [20] describes surrounding fixed-size regions of

corner points for multimodal RIR. The PIIFD is a linear

combination of constrained gradient orientations from 0

to π, and its rotated version is used to address problems

of opposite directions in corresponding points in multi-

modal images.

2.3 Problems related to SIFT in existence of repetitive

patterns

Although SIFT encompasses a significant recall rate in

computer vision applications, it faces wrong matches in

retinal images due to the presence of repetitive patterns.

Several methods, including random sample consensus

(RANSAC) [44], Hough transform [28,45], and graph

transform matching (GTM) [30] refine initial correspon-

dences based on SIFT. The authors of GTM claimed that

it outperforms RANSAC in discarding incorrect matches.

However, the number of correct matched pairs depends

on the value of K neighbors in the adjacency graph recon-

struction. Moreover, when wrong matches have the same

neighbors, they are excluded as correct matched pairs.

Methods such as the ratio of rigid distances of any two

correct matches [20] are rarely perfect in discarding false

matches in retinal images where it is also possible to have

mismatches with the same distance ratio.

3. Proposed matching algorithm
The proposed algorithm comprises the uniform robust

scale invariant transform (UR-SIFT) feature extraction

[46] to achieve higher robustness and uniformly distri-

buted point features in retinal images. The algorithm

continues with a section for finding correspondences,

including computing the PIIFD descriptor, cross-matching,

and outlier rejection parts. Finally, it computes the para-

meters of transformation using correctly matched point

pairs. Figure 4 shows the flowchart of the registration

framework.

3.1 UR-SIFT feature extraction

UR-SIFT extracts stable and distinctive point features that

are uniformly distributed in both image and scale spaces.

This results in the success of the feature-matching process.

Details of the above properties are presented below:

� Stable features are repeatable and invariant for all

deformations. Selecting feature points which are

much higher than the contrast threshold Tc yields

stable features. Here, after sorting all of the candidate

points based on their D Xð Þj j value, the range between
the minimum and maximum values is partitioned into

ten sections, and the candidate points that fall in the

first section are discarded. Therefore, poor contrast

extrema are removed automatically and without using

the predefined Tc value.

� Distinctive features have a unique description. The

entropy of the local region around the candidate

point in the relevant Gaussian image specifies the

feature distinctiveness.

� The scale-space distribution problem is addressed by

assigning an appropriate number of point features to

each scale layer of each scale-space octave.

� Uniform image-space distribution of extracted SIFT

features is addressed using regular grid cells. In each

grid cell, mean entropy of points, the number of

available candidate points and mean contrast of points

determine the number of required features in that cell.

Figure 5 shows the image-space and scale-space distri-

butions of the UR-SIFT feature extraction on a color

fundus photograph and corresponding angiographic im-

ages of Figure 3.

Algorithm: The UR-SIFT feature extraction algorithm

1: The number of extracted points N is initialized.

2: A scale-space pyramid is produced, and the following

operations are performed for each scale layer.

2.1: Extrema are detected according to the original

SIFT, and poor contrast points are discarded

based on the above explanation.
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2.2: The number of required features for each

scale layer Nol is given by Nol = N · Fol,

where Fol is determined reverse to scale

coefficient SCol as follows:

Fol ¼
SC11

SCol

f 0 and f 0 ¼
kON⋅LN−1

X

ON⋅LN

n¼1

kn−1
: ð4Þ

2.3: The relevant Gaussian image of each scale-layer

is partitioned into a grid, and the number of

features for the ith cell of the grid is calculated

as follows:

n celli ¼ Nol
W EEi

∑
i
Ei

þ
W nni

∑
i
ni

þ
1−W E−W nð ÞMCi

∑
i
MCi

2

4

3

5;

ð5Þ

where Ei ¼ −∑
j
Pj log2 Pj is the entropy of the

cell where Pj is probability of the jth pixel in the

cell. ni is the number of available features in the

ith cell, and MCi is their mean contrast. WE

and Wn are entropy and feature number

weight factors, respectively and are

determined empirically.

2.4: For each grid cell, 3 × n_celli of high-contrast

features are considered. Their locations and

scales with subpixel accuracy are refined. Points

lying on edge points are removed, and the

entropy of the surrounding area of the

remaining points is computed. n_celli of features

with the highest entropy value are selected in

each cell. In retinal images, points with the

highest entropy are those with surrounding

salient structural information such as vessels.

