
Integrated Computer-Aided Engineering 24 (2017) 261–277 261
DOI 10.3233/ICA-170544
IOS Press

An efficient approach to directly compute the

exact Hausdorff distance for 3D point sets

Dejun Zhanga,b, Fazhi Hea,d,∗, Soonhung Hanc, Lu Zoub, Yiqi Wua and Yilin Chena
aSchool of Computer Science, Wuhan University, Wuhan, Hubei, China
bCollege of Information and Engineering, Sichuan Agricultural University, Yaan, Sichuan, China
cDivision of Ocean Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
dState Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and

Technology, Wuhan, Hubei, China

Abstract. Hausdorff distance measure is very important in CAD/CAE/CAM related applications. This manuscript presents an

efficient framework and two complementary subalgorithms to directly compute the exact Hausdorff distance for general 3D

point sets. The first algorithm of Nonoverlap Hausdorff Distance (NOHD) combines branch-and-bound with early breaking to

cut down the Octree traversal time in case of spatial nonoverlap. The second algorithm of Overlap Hausdorff Distance (OHD)

integrates a point culling strategy and nearest neighbor search to reduce the number of points traversed in case of spatial overlap.

The two complementary subalgorithms can achieve a highly efficient and balanced result. Both NOHD and OHD compute the

exact Hausdorff distance directly for arbitrary 3D point sets. We conduct a number of experiments on benchmark models and

CAD application models, and compare the proposed approach with other state-of-the-art algorithms. The results demonstrate the

effectiveness of our method.

Keywords: Hausdorff distance, 3D point sets, similarity, octree, branch and bound, runtime analysis

1. Introduction

Distance measure is the fundamental step for many

applications in science and engineering areas [15,41,

68]. Hausdorff distance can quantify the similarity be-

tween two arbitrary point sets without the necessity

to establish the one-to-one correspondence between

them. In most engineering applications, the number of

point sets obtained by 3D model is not identical, and

it is difficult to establish a one-to-one correspondence

between them. Therefore, Hausdorff distance is suit-

able for measuring similarity between 3D models in

engineering practice.

Hausdorff distance has drawn particular attention

from scholars in many science and engineering fields,

such as CAE/CAD/CAM [40,68], pattern recogni-

∗Corresponding author: Fazhi He, School of Computer Science,

Wuhan University, Wuhan, Hubei, China. E-mail: fzhe@whu.edu.

cn.

tion [52,63], similarity measure [16,30,32,48], shape

matching [5,70], mesh model simplification [26], re-

construction of curved and surfaces [11,12,18,35], and

penetration depth [66,73].

It is a hard task to improve the efficiency of the al-

gorithm while ensuring the accuracy in calculating the

Hausdorff distance. Generally speaking, the similarity

measure for 3D models based on Hausdorff distance

faces at least three problems: (1) Most of the previ-

ous algorithms of similarity measure based on Haus-

dorff distance have a strong disciplinary background,

and are short of generalization; (2) Since the Hausdorff

distance measure is computationally intensive, it is re-

stricted to applications for large scale data; (3) Fur-

thermore, in some applications, computing exact Haus-

dorff distance needs additional cost (for example, 3D

point sets are pre-processed and rasterized into voxel

models), which worsen efficiency of some state-of-the-

art algorithms.

To the best of our knowledge, it is difficult to cover

ISSN 1069-2509/17/$35.00 c© 2017 – IOS Press and the author(s). All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License

(CC BY-NC 4.0).

262 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

above limitations in one single processing algorithm.

For an example, the state-of-the-art algorithm of 2015

(EARLYBREAK) [65] can achieve the high efficiency

in processing the medical images (considered as voxel

data), while it is low efficiency in calculating spatial

objects of highly overlapping.

How to find a new approach to cover above prob-

lems as much as possible and achieve an efficient

and balanced result is becoming a challenge. In this

manuscript, based on whether the pair of point sets are

nonoverlaped or overlaped, an efficient computation

framework is presented with two complementary sub-

algorithms, Nonoverlap Hausdorff Distance (NOHD)

and Overlapped Hausdorff Distance (OHD).

– The NOHD algorithm builds an Octree for input

point sets, and uses the principle of branch-and-

bound and early breaking to prune the branches of

Octree efficiently, which can reduce the number

of nodes that have to be traversed.

– However, the efficiency is poor when applying the

NOHD algorithm to two point sets of seriously

overlapped. Therefore, we propose the OHD al-

gorithm to solve this problem. The OHD algo-

rithm builds adaptive Octree, and also designs

point culling strategy which can reduce the tra-

versed points. Both NOHD and OHD compute the

exact Hausdorff distance directly for arbitrary 3D

point sets. Under the subalgorithms of NOHD and

OHD, we present a new Hausdorff distance com-

puting procedure, which can choose the comple-

mentary subalgorithms to compute the Hausdorff

distance with different spatial relationship of the

pair of point sets.

The remainder of this manuscript is organized as

follows. In Section 2, we briefly review the related

work. Section 3 describes the problem and challenge

for computing Hausdorff distance. In Section 4, we

present two novel subalgorithms, the NOHD algorithm

and the OHD algorithm. In Section 5 we construct an

integrated framework of computing the Hausdorff dis-

tance. Section 6 conducts experiments with analysis.

Finally, the conclusions and future work are discussed

in Section 7.

2. Related work

The research of Hausdorff distance originated from

computer vision [23,25,31,46,59,61,62] and was

quickly extended to many areas of science and engi-

neering [5,9,13,40,41,68].

2.1. Curves and surfaces

The problem of efficient calculation of the Haus-

dorff distance has become a hot topic in this field, has

influenced the progress in CAD/CAE/CAM.

Alt et al. [7] presented an algorithm for Hausdorff

distance computation based on a characterization of

the possible points where the distance can be attained.

Chen et al. [18] presented an algorithm for computing

the Hausdorff distance between two B-Spline curves,

which improves the reference [7] by using a pruning

technique to reduce computation time.

Bai et al. [11] presented an algorithm for comput-

ing an approximate Hausdorff distance between pla-

nar free-form curves by approximating the input curves

with polylines and then computing the Hausdorff dis-

tance between the line segments. Kim et al. [34] pre-

sented a compact representation for the Bounding Vol-

ume Hierarchy (BVH) of Non-uniform rational Basis

spline (NURBS) surfaces using Coons patches, which

could be used to construct a BVH-based algorithm for

computing the Hausdorff distance between NURBS

surfaces.

Kim et al. [36] developed a real-time algorithm

for the precise Hausdorff distance between planar

freeform curves using hardware depth buffer.

Recently, Krishnamurthy et al. [28,38,39] developed

a GPU algorithm that computes the Hausdorff distance

between NURBS surfaces. Interactive speeds are ob-

tained by performing GPU traversal of a bounding-

box hierarchy and selectively culling pairs of bounding

boxes that could not contribute to the Hausdorff dis-

tance.

2.2. Polygonal models

The Hausdorff distance computation for large polyg-

onal meshes has been a very difficult task to implement

for real-time application.

Atallah [9] provided an algorithm for computing the

Hausdorff distance for a special case of point sets,

namely non-intersecting, convex polygons. The algo-

rithm has the complexity of O(n + m) where m and

n are the vertex counts. Alt et al. [5] presented a

method based on the Voronoi diagram which requires

O((n+m) log(n+m)) running time. Barton et al. [39]

presented an O(n4 log n) deterministic algorithm for

computing the precise (up to floating point) Hausdorff

distance between polygonal meshes.

Due to the complexity of exactly computing the

Hausdorff distance, the approximate algorithms have

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 263

been proposed as practically solutions [8,22,26,47].
Llanas [47] proposed two approximate algorithms
based on random covering for non-convex polytopes.
Guthe et al. [26] proposed an approximate algorithm
for calculating the Hausdorff distance between mesh
surfaces. This algorithm makes use of the specific char-
acteristics of meshes to avoid sampling all points in the
compared surfaces. These regions are then further sub-
divided and regions that cannot attain the Hausdorff
distance are purged away.

Tang et al. [66] implemented an approximate algo-
rithm that is based on BVH that is preprocessed in
advance (before real-time computation). Their imple-
mentation is very fast in practice, running at interactive
speed for complicated dynamics scene.

2.3. Point sets

Above algorithms are based on the specific charac-
teristics of meshes and thereby lacks generality. Some
general methods are proposed. Given two nonempty
point-sets with n and m points respectively, a brute-
force algorithm to compute the Hausdorff distance re-
quires O(n×m) time.

Alt et al. [5] presented a method based on the
Voronoi diagram which requires O((n + m) log(n +
m)) running time. For R3, Alt et al. [6] proposed a
randomized algorithm with O((n + m + (nm)3/4)
log(n + m)) expected time. Papadias et al. [55] pro-
posed an algorithm for finding aggregate nearest neigh-
bors (ANN) in databases.

Nutanong et al. [54] extended the algorithm pro-
posed in [55] to avoid the iteration of all points in A.
The aggregate nearest neighbor was executed simulta-
neously in both directions, where two R-Trees (one for
each point set) were used at the same time.

Taha et al. proposed the randomization and the early
breaking optimization in reference [65] to achieve ef-
ficient, almost linear, calculation. This optimization
avoid scanning all voxel pairs by identifying and skip-
ping unnecessary rounds.

The purpose of this study is to explore a general
method to compute the exact Hausdorff distance for
CAD/CAE/CAM applications and to ensure the effi-
ciency.

3. Problem state

3.1. Hausdorff distance

The Hausdorff distance [66] is the maximum devia-
tion between two models, measuring how far two point

sets are from each other [26]. Given two nonempty

point sets A = {x1, x2, . . . , xn} and B = {y1, y2,
. . . , ym}, the Hausdorff distance between A and B is

defined as H(A,B).

H(A,B) = max(h(A,B), h(B,A)) (1)

where

h(A,B) = max
x∈A

(

min
y∈B
‖x− y‖

)

(2)

h(B,A) = max
y∈B

(

min
x∈A
‖y − x‖

)

(3)

H(A,B) denotes the Hausdorff distance in R3. h(B,

A) and h(A, B) are the one-sided value from A to B

and from B to A, respectively.

The Hausdorff distance is often used in engineer-

ing and science for pattern recognition, shape match-

ing and error controlling. If H(A,B) is a small value,

A and B are partially matched; If H(A,B) is equal to

zero, then A and B are matched exactly.

3.2. NAIVEHDD and one-side BREAK algorithm

The basic computing method of the Hausdorff dis-

tance is described as Algorithm 1.

The outer loop of the NAIVEHDD algorithm tra-

verses all points in A, while the inner loop traverses

all points in B. The time complexity of NAIVEHDD

algorithm is O(m× n).

Algorithm 1. NAIVENDD algorithm

Input: Two finite point sets A, B

Output: Directed Hausdorff distance

1. cmax← 0

2. for x ∈ A do

3. cmax←∞
4. for y ∈ B do

5. d← ‖x, y‖
6. cmin← min{cmin, d}
7. end for

8. cmax← max{cmax, cmin}
9. end for

10. return cmax

Taha et al. [65] pointed out that it is not necessary for

inner loop (4 ∼ 7 lines) of the NAIVEHDD algorithm

to traverse all points in B, and proposed an early break

strategy in Algorithm 2. In the inner loop of Algo-

rithm 2, when a distance is found that is below the cur-

264 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

rent cmax, continuing to traverse the remaining points
in B makes no contribution to update cmax. Therefore,
the breaking of the inner loop at that time will reduce
the cost of traversing B. In the best case when the in-
ner loop meets the breaking condition at the first exe-
cution and then break, the ideal time complexity of the
EARLYBREAK algorithm is O(m).

The original algorithm published in [65] missed one
line and had been corrected in a note.

Algorithm 2. EARLYBREAK algorithm

Input: Two finite point sets A, B

Output: Directed Hausdorff distance

1. cmax← 0

2. Ar ← randomize(A)

3. Br ← randomize(B)

4. for x ∈ Ar do

5. cmin←∞
6. for y ∈ Br do

7. d← ‖x, y‖
8. If d < cmax then

9. cmin← 0

10. break

11. end if

12. cmin← min{cmin, d}
13. end for

14. cmax← max{cmax, cmin}
15. end for

16. return cmax

3.3. Challenge and analysis

In Algorithm 2, the event of meeting the condition
that d is over cmax is denoted as e, P (e) = q. The
event of meeting the condition that d is less than cmax

is denoted as e, P (e) = p = 1 − q. the breaking con-
dition for the inner loop (6 ∼12 lines) is that event e
occurs.

Assuming that the inner loop has been implemented
for R times before the loop terminates, then the proba-
bility density function of R can be expressed as:

f(x) = P (d1 > cmax, . . . , dx−1 > cmax,

dx 6 cmax)

= qx−1p (4)

The expectation of R (the number of execution of
the inner loop) is equal to the expectation of f(x),

E(R) =

∞
∑

x=1

xf(x) =

∞
∑

x=1

xqx−1p =
1

p
(5)

According to Eq. (5), the number of tries in the in-
ner loop is inverse proportion to q. Meanwhile, Taha et

al. [65] pointed out that p depends on h(A,B) and the
distribution of all the pair of distances between A and
B, rather than directly on the number of B.

The larger h(A,B) is, the larger cmax is, and the
larger p is. The average probability of the breaking
condition can be expressed as:

p̄ = average

(
∫ cmax

x=0

g(x)dx

)

= c

∫ H

x=0

g(x)dx

(6)

Where g(x) represents the probability distribution
function of all the distances between A and B, and c is
a constant representing the relationship between cmax

and the final Hausdorff distance.
After substituting Eq. (6) into Eq. (5), the expecta-

tion of R can be obtained as:

E(R) =
1

P̄
=

1

c

∫ h

x=0

g(x)dx

(7)

It should be noticed that the smaller h(A,B) is, the
larger R is, leading to a decreased efficiency of the
EARLYBREAK algorithm. In the worst case, when the
h(A,B) between A and B is equal to zero, the inner
loop will traverse all the points in B, and the time com-
plexity of the EARLYBREAK algorithm is equal to
that of NAIVEHDD algorithm.

In order to overcome the deficiency in overlap sit-
uation, Taha and Hanbury [65] proposed a strategy to
exclude the intersection point set between A and B.
As shown in Fig. 1, for given grid sets AG (brown
box in Fig. 1(a)) and BG (blue box in Fig. 1(b)),
{AG} ∩ {BG} (green box in Fig. 1(c)) is first cal-
culated. Then the grid set EG is computed as EG =
{AG} − {AG} ∩ {BG}. At last, the EG is used to cal-
culate the Hausdorff distance in EARLYBREAK algo-
rithm as h(EG, BG).

According to the property of Hausdorff distance,
h(AG, BG) = h(EG, BG). Obviously, the time com-
plexity of h(EG, BG) is significantly better than that
of h(AG, BG). Therefore, the EARLYBREAK algo-
rithm has achieved outstanding results in calculating
the Hausdorff distance of medical images.

There are still some problems for EARLYBREAK
algorithm [65]. Firstly, the execution number of the in-
ner loop was reduced by early breaking and random
initialization, but the execution number of the outer
loop was not reduced. Secondly, when the similarity
between A and B is high (e.g., the Hausdorff distance
is small), the strategy of early breaking fails to reduce
the time complexity. Thirdly, the EARLYBREAK al-
gorithm is inherently and naturally suitable for voxel

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 265

Fig. 1. Excluding intersection in EARLYBREAK. (a) AG; (b) BG;

(c) {AG} ∩ {BG}; (d) EG.

model and medical image, not for general 3D model,

such as 3D point cloud in CAD/CAE/CAM. Finally,

if we simply apply the EARLYBREAK algorithm for

general 3D models, the original 3D model have to be

preprocessed and rasterized into voxel model, which is

the approximation for the original 3D models. There-

fore, the final result will be approximate one, not exact

one.

This manuscript tries to address the above problems

as much as possible, and present a new approach to

directly and efficiently calculate the Hausdorff distance

for general 3D model with an exact result.

4. The proposed two subalgorithms

Firstly, due to the fact that the two subalgorithms are

based on Octree, a set of definitions related to lower

bound and upper bound are provided. In the case of

spatial nonoverlap, a subalgorithm named NOHD was

proposed. Then, we analyzed the complexity for com-

puting the Hausdorff distance in the case of spatial

overlap and proposed the OHD algorithm.

4.1. The definition of bound and the description of

overlap

The Hausdorff distance between A and B can be ac-

tually obtained by calculating the Hausdorff distance

between A and OctreeB (constructed from B). The

principles of branch-and-bound [24] have be adopted

in our NOHD and the OHD algorithms to reduce the

number of nodes to be traversed. Therefore, before pre-

senting the NOHD and OHD algorithms, the related
definitions are given as follows.