This characteristic of the UR-SIFT enables our

proposed method to perform better in the

presence of background pathologies in

unhealthy multimodal retinal images, while

vessels appear in all modalities.

For more details about the UR-SIFT, please see [46].

3.2 Finding correspondences

After extracting the UR-SIFT points, orientations are

assigned to each extracted feature, and then the PIIFD

(1) Algorithm Parameters

(2)

(3)

(4)

Parameter Estimation of Transformation Model

Registered Images

Second Image Reference Image

UR-SIFT Feature Points Extraction:

Scale-Space generation

Extremum points extraction

Determination of number of points for each scale layer

(
ol

N ) and Scale-layer Gridding

Determination of number of points for each cell (
i

celln_ )

Selecting feature points according to their difference of 

Gaussian value

Specifying Distinctive feature points by entropy

n
w

,  e
w

N, cell Size

0 , LN ,ON

Finding Correspondences:

PIIFD descriptor generation

Cross matching of descriptors

Outlier Rejection:

Discard mismatches until RMSE< Threshold

Remove remaining incorrect matches by the ratio 

of distances of two matches

rmse
T

Figure 4 The main stages of registration framework.
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descriptors, which are the best descriptor for multimodal

RIR [20], are generated in the neighborhood around the

points in a relevant Gaussian image. The size of their

neighborhood is selected by the scale of the Gaussian

images where the points are detected. In the case of

retinal images, computing descriptors in Gaussian ima-

ges of scale space with various kernel sizes emphasizes

structural features like vessels with varying widths. Small

blood vessels can be described at low scale, and a con-

nective edge map of wide blood vessels in larger scales

results in smooth PIIFD histograms. The minimum

Euclidean distance between feature descriptors from the

reference image to the second image and reverse direc-

tion is used as the matching criterion. However, there

are still some mismatches which will be removed in the

next section.

3.3 Outlier rejection

Although, we used high-quality and distinctive feature

points to register retinal images, there are still mismatches

due to the high number of repeated patterns in the retinal

images. We found inliers among matched point pairs by

checking them in a global transformation function

between the reference and the second image. We can

choose similarity, affine, polynomial transformation in the

process. In our experiments on dataset, affine gives the

best results. Affine transformation is applied to all

matched pairs. In an iterative process, each matched pair

is checked in the global model, and the pairs which have

the highest geometric error between the reference and the

second image are removed one by one until achieving the

root mean square error (RMSE) <TRMSE [6].

Let (xr, yr) and (xs, ys) be two corresponding feature

points in the reference and second images. Parameters

of transformation function A are computed by (xr, yr) =

A(xs, ys). All points of the second image are transformed

into the coordinates of the points in the reference image,

and the root of the average of the set of differences

between the reference points and transformed points

(xt, yt) is considered as RMSE:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

xkr−x
k
t

� �2
þ ykr−y

k
t

� �2

n

v

u

u

u

t

ð6Þ

After parameter estimation, the RMSE is computed,

and if it is larger than the threshold value, the point with

the highest error is removed. The process continues

until the RMSE exceeds the threshold. Finally, cor-

responding points which have their error three times

larger than RMSE are removed.

Figure 5 Distribution of features in the UR-SIFT for images of Figure 3. (a, b) Image-space distribution (boundary points are masked) and

(c, d) scale-space distribution. The UR-SIFT detects areas with densely distributed blood vessels which are robust to background changes of

the retina.
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Although the remaining compatible matched pairs of

this method are correct and adequate to find the para-

meters of transformation, they may lead to the elimination

of some correct matches in the presence of a small thresh-

old value for some challenging image pairs. On the other

hand, for such image pairs, methods including the ratio of

rigid distances of any two correct matches and the

comparison of main orientations of matched pairs [20]

produce some incorrect matches or may fail. To avoid

drawbacks, a combination of two methods is considered.

First, the threshold is considered a big value. All corre-

spondences are checked in affine transformation, and the

most probable incorrect matches are discarded up to the

RMSE < 6 pixels is achieved. Second, any remaining

features will be eliminated if the distance between them

and other features in the first image is not equal to the

distance of corresponding features in the second image.

3.4 Parameter estimation of transformation function

Various types of transformation functions like similarity,

affine and quadratic models have been applied in the

literature to register retinal images. Model types of some

registration frameworks [20,41] are dependent on the

number of matched points. Chen et al. in [20] first used

an affine model to transform the second image into a

reference image coordinate, and then they repeated the

matching process again on the transformed image. This

resulted in an increased number of matched points.