Definition 1. Lower bound of point to node. Given a
singleton set {p} and a node C in an Octree, a lower
bound of the Hausdorff distance from p to the elements
confined by C is defined as Eq. (8),

lb(p, C) = min {DIST(p, object) : object ∈ C}

(8)

As shown in Fig. 2(a), the lb(p, C) of Hausdorff dis-
tance between point p and node C can be obtained
by calculating the minimum possible distance between
point p and the nearest object (vertexes, edges, sur-
faces) of node C.

Definition 2. Lower bound of point set to node. Given
a point set P and a node C in an Octree, a lower bound
of the Hausdorff distance from P to the elements con-
fined by C is defined as Eq. (9),

LB(P,C) = min {lb(p, C) : p ∈ P} (9)

As shown in Fig. 2(b), the LB(P,C) of Hausdorff dis-
tance between the point set P to node C can be ob-
tained by calculating the minimum value of the lower
bound between all points in the point set P and node
C.

Definition 3. Upper bound of point to node. Given a
singleton set {p} and a node C in an Octree, a upper
bound of the Hausdorff distance from p to the elements
confined by C is defined as Eq. (10),

ub(p, C) = max {DIST(p, vertex) : vertex ∈ C}

(10)

As shown in Fig. 2(c), the ub(p, C) of the Hausdorff
distance between point p and node C can be obtained
by calculating the maximum possible distance between
point p and the farthest object (vertex) in node C.

Definition 4. Upper bound of point set to node. Given
a point set P and a node C in an Octree, a upper bound
of the Hausdorff distance from P to the elements con-
fined by C is defined as Eq. (11),

UB(P,C) = min {ub(p, C) : p ∈ P} (11)

As shown in Fig. 2(d), the UB(P,C) of Hausdorff
distance from the point set P to node C can be obtained
by calculating the minimum value of the upper bound
from all points in the point set P to node C.

According to the analysis in Section 3, when the
value of Hausdorff distance between A and B is rela-
tively small as two objects overlap, the previous algo-

266 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Fig. 2. Lower bound and upper bound of Hausdorff distance: (a) lower bound from point to node; (b) lower bound from points to node; (c) upper

bound from point to node; (d) upper bound from points to node.

rithms (including state-of-the-art EARLYBREAK in

the reference [65]) cannot efficiently reduce the time

complexity. However, the small value of Hausdorff dis-

tance occurs in many engineering applications. There-

fore, before presenting our algorithms, the overlap is

described.

Given an object A in 3D space, the range for bound-

ing box BBA is described as follows:

x ∈
[

xL
A, x

U
A

]

, y ∈
[

yLA, y
U
A

]

, z ∈
[

zLA, z
U
A

]

.

Similarly, given an object B in 3D space, the range

for bounding box BBB is described as follows:

x ∈
[

xL
B , x

U
B

]

, y ∈
[

yLB , y
U
B

]

, z ∈
[

zLB , z
U
B

]

.

In context of this manuscript, the description of

overlapping between BBA and BBB can be written as

follows.

Ix =
{

x|xL
A6x6xU

A && xL
B 6 x6xU

B , x∈R
}

(12)

Iy =
{

y|yLA6y6yUA && yLB 6 y6yUB , y∈R
}

(13)

Iz =
{

z|zLA6z6zUA && zLB 6 z6zUB , z∈R
}

(14)

As shown in Fig. 3(a), when Ix = Φ‖Iy = Φ‖Iz =
Φ, it is denoted as A ∩ B = Φ. It means there is

nonoverlapping relationship between A and B.

As shown in Fig. 3(b), when Ix 6= Φ && Iy 6= Φ
&& Iz 6= Φ, it is denoted as A∩B 6= Φ. It means there

is overlapping relationship between A and B.

Fig. 3. The spatial relations between A and B: (a) nonoverlapping;

(b) overlapping.

4.2. The first subalgorithm: NOHD

4.2.1. The basic idea of NOHD and the definition of

priority queue

In order to reduce the outer loop number of traversal

of A, the NOHD algorithm is proposed.

Firstly, the calculation of Hausdorff distance from A

to B is converted into calculating the Hausdorff dis-

tance from OctreeA (constructed from A) to B. The

lower bound of the Hausdorff distance from any node

N in OctreeA to B is denoted as LB(B,N), and the

upper bound of the Hausdorff distance is denoted as

UB(B,N). By traversing all the nodes in OctreeA and

updating LB(B,N), the final LB(B,N) is the Haus-

dorff distance between A and B at end of NOHD algo-

rithm.

Secondly, NOHD algorithm defines a new concept

of entry of Decreasing Priority Queue (DPQ) to en-

hanced the principles of branch-and-bound, and there-

fore to reduce the number of nodes of OctreeA to be

traversed. In the context of Hausdorff distance calcu-

lation, the definition for entry of DPQ is given as fol-

lows.

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 267

Definition 5. Entry(N,MinUB). Attributes of each En-

try(N , MinUB) are described as follows: (i) Node

N ← node in an Octree for A, which could be an

object node or a non-object node (index node); (ii)

Distance MinUB ← the minimum value of the upper

bound between all points in the point set B to node N ,

that is, the UB(B,N).

The DPQ which arranges Entries(N , MinUB) in de-

creasing order according to the key value of MinUB.

4.2.2. NOHD algorithm description

Algorithm 3. NOHD algorithm

Input: Two finite point sets A, B

Output: Directed Hausdorff distance

1. OctreeA ← Create an Octree for A

2. DPQ← Create a “descending order”

priority queue

3. Insert(((RootOf(OctreeA),∞), DPQ)

4. MaxLB← 0

5. while (DPQ is not empty) do

6. Entry(N, MinUB)← Dequeue(DPQ)

7. if N is a non-object then

8. if MinUB > MaxLB then

9. for each child node C of N do

10. [UB(B,C), LB(B,C),Flag]←
CubeToPoints (C, B, MaxLB)

11. if Flag == true then

12. MaxLB← max{MaxLB,

LB(B,C)}
13. Insert((C, UB(B,C)), DPQ)

14. end if

15. end for

16. end if

17. Sort DPQ in descending order using

the second element

18. else

19. for each point x of N do

20. d← PointToPoints(x; B; MaxLB)

21. MaxLB← max{MaxLB, d}
22. end for

23. end if

24. end while

25. return MaxLB

The NOHD algorithm is described in Algorithm 3.

The initialization involves the following steps: (i) To

create an Octree OctreeA for point set A; (ii) To create

a priority queue DPQ; (iii) to insert the root of OctreeA
with an initial MinUB of∞ into DPQ. (iv) To initialize

MaxLB to 0.

After the initialization, DPQ contains a single en-

try with the root of OctreeA as the associated node.

For each iteration of the while loop (5 ∼ 24 lines), the

head Entry(N , MinUB) is removed from DPQ. There

are two cases depending on whether N is an object or

not.

– In case 1, if N is not a point object, the children

of N (8 ∼17 lines) are processed.

– In case 2, if N is a point object (19∼22 lines), the

minimum distance from point x to point set B is

obtained by calling Algorithm 5, and is compared

with MaxLB. After comparison, the greater one is

the final Hausdorff distance.

In processing of node N , two culling procedures are

performed.

The first culling is based on whether MinUB is

greater than MaxLB or not, the following steps are pro-

cessed respectively:

– If MinUB > MaxLB, all child nodes in node N

should be traversed (9 ∼15 lines);

– If MinUB < MaxLB, node N cannot generate a

distance greater than the current MaxLB, and it is

pruned away.

In the second culling, CubeToPoints (Algorithm 4)

is called, and a breaking flag of child node C is re-

turned.

– If the flag is “false”, the child node C cannot gen-

erate a distance that contributes to the final Haus-

dorff distance, and it is pruned away.

– If the flag is “true”, the child node C may gen-

erate a distance that contributes to the final Haus-

dorff distance, and then it is inserted into DPQ.

The pseudocode of CubeToPoints is described as Al-

gorithm 4, into which three parameters are input: child

nodes C, points set B, and the currently greatest lower

bound MaxLB.

The Algorithm 4, firstly initializes the flag, the

UB(B, C) and LB(B,C), and then computes the upper

and lower bounds between all points in B and child

node C. For a given point y of B, the upper bound of y

to child node C is calculated. If the ub(y, C) is below

MaxLB, then the minimum upper bound from all points

in B to child node C must be below MaxLB. Thus,

child node C cannot generate a distance over MaxLB,

and then the Flag is assigned as “false”, and the whole

for loop breaks. When the flag of Algorithm 4 is re-

turned as “false”, the node will be pruned away by Al-

gorithm 3.