However, incorrect matched points in the first step led

to an incorrect transformed image, unsuccessful next

process, and then failure of registration. For image pairs

with a wide range of overlaps, second-order polynomial

transformation had less alignment average error than

the affine model due to more flexible mapping in the

presence of non-linear retinal curvature [13,18]. In most

cases of our dataset, there is an approximately 40% over-

lap between image pairs while the color images cover

the fundus completely and the FA images zoom on the

pathologic region. There are some cases which both

color and FA images cover the fundus completely, too.

Moreover, the number of matches by the proposed

algorithm is sufficient and the matches are distributed well

in the surface of the retina. Hence, proposed method is

able to constrain the high-order model needed for accurate

registration. Given the above explanation, a second-order

polynomial is applied. The parameters of the transfor-

mation function are estimated by the least square method

[47]. Figure 6 shows the feature matching and registration

results of images in Figure 3.

4. Results and discussion

We evaluated the proposed approach on some pairs of

multimodal retinal images of 120 patients where state-

of-the-art approaches failed to register due to the above

Figure 6 Feature matching and registration results. (a, b) Results of the proposed matching algorithm for images in Figure 3 with 4,000

feature points and TRMSE = 6 and (c) the registration result, RMSE = 1.8.
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explanation. However, the approach accuracy is reported in

a comparison of the Harris-PIIFD on some multimodal

retinal image pairs. The proposed algorithm was

implemented in the MATLAB. ED-DB-ICP and Harris-

PIIFD algorithms were downloaded as a binary executable

program in C++ and the MATLAB source code program,

respectively. All parameter settings of the UR-SIFT are

presented in Section 4.4. The experiments were performed

on a personal computer with Intel® Core™ (Intel, Santa

Clara, CA, USA) i5 2.53 GHz and 4 GB of RAM.

4.1 Input image pairs

There is no available benchmark for the RIR dataset and

ground truth to evaluate the registration results of differ-

ent techniques. Our dataset consists of two datasets

from different retinal image modalities such as color

fundus images and the corresponding RF, AF images,

and FA sequences to evaluate the proposed method.

Each modality exhibits special retinal abnormalities or

structures. The first dataset was collected from the

Internet, and the second was provided by the Shahid

Labbafi Nedjad Hospital and the Negah Ophthalmology

Imaging Center of Iran. In the first dataset, there are

some multimodal image pairs from previous related pa-

pers [20] and retinal online atlases [48]. They consist of

20 image pairs of color (RF) and corresponding FA im-

ages. The images have a resolution in the range from

300 × 250 to 650 × 500 pixels. A wide variety of diseases

of the macula, vessels, and optic disc appear in the im-

ages. The second dataset comprises two modes. In the

first mode, the camera views 30° of retina area, while in

the second mode, 50°. An ophthalmologist requires an

eye photographer to capture 30° field of view of the ret-

inal images which include pathological regions of FA,

RF, and AF. Zooming in pathological areas makes 30°

images to depict the information from the retina with

better resolution. The second dataset includes 60 image

pairs of the first mode color, and corresponding FA se-

quences and AF images are captured by a Topcon 50

DX funduc camera (TRC-50IA,Tokyo,Japan) and HRA2

camera (Heidelberg Engineering, Heidelberg, Germany),

respectively. Color images have a resolution of 2,048 ×

1,336 pixels and cover the fundus completely. FA se-

quences and AF images are 768 × 822 pixels and are

zoomed in the pathological region. A sample of such a

dataset is shown in Figure 3. There are also 40 cases in

which color and the FA image pairs cover the fundus

completely. Color images are captured by a Topcon

TRC NW200. The corresponding FA sequences are cap-

tured by a HRA2 camera (Heidelberg Engineering, Hei-

delberg, Germany). Color images have a resolution of

2,048 × 1,536 pixels. FA sequences have 768 × 822 pixels.

A wide variety of symptoms of retinal diseases, such as

hemorrhage, atrophy, drusen, exudates, tumors, vascular

diseases, and cataracts are considered in both datasets.

FA sequences were obtained a few seconds after the in-

jection of dye, and special phases of the FA images

which exhibited pathologies were selected by an oph-

thalmologist for registration with color images. There

are also five-color scanning laser ophthalmoscopy (SLO)

image pairs. Color images are 3,888 × 768 pixels, and

SLO images are 768 × 768 pixels. The registration of

SLO and color images would help an analysis of the

optic disc in the early detection of glaucoma [12].

The minimum overlapping area in the datasets is

around 40% for multimodal images. In the small overlap-

ping areas, if the amount of common structures between

image pairs is sufficient, the registration will be successful.

4.2 Evaluation criteria

An evaluation of the overall performance of RIR can be

carried out subjectively and objectively. An observer

identifies subjectively the success or failure of the regis-

tration result using overlaid image pairs. However, visual

evaluation needs an expert observer and is not adequate

for comparing the performance of different techniques

on a large dataset. Therefore, objective measurement is

necessary to evaluate the registration result. The per-

formance of image registration methods can be mea-

sured by the centerline error measure [18,26]. For each

point on the vessel centerline, the distance to the nearest

centerline point is found in the second image, and the

median of these distances is considered a registration

error. However, centerlines can be hard to detect for

low-quality or unhealthy images. In practice, small

difference will exist between coordinates of matched

points. Therefore, accuracy of registration can be evalu-

ated by the error in point placement as the RMSE

between the transformed points and the points of refer-

ence image [5,24]. We select 20 matched points manu-

ally using MATLAB R2008a and generate ground truth

to evaluate the proposed approach. Points have to be

distributed uniformly with an accurate localization.

Successful registration is determined with regard to the

RMSE value. A RMSE below 5 pixels is acceptable for clin-

ical purposes [5]. The success rate [26] is the ratio of the

number of image pairs with successful registration to the

number of all image pairs. The success rate of the Harris-

PIIFD is low for the registration of color images with other

modalities. We compare the average RMSE for images that

our proposed algorithm and the Harris-PIIFD register them

successfully. For accurate and successful registration, we

consider the RMSE < 5 pixels. The median and maximal

distances between the reference points and transformed

points of the second images are reported, too. A significant

error (i.e., mean distance > 10 pixels over all matched points

for each image pair) results in a registration failure.
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4.3 Special test results

The significant innovation of this paper is the registra-

tion of color and the FA retinal image pairs which have

considerable intensity, scale, and structural changes.

This part evaluates the robustness of the proposed tech-

nique to scale insensitivity. Moreover, it considers regis-

tration performance on different phases of a complete

FA sequence.

1. Scale invariance test. The largest scaling factor is 2.5

in the test dataset. Scale differences for multimodal

image pairs are due to using different instruments to

capture multimodal images, the sitting distance of

the patient to the imaging instrument, and the

required resolutions of each modality to show the

structures of retinal images. UR-SIFT is able to find

matched points in image pairs with a scaling factor

of 5 [46]. However, most color and corresponding

FA images with a 30° view have a scaling factor of

about 1.5. Color and FA images which cover the

fundus completely have a scaling factor of about 2.5.

We automatically rescaled 30 selected image pairs

with a scaling factor from 1 to 3 and applied the

proposed algorithm on all the image pairs. The

average number of matches across a range of scale

changes can be seen in Figure 7. This experiment

indicates that the UR-SIFT-PIIFD can find adequate

correspondences to compute the parameters of

function transformation. For all image pairs the

registration results were successful.

In the Harris-PIIFD, the author utilized Harris

corners to provide locations for computing the

PIIFD, whereas the SIFT features fail to detect

sufficient salient points in multimodal retinal images.

Our experiments on test dataset showed the low

success rate of the Harris-PIIFD for registration of

30° and 50° images. It is applicable for retinal images

which do not have much scale change. However, the

Harris-PIIFD requires image resizing and smoothing

to work properly for all multimodal images with and

without scale changes. Selecting the SIFT features

using the UR-SIFT method with controllability

outperforms Harris corners in images both with and

without scale changes which consist of low-content

contrast retinal images. In image pairs with small

changes of scale, the proposed algorithm increases

the number of corresponding points with uniform

distribution which lead to low RMSE errors.

Figure 8 shows eight examples of registration results

of our proposed method.

2. The complete FA sequence test. To evaluate the

performance of the UR-SIFT-PIIFD for the

registration of color images and the relevant

complete FA sequence, we used five special patients.

The Harris-PIIFD responds to the registration of the

FA sequences with color images when there are

color images with normal contrast or there are no

large structural changes. Therefore, to register any

FA phase to the color image using existing

approaches, it is necessary to find an FA image

whose registration with a color image is successful.