268 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Algorithm 4. CubeToPoints(C, B, Max LB)

Input: Child Node C, Point set B, MaxLB

Output: UB(B;C), LB(B;C), Flag

1. Flag← true

2. UB(B,C)←∞, LB(B,C)←∞
3. for each point y of B do

4. [ub(y, C), lb(y, C)]←
PointToCube(y, C)

5. if ub(y, C) 6 MaxLB then

6. Flag← false

7. break

8. end if

9. UB(B;C)← min{UB(B,C), ub(y, C)}
10. LB(B;C)← min{LB(B,C), lb(y, C)}
11. end for

12. return UB(B,C), LB(B,C), Flag

The pseudocode of PointToPoints is shown as Algo-

rithm 5, which takes three parameters: point x of node

C, points set B, and the greatest lower bound MaxLB.

Algorithm 5 calculates the minimum distance from

point x to B. For a given y of B, the distance d of y

to x of child node C is calculated. And if d is less than

MaxLB, the minimum distance between point x and B

must be less than MaxLB. Since it is impossible to gen-

erate a distance over the current lower bound MaxLB

between point x and B, the whole for loop ends.

The combination of Algorithms 4 and 5 can effi-

ciently reduce the time complexity of calculating the

distance from A to B.

Algorithm 5. PointToPoints(x, B, MaxLB)

Input: Point x, Point set B, MaxLB

Output: cmin

1. cmin←∞
2. for each point y of B do

3. d← ‖x, y‖
4. if d < MaxLB then

5. break

6. end if

7. cmin← min{cmin, d}
8. end for

9. return cmin

4.3. Difficulties for computing hausdorff distance in

overlap situation

In NOHD algorithm, the Hausdorff distance be-

tween A and B is calculated with h(OctreeA, B), as

shown in Fig. 4.

Fig. 4. Hausdorff distance computation between non-overlapping

point sets.

Fig. 5. Hausdorff distance computation between overlapping point

sets.

In processing OctreeA, the NOHD algorithm tra-
verse the child node of current node and insert it into
DPQ when the UB(B, C) is over MaxLB. Once a
UB(B, C) below MaxLB occurs, the traverse on child
node of current node will end and the pruning strategy
will be executed. For example, if LB(B, A55) is the lat-
est MaxLB, the nodes A2 and A7 are pruned away be-
cause UB(B, A2) and UB(B, A7) are less than LB(B,
A55). Therefore, MaxLB is constantly updated and the
nodes of no-contribution are also pruned away con-
stantly, and finally the Hausdorff distance is obtained.

Figure 5 shows a situation, in which A and B are
highly overlapping in 3D space. According to anal-
ysis in previous Sections, there is no efficient solu-
tions (including the EARLYBREAK algorithm in ref-
erence [65] and NOHD algorithm in this manuscript)
in this situation for two reasons.

– Firstly, along with the increment of Octree depth,
the lower bound from B to most nodes of OctreeA
is zero (e.g., LB(B, A5)). Therefore, MaxLB (with
zero as the minimum distance) cannot be updated
because the upper bound of B to most nodes in
OctreeA is over MaxLB, and the pruning strategy
cannot be executed in Algorithms 3 and 4.

– Secondly, when A and B are highly similar (e.g.,
small h(A,B)), the strategy of early breaking in
Algorithm 5 will fail in most cases.

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 269

Based on the above analysis, both the

EARLYBREAK algorithm and NOHD algorithm can-

not efficiently reduce the time complexity in overlap

situation. Therefore, we proposed the second subalgo-

rithm, the OHD algorithm, to deal with this situation.

4.4. The second subalgorithm: OHD

The OHD algorithm computes the Hausdorff dis-

tance between A and OctreeB (constructed from B),

while NOHD algorithm calculates the Hausdorff dis-

tance from OctreeA (constructed from A) to B.

Since the lower bound of the Hausdorff distance

between any point ak in A and any node N in Oc-

treeB is lb(ak, N), the distance between ak and the

nearest node in OctreeB is Minlb, where Minlb =
MIN{lb(ak, N)|N ∈ OctreeB}.

By constantly traveling A and updating Minlb, the

maximum Minlb is found (e.g., h(A,B)). In this way,

the h(A,B) can be found without traversing all points

in A in OHD algorithm, as shown in Algorithm 6.

Algorithm 6. OHD algorithm

Input: Two point set A, B

Output: Directed Hausdorff distance

1. Initialize the AHD

2. Create the OctreeB with the given resolution

(AHD)

3. Maxlb← AHD

4. for each point x of A do

5. if Point culling == false then

6. Minlb← NNDist(x, OctreeB)

7. Maxlb← max{Maxlb,Minlb}
8. end if

9. end for

10. return MaxLB

The key steps of Algorithm 6 is organized as fol-

lows.

– Firstly, the Approximate Hausdorff Distance

(AHD) between A and B is Initialized.

– Secondly, an OctreeB for B is built with the given

resolution (AHD).

– Thirdly, a strategy of point culling is applied,

where any point in A will be culled if it has no

contribution to the final Hausdorff distance.

– Finally, the distance between the candidate point

and the nearest point in OctreeB is calculated as

Minlb, which is used to update current Maxlb if

it is greater than the Maxlb. The final Hausdorff

distance is the Maxlb at end of the loop.

Fig. 6. Strategy of point culling.

4.4.1. Initialization of Approximate Hausdorff

Distance (AHD)

In typical approximate algorithm [65], the initial

value of AHD is zero at the time when the outer loop is

started. With the gradual execution of outer loop, AHD

will monotonically increase and reach the value near to

final Hausdorff distance after limited times of the loop.

Therefore, the initialization of AHD can be quickly

implemented after limited number of loops, which is

set as λ×|A| in OHD algorithm. According our exper-

iment research, this manuscript gives the recommen-

dation as follows: the λ = 1/100.

4.4.2. Point culling to reduce number of out iterations

for exact algorithm

A strategy of point culling is proposed to reduce

number of out iterations, that is, to reduce the point

number of A to be traversed in outer loop.

An Octree OctreeB with the given resolution (AHD)

is built as shown in Fig. 6, where the cube legends rep-

resent leaf nodes of OctreeB , and the red point legends

represent A and the black point legends represent B.

The points of A can be divided into two classes: the

leaf-node points and the non-leaf-node points.

– The leaf-node points (such as: a1, a4, a6) are spa-

tially located inside the leaf node of OctreeB ,

and the temporary Hausdorff distance generated

by these points cannot be over AHD and can be

safely culled away.

– The non-leaf-node points (such as: a2,a3,a5) are

not located in the leaf node of OctreeB , and the

temporary Hausdorff distance generated by these

points may be over AHD. Therefore, only these

points are remained to be further processed by the

OHD algorithm.

270 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Therefore, our strategy in OHD algorithm is to cull

these leaf-node points.

4.4.3. The branch-and-bound and the nearest

neighbors distance

The lower bound of the Hausdorff distance between

any point ak in A and any node N in OctreeB is

lb(ak, N), so the distance between ak and the near-

est node in OctreeB is Minlb = MIN{lb(ak, N)|N ∈
OctreeB}. By constantly traveling A and updating of

Minlb, the maximum Minlb is found (e.g., h(A,B)).
In order to efficiently reduce number of inner iter-

ations, that is, to avoid traversing all of nodes in Oc-

treeB in inner loop, the OHD algorithm enhances the

existing branch-and-bound approach with a new con-

cept of entry of Ascending Priority Queue (APQ). In

context of this manuscript, the definition for entry of

APQ is given as follows.

Definition 6. Entry(N, Minlb). Attributes of each En-

try(N , Minlb) are described as follows: (i) Node N ←
node in an Octree for B, which could be an object

or a non-object(index node); (ii) Distance Minlb ←
the lower bound of point x of A to node N , that is,

lb(x,N).

Where, the APQ arranges Entries(N , Minlb) in as-

cending order according to the key value Minlb.

The NNDist algorithm is shown as Algorithm 7. The

initialization (1 ∼ 3 lines) consists of the following

steps: (i) initialize Minlb to ∞; (ii) create a priority

queue APQ; (iii) insert the root of OctreeB with an ini-

tial Minlb of 0 into APQ.

After the initialization, APQ contains a single entry

with the root of OctreeB as the associated node. For

each iteration of the while loop (4∼ 25 lines), the head

Entry(N , lb(ak, N)) is dequeued from APQ. There are

two cases depending on whether N is an object or not.

Case 1: If N is not a point object (7∼15 lines), two

culling procedures are performed.

– The first culling is based on whether

lb(ak, N) from ak to N is less than Minlb

or not: if lb(ak, N) > Minlb, node N

cannot generate a distance less than the

current Minlb, and thus should be pruned

away; if lb(ak, N) < Minlb, all child

nodes in node N should be traversed

(8∼13 lines).

– The second culling is based on whether

lb(ak, C) from ak to child node C is over

Minlb or not: if lb(ak, C) > Minlb, child

node C cannot generate a distance less

than the current Minlb, and it should be
pruned away; if lb(ak, C) < Minlb, child
node C may be generate a distance less
than the current Minlb, and node C is in-
serted into APQ.

Case 2: If N is a point object (17 ∼ 23 lines), all
points of current node will be processed.

– First, the distance d from ak to points
confined by N is computed.

– Second, if d is below Maxlb, the ak can-
not contribute to the final Hausdorff dis-
tance, the APQ is cleared.

– Third, after comparing d with Minlb, the
smaller one is Minlb.

Algorithm 7. NNDist(ak, OctreeB)

Input: Two finite point set A, B; Maxlb

Output: Minlb

1. Minlb←∞
2. APQ← Create an “ascending order”

priority queue

3. Insert(((RootOf(OctreeB), 0), APQ)

4. While (APQ is not empty) do

5. Entry(N , lb(ak, N)← Dequeue(APQ)

6. if N is non-object then

7. if lb(ak, N) 6 Minlb then

8. for each child node C of N do

9. lb(ak, C)← PointToCube(ak, C)

10. if lb(ak, C) 6 Minlb then

11. Insert ((C, lb(ak, C), APQ)

12. end if

13. end for

14. end if

15. Sort APQ in ascending order using the

second element

16. else

17. for each point y of N do

18. d← ‖ak, y‖
19. if d 6 Maxlb then

20. APQ← Φ
21. end if

22. Minlb← min{Minlb, d)
23. end for

24. end if

25. end while

5. An efficient framework based on spatial

relationship

Based on spatial relationships of A and B, an effi-

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 271

Fig. 7. The spatial distance between A and B is changing continu-

ously from nonoverlapping to overlapping.

cient framework was proposed, as illustrated in Algo-

rithm 8. Given the degree of overlap between a pair

of point sets, the Algorithm 8 choose suitable subalgo-

rithm to compute Hausdorff distance in a way of high

efficiency and balance.

As shown in Fig. 7, the Hausdorff distance between

A and B is continuously changing from nonoverlap-

ping to fully overlapping.

Algorithm 8. The pseudocode of the proposed

framework

Input: Two finite point set A, B

Output: Hausdorff distance

1. Evaluate the space relationship

2. if A ∩B == Φ then

3. Execute the NOHD algorithm

4. else if 0 6 α 6 θ then

5. Execute the EARLYBREAK algorithm

6. else

7. Execute the OHD algorithm

8. end if

9. return Hausdorff distance

When A ∩ B = Φ, the NOHD algorithm can effi-

ciently reduce the Octree traversal cost by the strate-

gies of branch-and-bound and early breaking, so the

efficiency of the NOHD algorithm is higher than the

EARLYBREAK algorithm. Therefore, in our algo-

rithm framework, the NOHD algorithm was employed

to compute the Hausdorff distance in this situation.

When A ∩ B 6= Φ (A and B is overlapping as de-

scribed in Section 4), two algorithms will be called re-

spectively based on the degree of overlap in our algo-
rithm framework. We describe the degree of overlap
with α, where 0 6 α 6 1:

– α is 0 when A and B are just contact;
– α is 1 when A and B are fully overlapping.

We also introduce a threshold θ, which is rec-
ommended as 0.33 based on experiments in this
manuscript. There are two cases based on the value of
threshold θ in our algorithm framework.

– When θ 6 α 6 1, the OHD algorithm excludes
a large number of points in A that have made
no contribution to the final Hausdorff distance.
So the efficiency of the OHD algorithm is higher
than the EARLYBREAK algorithm. Therefore,
the OHD algorithm was employed to compute the
Hausdorff distance in this situation.

– When 0 6 α 6 θ, only a few points can
be excluded by the OHD algorithm, so the ef-
ficiency of the OHD algorithm is lower than
the EARLYBREAK algorithm. Therefore, the
EARLYBREAK algorithm was employed to com-
pute the Hausdorff distance in this situation.

Besides the adaptively and balance, the proposed
algorithm can calculate the Hausdorff distance effi-
ciently for general 3D model with an exact result. Un-
der the background, any new and efficient algorithm in
future can be easy integrated into the framework, just
as the EARLYBREAK algorithm.

6. Experimental results

A number of experiments are conducted to verify
the efficiency and effectiveness of the proposed algo-
rithm, which is implemented using on Windows 7/In-
ter(R) core(TM) i7-4470 (3.4 GHz)/8.00 GB of mem-
ory with C++.

We used the code from the PCL-1.6.0 (http://www.
pointclouds.org/) [60] for building Octree. To evalu-
ate the performance of the proposed algorithm, it was
tested with three different types of data, namely ran-
dom 3D Gaussians, point cloud models and CAD/CAE
models generated from CAD software.

– In the first experiment (Section 6.1), 3D point sets
were generated based on random Gaussians and
were used to test the effectiveness of the early
breaking strategy for Octree in the NOHD algo-
rithm.

– In the second experiment (Section 6.2), 3D point
sets were generated based on random Gaussians
and were used to test the effectiveness of the point
culling strategy in the OHD algorithm.

272 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

– In the third experiment (Section 6.3), 3D point

sets were used to test the effect of depth on the ef-

ficiency of the NOHD algorithm and the effect of

coefficient λ on the efficiency of OHD algorithm.

– In the fourth experiment (Section 6.4), 3D models

generated from CAD software were used to com-

pare the proposed algorithm with the EARLY-

BREAK algorithm under Motion.

– In the last experiment (Section 6.5), several ex-

amples from typical fields (such as point cloud

models and CAD/CAE models) are tested among

the NAIVEHDD algorithm, the INC algorithm,

the EARLYBREAK algorithm and the proposed

algorithm.

6.1. Test for early breaking in the NOHD algorithm

In order to verify the idea of NOHD early break-

ing strategy in general, random Gaussians data were

used for testing. 300 pairs of nonoverlapping random

Gaussian point clouds were generated. The number of

points in each pair varies from 3 thousands to 0.3 mil-

lion. The effectiveness of our early breaking strategy in

the NOHD algorithm was tested with different number

of points in A and B.

In order to verify the effectiveness of NOHD early

breaking strategy, we denoted the algorithm that had

removed the early breaking strategy from the NOHD

algorithm as the NOHD algorithm.

As shown in Table 1, the fourth column and fifth col-

umn report the average of 10 computation results for

the NOHD algorithm and the NOHD algorithm, indi-

vidually. The average time cost increased along with

the increase in the number of A and B. However, com-

pared with the NOHD algorithm, the NOHD algorithm

can efficiently reduce the average time cost by the early

breaking strategy.

6.2. Test for point culling in OHD algorithm

In order to verify the validity of the point culling

strategy in the OHD algorithm, the same data sets as

Section 6.1 are used. We denoted the algorithm that

had removed the point culling strategy from the OHD

algorithm as the OHD algorithm.