This demands prior knowledge to find an

intermediate FA phase whose registration to the

color image and any FA image is successful. Unlike

the Harris-PIIFD, the UR-SIFT-PIIFD algorithm

provides a fully automatic registration system for

registration of any phase of the FA sequence with a

color image. The UR-SIFT-PIIFD fully registered

four out of five patients. However, the Harris-PIIFD

only registered two FA phases in the whole FA

sequences.

4.4 Parameters

The optimum values of parameters are determined in an

experimental analysis of 120 multimodal image pairs

with various content, scale, and appearance changes.

The scale space has four octaves, each one of which

includes three scale layers, and the optimum value of δ0
is 1.6 as standard SIFT [22]. These values lead to max-

imum repeatable and increased corresponding feature

points [22]. The value assigned to δ0 was changed from

1 to 2 in 0.1 steps, and the maximum number of true

correspondences was achieved when δ0 = 1.6. It is obvi-

ous that the Gaussian retinal images of octaves that are

higher than fourth octave are highly blurred and non-in-

formative to be described.

Figure 7 Average number of correspondences relative to scale

factor. The UR-SIFT-PIIFD can find sufficient correspondences to

constrain the polynomial model for large overlapped multimodal

image pairs.
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The number of extracted feature points in the UR-

SIFT was determined based on 0.4% of image size. The

2,500 feature points for the first dataset and 4,000

feature points for the second dataset are adequate to

ensure proper working of the proposed method. However,

in some cases of challenging image pairs, 4,500 feature

points result in an expected working of the proposed

method. The size of each cell in the grid is 200 × 200

pixels. The optimum values of WE and Wn parameters are

determined empirically. The values of the parameters were

changed in a range from 0 to 1 with a step length of 0.1.

The maximum values of the average number of correct

correspondences with well distribution were achieved by

using WE = 0.2 and Wn = 0.5. This means that point

features are preserved between color and angiographic

images on the vessels where the DoG images have

maximum responses (i.e., high contrast), and entropy is

also appropriate for measuring structural saliency. There-

Figure 8 Eight image pairs in a scale invariance test. The scale factors of images are 1.5, 1.5, 2.5, 2.5, 2.5, 1.5, 1.5, and 1.5 from the top to

bottom row, respectively. The registration results are shown in the third column. The Harris-PIIFD failed to register these images. The color and

late phase of FA images in the first row of (a) exhibit exudative age-related macular degeneration in a 32-year-old patient. The second row of (a)

shows a venous phase of an FA sequence before and after laser treatment in a retina with hypertonia. The other rows of (a) and (b) display

unhealthy retinas with severe pathologies in the background or macular region, which lead to vision loss.

Figure 9 One color and FA image pair which has not been registered by the UR-SIFT-PIIFD algorithm. The result of registration is shown

on the right.
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fore, a feature subset selection combining entropy and

mean contrast outperforms the individual saliency meas-

ure acting alone in terms of the overall success rate.

The parameters to compute the PIIFD descriptors

were determined as suggested by Chen et al. [20]. The

window for determining the dominant orientation of the

feature points is 13 × 13 pixels.

4.5 Overall performance of registration and comparative

test results

Six out of 60 30° image pair registrations and 9 out of 40

50° image pair registrations failed in our approach

(Figure 9). However, this works out as 52 for 30° images

and 29 for 50° image pairs in the Harris-PIIFD algo-

rithms. It is worth pointing out that the Harris-PIIFD

resized the original images and then filtered the resized

images to work properly. Therefore, the resolution of

the registration result is low. Consequently, losing some

pixels leads to an imprecise clinical analysis. The pro-

posed algorithm fails when there are very low-quality

image pairs and much content changes between the

color and different frames of the angiographic retinal

images. Figure 9 shows the registration result of an

image pair. The angiographic retinal image is quite noisy

and has low content due to the lens problems of the

patient's eyes. Existing algorithms are unable to register

these images. In the feature matching process, dissimilar

PIIFD descriptors may be produced for the corresponding

extracted feature points due to the appearance of

pathology in only one of the modalities. Hence, the pres-

ence of lesions in the neighborhood of feature points in

one of the modalities will adversely affect the results of

the PIIFD descriptor which is based on gradient orienta-

tion information [49]. It is also possible to have similar

descriptors for non-corresponding extracted points in ret-

inal images due to the repetitive patterns or low content

of poor-quality images. These result in few correct cor-

respondences (e.g., 3) even when informative selected

features exist. In this situation, given the recent suc-

cess of the generalized dual-bootstrap iterative closest

point (GDB-ICP) [26] which is capable of successfully

aligning a pair of images starting from just one correct

Figure 10 Results for multimodal image pairs: RF-FA, AF-color, and color-SLO. The first row exhibits an RF and venous phase of its FA

sequence in a retina with dilated blood vessels. The scaling factors of the image pairs are 1.5, 1.5, and 2.5, respectively. The Harris-PIIFD failed to

register these images.