As shown in Table 2, the fourth column and fifth

column report the average of 10 computation results

for the OHD algorithm and the OHD algorithm, indi-

vidually. The OHD algorithm did not adopt the point

culling strategy and Algorithm 7 should be called for

each points in A, while the OHD algorithm used the

Table 1

Contribution of early breaking: Comparison between the efficiency

of the NOHD algorithm when using early breaking or not

Pairs Set size Execution time (sec)

|A| |B| NOHD NOHD

(1) 3 K 3 K 0.03589 0.02247

(2) 15 K 10 K 0.14427 0.09993

(3) 23 K 27 K 0.33513 0.23967

(4) 43 K 41 K 0.45207 0.3058

(5) 49 K 64 K 0.65733 0.3232

(6) 64 K 78 K 0.96393 0.48947

(7) 77 K 51 K 0.58567 0.42353

(8) 86 K 35 K 0.65933 0.58753

(9) 105 K 113 K 1.07733 0.74767

(10) 123 K 31 K 1.14933 0.74567

(11) 131 K 93 K 1.1878 0.70933

(12) 145 K 110 K 1.2986 0.8624

(13) 169 K 160 K 1.5378 0.99287

(14) 210 K 220 K 2.07807 1.34207

(15) 231 K 239 K 2.2312 1.38447

Table 2

Contribution of point culling: Comparison between the efficiency of

the OHD algorithm when using point culling or not

Pairs Set size Execution time (sec)

|A| |B| OHD OHD

(1) 4 K 4 K 1.577 0.56087

(2) 6 K 12 K 3.1044 1.67333

(3) 8 K 4 K 2.617 0.92533

(4) 12 K 16 K 5.385 2.11597

(5) 21 K 15 K 8.6174 2.04287

(6) 29 K 24 K 12.07487 5.299

(7) 29 K 17 K 10.78667 3.97227

(8) 37 K 22 K 15.1934 3.6774

(9) 39 K 32 K 17.3132 6.28933

(10) 40 K 34 K 15.83447 5.7202

(11) 40 K 28 K 16.64947 5.48007

(12) 41 K 35 K 20.3706 9.5222

(13) 44 K 26 K 16.0276 4.86627

(14) 46 K 47 K 20.1598 7.574

(15) 51 K 39 K 20.69647 7.33847

point culling strategy to exclude the points with no

contribution to the final Hausdorff distance and Algo-

rithm 7 is called for only part of points in A. There-

fore, compared with the OHD algorithm, the OHD al-

gorithm can efficiently reduce the time cost with the

point culling strategy.

6.3. Analysis of some important parameters

To further analyze various characteristics of the

method, we discussed the effect of depth on the effi-

ciency of the NOHD algorithm and the effect of coef-

ficient λ on the efficiency of OHD algorithm.

In context of this manuscript, in the case of spatial

nonoverlap, the calculation of Hausdorff distance from

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 273

Fig. 8. The relationship between depth of OctreeA and execution

time of NOHD algorithm.

Fig. 9. The relationship between λ and execution time of OHD algo-

rithm.

A to B is converted into calculating the Hausdorff dis-

tance from OctreeA to B.

We need to set the depth of Octree before construct-

ing the OctreeA from A. In general, the time cost of

constructing an Octree is proportional to the depth of

Octree. We selected three pairs of random Gaussian

point clouds to test the effect of depth on the efficiency

of the NOHD algorithm. The relationship between the

depth and the average execution time from 10 trials is

shown in Fig. 8. The efficiency of NOHD algorithm is

improved with the increasing of the value of depth, and

the high efficiency is obtained when depth is increased

to five or six. Moreover, with a bigger value of depth,

the efficiency is decreased.

According to the experimental research, this manu-

script recommended the depth of six.

When A and B were highly overlapping, the calcu-
lation of Hausdorff distance from A to B is converted
into calculating the Hausdorff distance between A and
OctreeB .

The OctreeB is built with the given resolution
(AHD). In context of this manuscript, the greater the
value of AHD is, the more efficiency of the point
culling within OHD algorithm is. Thus, the coefficient
λ directly effects the value of AHD, and indirectly ef-
fects the efficiency of computing the Hausdorff dis-
tance by OHD algorithm. We selected three pairs of
random Gaussian point clouds to test the effect of co-
efficient λ on the efficiency of the OHD algorithm. The
relationship between the coefficient λ and the average
execution time from 10 trials is shown in Fig. 9. The
efficiency of OHD algorithm is improved with the de-
creasing of λ, and the high efficiency is obtained when
λ is set as 1/80. Moreover, with a smaller value of λ,
the efficiency is decreased as a result of that the AHD

is much less than the Hausdorff distance.
According to our experimental research, this manu-

script gives the recommendation as follows: the λ =
1/100.

6.4. Hausdorff distance under motion

An important variation of the Hausdorff distance
problem is to find the distance when there is a rel-
ative movement between two models, such as pene-
tration [66,73]. This problem is known as geometric
matching under the Hausdorff distance metric. In this
section, we computed the Hausdorff distance between
a fixed model and a moving model to fully illustrate
the efficiency of the proposed algorithm.

Two models M and M ′ with same shape and same
size are shown in Fig. 10(a). As demonstrated in
Fig. 10(b), with the decrease in the Hausdorff distance,
the average time cost gradually increased. When M

and M ′ were highly overlapping, the time cost reached
the peak value. With the increase in the Hausdorff dis-
tance, the time cost gradually decreased.

When two models were nonoverlapping, the aver-
age time cost of the NOHD algorithm was signifi-
cantly better than that of the EARLYBREAK algo-
rithm. When the degree of overlap fell into the range
of 0 6 α 6 0.33, the EARLYBREAK algorithm was
integrated into our algorithm framework. When the de-
gree of overlap fell into the range of 0.33 6 α 6 1,
the time cost of the OHD algorithm was significantly
better than that of the EARLYBREAK algorithm.

As shown in Fig. 11, although two models are tested
with different shape and size, the proposed algorithm
achieved the same result as above.

274 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Fig. 10. HD computation between a stationary torus and a moving

torus. (a) One torus is moving under a continuous translation. (b)

Comparison of the execution time between the proposed algorithm

and the EARLYBREAK algorithm.

Table 3

Hausdorff distance computation for different cases

Index Execution time (sec)

NAIVEHDD INC EARLYBREAK PROPOSED

(a) 47.282 3.107 0.226 0.225

(b) 27.782 2.013 0.363 0.091

(c) 51.933 21.07 6.658 2.136

(d) 39.936 0.722 0.109 0.051

(e) 11.371 0.828 0.062 0.063

(f) 92.576 50.044 5.381 0.531

6.5. Point cloud models and CAD/CAE/CAM models

In order to further evaluate its performance, the pro-

posed approach was applied to several examples from

different fields (such as point cloud models and CAD/

CAE/CAM models) for experimental comparison.

Three pairs of point cloud models and three pairs of

CAD/CAE/CAM models were tested in this section as

shown in Fig. 12. The step of calculating the Hausdorff

distance between the models was as follows: (1) Mod-

els M and M ′ were converted point sets A and B; (2)

the Hausdorff distance was calculated by Eqs (1)–(3).

The time costs in calculating the Hausdorff distance

through the NAIVEHDD algorithm, the incremental

Fig. 11. HD computation between a stationary gear and a moving

gear. (a) One gear is moving under a continuous translation and ro-

tation. (b) Comparison of the execution time between the proposed

algorithm and the EARLYBREAK algorithm.

Hausdorff distance calculation algorithm (INC) [54],

the EARLYBREAK algorithm [65], and the proposed

algorithm were shown in Table 3 (The units of time is

second).

According to the comparison of experiments, the

time cost executed by the proposed algorithm in calcu-

lating the Hausdorff distance is significantly less than

that executed by the NAIVEHDD algorithm, and is dis-

tinctly less than that executed by the EARLYBREAK

algorithm.

The proposed algorithm is composed of the NOHD,

the OHD and the EARLYBREAK algorithm. The

NOHD algorithm combines branch-and-bound with

early breaking to cut down the Octree traversal time

in case of spatial nonoverlap. The OHD algorithm in-

tegrates a point culling strategy and nearest neighbor

search to reduce the number of points traversed in case

of spatial overlap.

Therefore, the high efficiency of the NOHD algo-

rithm and the OHD algorithm in the proposed efficient

framework was confirmed once again.

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 275

Fig. 12. The different cases used for timing the minimum dis-

tance computations: (a) pears (10,754–10,754); (b) cow and

hippo (2,903–23,105); (c) two rabbits with different resolution

(34,834–3,594); (d) different cups (10,007–9,449); (e) different

wrenches (5,191–5,290); (f) singular models (13,564–12,680).

7. Conclusion and future work

An efficient framework with two complementary

subalgorithms is presented with theory analysis. The

experiments also demonstrate that the proposed ap-

proach, as a whole, outperforms the state-of-the art al-

gorithms [54,65]. The main contributions are summa-

rized as follows:

(1) Besides individual algorithms, an efficient

framework is presented, which automatically

chooses the suitable subalgorithms to compute

the Hausdorff distance in different spatial rela-

tionship between a pair of point sets. In this way,

the long-standing limitation of computing Haus-

dorff distance can be relaxed.

(2) In NOHD algorithm, we present a strategy syn-

thesizing branch-and-bound and early breaking,

and efficiently reduce cost of the Octree traver-

sal. In OHD algorithm, we construct a strat-

egy combining point culling and nearest neigh-

bor searching, and efficiently reduces the cost

of points traverse. And different from the state-

of-the art algorithm [54,65], the proposed algo-

rithms can directly calculate a pair of the 3D

point sets without transforming them into voxel

model.