Table 1 Overall performance of registration for the

second dataset

ED-DB-
ICP

Harris-
PIIFD

UR-SIFT-
PIIFD

Field of view 30° 50° 30° 50° 30° 50°

Success rate (%) of color-FA
registration

0 0 13.33 27.5 90 77.5

Accuracy (pixel)

Average RMSE 2.9 2.7

Average minimum distance 0.7 0.5

Average maximum distance 8 6.2

Average median distance 3.03 2.3

The ED-DB-ICP failed for all image pairs.
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correspondence [50], the UR-SIFT-PIIFD can provide the

initial matches for the GDB-ICP algorithm and may regis-

ter images successfully.

We also obtain satisfactory results of the proposed

integrated approach in other modalities (Figure 10). The

Harris-PIIFD fails to register these images due to scale

changes and lack of enough feature points of color

images. The ED-DB-ICP failed to register all the image

pairs of the second dataset. Because magnitude (i.e., the

edge-driven image of color images) is not informative,

the feature point extractor algorithm fails. The SIFT

failed to register the first two image pairs. However,

correspondences in the third image pairs have no

uniform distribution such as matching points of the UR-

SIFT-PIIFD. Hence, non-uniform distribution of points

cannot constrain the polynomial function transformation

for accurate and successful registration.

Table 1 indicates the overall performance of the

proposed method on the second dataset in comparison

with the Harris-PIIFD. The success rate and average

RMSE values of the Harris-PIIFD for the first dataset

were 35% and 2.1, respectively, while they were 60% and

1.8, respectively, for the UR-SIFT-PIIFD. The average

RMSE value of the whole image pairs of the second

dataset, where the registration was successful, was 2.83.

The average number of initial correspondences using

the proposed algorithm was 64 for the first dataset, 58 for

the 30° images, and 25 for the 50° images of the second

dataset. The average number of final correspondences

after outlier discarding was 61 for the first dataset and 54

for the 30° and 19 for the 50° images of the second dataset.

The average number of correct matched points for the

image pairs, where both the Harris-PIIFD and the

proposed algorithm succeeded, was 18 and 79, respect-

ively. The number of true correspondences increased in

comparison with the Harris-PIIFD in the case of the

image pairs without large-scale variations. These resulted

in increasing registration accuracy particularly when the

correspondences were uniformly distributed [4]. More-

over, the number of matched points was adequate to com-

pute quadratic model parameters.

5. Conclusions

In this paper, we have improved the registration of

retinal image pairs particularly that of multimodal angio-

graphic and color images with content and scale

changes, as well as in the presence of low-quality color

images and noisy background of the FA images.

Although the Harris-PIIFD demonstrated a high success

rate with multimodal image pairs, its weakness was in

the selection of scale invariance and distinctive, stable

points to register the mentioned image pairs. The base

of improvement was that of using high-quality UR-SIFT

features in the uniform distribution of both the scale

and image spaces to compute the PIIFD descriptor. In

contrast to the Harris-PIIFD, the UR-SIFT-PIIFD does

not resize the original images. The experimental results

on a variety of multimodal retinal image pairs, which the

Harris-PIIFD and the ED-DB-ICP failed to register,

showed the advantages of the improvement. The main

direction for future research and improvements in ret-

inal image registration is to provide a more powerful

point detector to deal with very noisy and low-quality

FA and blurred color images, particularly for the 50°

images in some eye diseases like cataracts. Moreover,

they are the requirements to generate a more powerful

local feature descriptor for multimodal images with high

changes of content and a more efficient outlier rejection

strategy with a local model fit to deal with the spherical

geometry of the eyeball. The UR-SIFT-PIIFD can provide

initial matches in the registration of multimodal 200°

color and angiographic image pairs. In our future

research, we will extend the UR-SIFT to apply to 3-D

medical image registration, too.
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