(3) The experiments demonstrate that the proposed

approach, as a whole, outperforms the state-of-

the art algorithms [65].

(4) The proposed framework can easily integrate

other algorithms. Therefore, any subalgorithm

with a high efficiency can be added into this

framework in the future.

Since distance measurement is fundamental opera-

tion in applications of science, engineering and indus-

try [15,21,43,50,53,56,64,71,74–76], we will explore

following directions but no limited in future work:

(1) The qualitative evaluation of model similarity,

such as similarity assessments for 3D CAD/

CAE model retrieval [10,17], focused on the

qualitative aspects of the models, e.g., topolog-

ical result and geometric profile. On the other

hand, in the field of data exchange [29,37,42,

51,57,58,67,69] and collaborative design [19,

20,33,44,45,49], the quantitative comparison of

the similarity between source and target of

feature-based CAD models is the latest devel-

opment [72]. So the proposed method can be

adopted in this area to improve the comput-

ing efficiency of quantitative comparisons be-

tween large scale models in engineering appli-

cations of CAD/CAE/CAM in the future. For

example, the proposed algorithms can enhance

the computing efficiency of quantitative com-

parisons in Feature-based Data Exchange in

CAD/CAE/CAM when calculating the fitness in

optimization computation [72].

(2) This work is also related with design automa-

tion because the exact Hausdorff distance will

be automatically computed. Design automation

is considered as a particularly challenging issue

in Computer-Aided Engineering systems, such

as A MICROCAD system for interactive de-

sign of connections in steel buildings engineer-

ing [1,2], object-oriented model-based presen-

tation for integrated design of steel buildings

structures [3,4], and so on.

(3) The multi-core CPUs and many-core GPUs are

nice choices for high-performance, low-power

and cost-sensitive industrial applications. And

they are also available on common PC plat-

forms. Therefore, from view of practice, we

should try improve our algorithm with multi-

core/many-core acceleration platforms for in-

dustrial applications [14,27,77,78].

276 D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets

Acknowledgments

This work is supported by the National Science
Foundation of China (Grant No. 61472289) and Open
Project Program of State Key Laboratory of Digital
Manufacturing Equipment and Technology at HUST
(Grant No. DMETKF2017016).

References

[1] Adeli H, Fiedorek J. A MICROCAD system for design of

steel connections-applications. Comput & Struct. 1986; 24(3):

361-374.

[2] Adeli H, Fiedorek J. A MICROCAD system for design of

steel connections-program structure and graphic algorithms.

Comput & Struct. 1986; 24(2): 281-294.

[3] Adeli H, Kao WM. Object-oriented blackboard models for in-

tegrated design of steel structures. Comput & Struct. 1996;

61(3): 545-561.

[4] Adeli H, Yu G. An integrated computing environment for

solution of complex engineering problems using the object-

oriented programming paradigm and a blackboard architec-

ture. Comput & Struct. 1995; 54(2): 255-265.

[5] Alt H, Behrends B, Blömer J. Approximate matching of

polygonal shapes. Ann Math Artif Intel. 1995; 13(3-4): 251-

265.

[6] Alt H, Braß P, Godau M, Knauer C, Wenk C. Computing the

Hausdorff distance of geometric patterns and shapes. Discret

Comput Geom. 2003; 65-76.

[7] Alt H, Scharf L. Computing the Hausdorff distance between

curved objects. Int J Comput Geom Ap. 2008; 18(4): 307-320.

[8] Aspert N, Santa Cruz D, Ebrahimi T. MESH: Measuring er-

rors between surfaces using the Hausdorff distance. ICME.

2002; 705-708.

[9] Atallah MJ. A linear time algorithm for the Hausdorff distance

between convex polygons. Inform Process Lett. 1983; 17(4):

207-209.

[10] Bai J, Gao S, Tang W, Liu Y, Guo S. Design reuse oriented

partial retrieval of CAD models. Comput Aided Design. 2010;

42(12): 1069-1084.

[11] Bai YB, Yong JH, Liu CY, Liu XM, Meng, Y. Polyline ap-

proach for approximating Hausdorff distance between planar

free-form curves. Comput Aided Design. 2011; 43(6): 687-

698.

[12] Bartoň M. Solving polynomial systems using no-root elimina-

tion blending schemes. Comput Aided Design. 2011; 43(12):

1870-1878.

[13] Bartoň M, Hanniel I, Elber G, Kim MS. Precise Hausdorff dis-

tance computation between polygonal meshes. Comput Aided

Geom D. 2010; 27(8): 580-591.

[14] Belloch JA, Gonzalez A, Martinez-Zaldivar FJ, Vidal AM.

Multichannel massive audio processing for a generalized

crosstalk cancellation and equalization application using

GPUs. Integr Comput-Aid E. 2013; 20(2): 169-182.

[15] Bi ZM, Wang L. Advances in 3D data acquisition and process-

ing for industrial applications. Robot Cim-Int Manuf. 2010;

26(5): 403-413.

[16] Cardone A, Gupta SK, Deshmukh A, Karnik M. Machining

feature-based similarity assessment algorithms for prismatic

machined parts. Comput Aided Design. 2006; 38(9): 954-972.

[17] Chen X, Gao S, Guo S, Bai J. A flexible assembly retrieval ap-

proach for model reuse. Comput Aided Design. 2012; 44(6):

554-574.

[18] Chen XD, Ma W, Xu G, Paul JC. Computing the Hausdorff

distance between two B-spline curves. Comput Aided Design.

2010; 42(12): 1197-1206.

[19] Cheng Y, He F, Cai X, Zhang D. A group Undo/Redo

method in 3D collaborative modeling systems with perfor-

mance evalua-tion. J Netw Comput Appl. 2013; 36(6): 1512-

1522.

[20] Cheng Y, He F, Wu Y, Zhang D. Meta-operation Conflict

Resolution for Human-Human Interaction in Collaborative

Feature-Based CAD systems. Cluster Comput. 2016; 19(1):

237-253.

[21] Cheng HC, Lo CH, Chu CH, Kim YS. Shape similarity mea-

surement for 3D mechanical part using D2 shape distribu-

tion and negative feature decomposition. Comput Ind. 2011;

62(3): 269-280.

[22] Cignoni P, Rocchini C, Scopigno R. Metro: measuring error

on simplified surfaces. Comput Graph Forum. 1998; 17(2):

167-174.

[23] Dubuisson MP, Jain AK. A modified Hausdorff distance for

object matching. Pattern Recognition. 12th IAPR Interna-

tional Conference. 1994; 1: 566-568.

[24] Fukunaga K, Narendra PM. A branch and bound algorithm for

computing k-nearest neighbors. Ieee T Comput. 1975; 100(7):

750-753.

[25] Guo B, Lam KM, Lin KH, Siu WC. Human face recogni-

tion based on spatially weighted Hausdorff distance. Pattern

Recogn Lett. 2003; 24(1): 499-507.

[26] Guthe M, Borodin P, Klein R. Fast and accurate Hausdorff

distance calculation between meshes. International Confer-

ences in Central Europe on Computer Graphics and Visual-

ization. 2005; 41-48.

[27] Guthier B, Kopf S, Wichtlhuber M, Effelsberg W. Parallel im-

plementation of a real-time high dynamic range video system.

Integr Comput-Aid E. 2014; 21(2): 189-202.

[28] Hanniel I, Krishnamurthy A, McMains S. Computing the

Hausdorff distance between NURBS surfaces using numeri-

cal iteration on the GPU. Graph Models. 2012; 74(4): 255-

264.

[29] Hoffmann C, Shapiro V, Srinivasan V. Geometric interoper-

ability via queries. Comput Aided Design. 2014; 46: 148-159.

[30] Huttenlocher DP, Kedem K, Kleinberg JM. On dynamic

Voronoi diagrams and the minimum Hausdorff distance for

point sets under Euclidean motion in the plane. The eighth an-

nual symposium on Computational geometry. 1992; 110-119.

[31] Huttenlocher DP, Klanderman GA, Rucklidge WJ. Compar-

ing images using the Hausdorff distance. Ieee T Pattern Anal.

1993; 15(9): 850-863.

[32] Hwang CM, Yang MS, Hung WL, Lee M. A similarity mea-

sure of intuitionistic fuzzy sets based on the Sugeno integral

with its application to pattern recognition. Inform Sciences.

2012; 189: 93-109.

[33] Jing S, He F, Han S, Cai X, Liu H. A method for topologi-

cal entity correspondence in a replicated collaborative CAD

system. Comput Ind. 2009; 60(7): 467-475.

[34] Kim YJ, Oh YT, Yoon SH, Kim MS, Elber G. Coons BVH

for freeform geometric models. Acm T Graphic. 2011; 30(6):

169.

[35] Kim YJ, Oh YT, Yoon SH, Kim MS, Elber G. Efficient Haus-

dorff distance computation for freeform geometric models in

close proximity. Comput Aided Design. 2013; 45(2): 270-

276.

[36] Kim YJ, Oh YT, Yoon SH, Kim MS, Elber G. Precise Haus-

dorff distance computation for planar freeform curves using

D. Zhang et al. / An efficient approach to directly compute the exact Hausdorff distance for 3D point sets 277

biarcs and depth buffer. Visual Comput. 2010; 26(6-8): 1007-

1016.

[37] Kim J, Pratt MJ, Iyer RG, Sriram RD. Standardized data ex-

change of CAD models with design intent. Comput Aided De-

sign. 2008; 40(7): 760-777.

[38] Krishnamurthy A, McMains S, Halle K. Accelerating geomet-

ric queries using the GPU. SIAM/ACM Joint Conference on

Geometric and Physical Modeling. 2009; 199-210.

[39] Krishnamurthy A, McMains S, Hanniel I. GPU-accelerated

Hausdorff distance computation between dynamic de-

formable NURBS surfaces. Comput Aided Design. 2011;

43(11): 1370-1379.

[40] Lertchuwongsa N, Gouiffès M, Zavidovique B. Enhancing a

disparity map by color segmentation. Integr Comput-Aid E.

2012; 19(4): 381-397.

[41] Lertchuwongsa N, Gouiffès M, Zavidovique B. Mixed

color/level lines and their stereo-matching with a modified

Hausdorff distance. Integr Comput-Aid E. 2011; 18(2): 107-

124.

[42] Li J Kim BC, Han S. Parametric exchange of round shapes

between a mechanical CAD system and a ship CAD system.

Comput Aided Design. 2012; 44(2): 154-161.

[43] Li K, He F, Chen X. Real time object tracking via compressive

feature selection. Front Comput Sci. 2016; 10(4): 689-701.

[44] Li WD, Lu WF, Fuh JYH, Wong YS. Collaborative computer-

aided design research and development status. Computer-

Aided Design. 2005; 37(9): 931-940.

[45] Li X, He F, Cai X, Zhang D, Chen Y. A method for topolog-

ical entity matching in the integration of heterogeneous CAD

systems. Integr Comput-Aid E. 2013; 20(1): 15-30.

[46] Lin KH, Lam KM, Siu WC. Spatially eigen-weighted Haus-

dorff distances for human face recognition. Pattern Recogn.

2003; 36(8): 1827-1834.

[47] Llanas B. Efficient computation of the Hausdorff distance be-

tween polytopes by exterior random covering. Comput Optim

Appl. 2005; 30(2): 161-194.

[48] Lockett H, Guenov M. Similarity measures for mid-surface

quality evaluation. Comput Aided Design. 2008; 40(3): 368-

380.

[49] Lv X, He F, Cai W, Cheng Y. A string-wise CRDT algorithm

for smart and large-scale collaborative editing systems. Adv

Eng Inform. DOI: 10.1016/j.aei.2016.10.005.

[50] Mohan P, Haghighi P, Vemulapalli P, Kalish N, Shah JJ,

Davidson JK. Toward automatic tolerancing of mechanical as-

semblies: Assembly analyses. J Comput Inf Sci Eng. 2014;

14(4): 041009.

[51] Mun D, Han S, Kim J, Oh Y. A set of standard modeling

commands for the history-based parametric approach. Com-

put Aided Design. 2003; 35(13): 1171-1179.

[52] Ni B, He F, Pan Y, Yuan Z. Using shapes correlation for active

contour segmentation of uterine fibroid ultrasound images in

computer-aided therapy. Appl Math Ser B. 2016; 31(1): 37-

52.

[53] Ni B, He F, Yuan Z. Segmentation of uterine fibroid ul-

trasound images using a dynamic statistical shape model in

HIFU therapy. Comput Med Imag Grap. 2015; 46: 302-314.

[54] Nutanong S, Jacox EH, Samet H. An incremental Hausdorff

distance calculation algorithm. Proceedings of the VLDB En-

dowment. 2011; 4(8): 506-517.

[55] Papadias D, Tao Y, Mouratidis K, Hui CK. Aggregate nearest

neighbor queries in spatial databases. Acm T Database Syst.

2005; 30(2): 529-576.

[56] Primerano R, Wilkie D, Regli WC. A case study in system-

level physics-based simulation of a biomimetic robot. Ieee T

Autom Sci Eng. 2011; 8(3): 664-671.

[57] Qi J, Shapiro V. Geometric interoperability with epsilon so-

lidity. J Comput Inf Sci Eng. 2006; refvol6(3): 213-220.

[58] Rappoport A. An architecture for universal CAD data ex-

change. Proceedings of the eighth ACM symposium on Solid

modeling and applications. 2003; 266-269.

[59] Rucklidge W. Efficient visual recognition using the Hausdorff

distance. Lect Notes Comput Sc. 1996; 1173.

[60] Rusu RB, Cousins S. 3d is here: Point cloud library (pcl).

IEEE International Conference on Robotics and Automation.

2011; 1-4.

[61] Sangineto E. Pose and expression independent facial land-

mark localization using dense-SURF and the Hausdorff dis-

tance. Ieee T Pattern Anal. 2013; 35(3): 624-638.

[62] Sim DG, Kwon OK, Park RH. Object matching algorithms

using robust Hausdorff distance measures. Ieee T Image Pro-

cess. 1999; 8(3): 425-429.

[63] Sudha N. Robust Hausdorff distance measure for face recog-

nition. Pattern Recogn. 2007; 40(2): 431-442.

[64] Sun J, He F, Chen Y, Chen X. A multiple template approach

for robust tracking of fast motion target. Appl Math Ser B.

2016; 31(2): 177-197.

[65] Taha AA, Hanbury A. An efficient algorithm for calculat-

ing the exact Hausdorff distance. Ieee T Pattern Anal. 2015;

37(11): 2153-2163.

[66] Tang M, Lee M, Kim YJ. Interactive Hausdorff distance com-

putation for general polygonal models. Acm T Graphic. 2009;

28(3): 1-9.

[67] Tessier S, Wang Y. Ontology-based feature mapping and veri-

fication between CAD systems. Adv Eng Inform. 2013; 27(1):

76-92.

[68] Wu Y, He F, Han S. Collaborative CAD synchronization

based on a symmetric and consistent modeling procedure.

Symmetry. 2017; 9(4): 59.

[69] Wu Y, He F, Zhang D, Li X. Service-oriented feature-based

data exchange for cloud-based design and manufacturing.

Ieee T Serv Comput. DOI: 10.1109/TSC.2015.2501981.

[70] Yu H, He F, Pan Y, Chen X. An efficient similarity-based level

set model for medical image segmentation. J Adv Mech Des

Syst Manuf. 2016; 10(8): JAMDSM0100.

[71] Zeng Y, HorváTh I. Fundamentals of next generation CAD/E

systems. Comput Aided Design. 2012; 44(10): 875-878.

[72] Zhang DJ, He FZ, Han SH, Li XX. Quantitative optimization

of interoperability during feature-based data exchange. Integr

Comput-Aid E. 2016; 23(1): 31-51.

[73] Zhang L, Kim YJ, Varadhan G, Manocha D. Generalized

penetration depth computation. Comput Aided Design. 2007;

39(8): 625-638.

[74] Yan X, He F, Chen Y, Yuan Z. An efficient improved particle

swarm optimization based on prey behavior of fish schooling.

J Adv Mech Des Syst Manuf. 2015; 9(4): JAMDSM0048.

[75] Yan X, He F, Hou N. A novel hardware/software partition-

ing method based on position disturbed particle swarm opti-

mization with invasive weed optimization. J Comput Sci Tech.

2017; 32(2): 340-355.

[76] Yan X, He F, Hou N, Ai H. An efficient particle swarm opti-

mization for large scale hardware/software co-design system.

Int J Coop Inf Syst. DOI: S0218843017410015.

[77] Zhou Y, He F, Qiu Y. Dynamic strategy based parallel ant

colony optimization on GPUs for TSPs. Sci China Inform Sci.

2017; 60: 068102.

[78] Zhou Y, He F, Qiu Y. Optimization of parallel iterated local

search algorithms on graphics processing unit. J Supercom-

put. 2016; 72(6): 2394-2416.

