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An Efficient Approach to Multilayer Layer
Assignment with an Application to Via Minimization

Chin-Chih Chang and Jason (JingSheng) Cong,Senior Member, IEEE

Abstract—In this paper we present an efficient heuristic algo-
rithm for the post-layout layer assignment and via minimization
problem of multilayer gridless integrated circuit (IC), printed
circuit board (PCB), and multichip module (MCM) layouts. We
formulate the multilayer layer assignment problem by introduc-
ing the notion of the extended conflict-continuation (ECC) graph.
When the formulated ECC graph of a layer assignment problem
is a tree, we show that the problem can be solved by an algorithm
which is both linear time and optimal. When the formulated ECC
graph is not a tree, we present an algorithm which constructs
a sequence of maximal induced subtrees from the ECC graph,
then applies our linear time optimal algorithm to each of the
induced subtrees to refine the layer assignment. Our experiments
show that, on average, the number of vertices of an induced
subtree found by our algorithm is between 12% and 34% of
the total number of vertices of an ECC graph. This indicates
that our algorithm is able to refine a large portion of the layout
optimally on each refinement, thus, producing highly optimized
layer assignment solutions. We applied this algorithm to the via
minimization problem and obtained very encouraging results. We
achieved 13%–15% via reduction on the routing layout generated
by the V4R router [1], which is a router known to have low usage
of vias. Our algorithm has been successfully applied to routing
examples of over 30 000 wire segments and over 40 000 vias.
Finally, we outline how our layer assignment algorithm can also
be used for delay and crosstalk minimization in high-performance
IC, PCB, and MCM designs.

I. INTRODUCTION

A S very large scale integration (VLSI) technology ad-
vances, interconnection and packaging technologies have

become bottlenecks in system performance. For advanced
integrated circuit (IC) designs, four to six routing layers
are commonly used in high-performance and high-density
designs. Multichip module (MCM) technology was developed
to increase packing densities, eliminate the packaging level of
interconnections, and provide more layers for routing. In both
the multilayer IC and MCM designs, the designer or automatic
layout tools may use variable widths and spacings to optimize
performance. This often results in multilayer gridless layouts.

Because multilayer gridless routing is a complex three-
dimensional general area routing problem, it is not easy to
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design a router which can simultaneously optimize many
different design objectives, such as wire length, area, delay,
crosstalk, number of vias, etc. Therefore, it is important to
perform certain post-layout optimizations to help the router
meet various design constraints and produce better routing
solutions.

One of the important post-layout optimization techniques
is layer assignment, in which wire segments in a routing
solution are reassigned to appropriate layers to achieve cer-
tain optimization objectives. Layer assignment has become
an interesting topic for the following two reasons: first, it
preserves the wire lengths and topologies during optimizations;
second, it provides considerable flexibility for optimizations
of vias, crosstalk, and delays. In this paper, we present an
efficient multilayer layer assignment algorithm for both grided
and gridless layout with focus on its application to the via
minimization problem.

The via minimization problem is that of minimizing the
number of vias in a VLSI layout. A via is a hole filled with
conductive materials to connect wire segments on different
layers in a VLSI layout. Because vias often reduce the manu-
facturing yield, degrade the circuit performance, and increase
layout area (more difficult to compact routing solutions, e.g.,
refer to [2]), it is desirable to minimize the number of vias
without affecting routability.

The via minimization problem was first studied for two-
layer VLSI layouts. There are two approaches for the two-layer
via minimization problem: unconstrained via minimization (or
topological via minimization) [3], [4] and constrained via
minimization [5]–[13]. Topological via minimization computes
both the topologies and the layer assignments of all the nets
before detailed routing to minimize the overall via count.
However, topological via minimization may affect routability
considerably and is usually not used in practice. Moreover, the
two-layer topological via minimization problem was shown
to be NP-hard [4]. On the other hand, the constrained via
minimization problem optimizes anexisting routing solution
by only changing the layer assignments of the wire segments.
It is also referred to as thelayer assignmentproblem.

For the two-layer constrained via minimization problem for
Manhattan layouts with junction degrees less or equal to three,
polynomial time optimal algorithms have been developed [6],
[8], [9], [12]. These algorithms transform the problem into the
planar maximum cut problem, which is solvable in polynomial
time. However, if the layout is not Manhattan with junction
degrees less or equal to three, the two-layer constrained via
minimization problem was shown to be NP-hard [13]–[15].
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There is also a considerable amount of research work
done on the multilayer constrained via minimization problem.
Chang and Du first proved that the three-layer constrained
via minimization problem on Manhattan routing is NP-hard
[16]. They also proposed a heuristic algorithm which checks
vias one by one and conducts a local search up tolevels
on the via-crossing graph to eliminate the via being checked
(in their implementation, was set to be two). Fanget
al. [17] proposed a two-phase heuristic algorithm. They use
heuristic ordering and backtracking to assign the layers of
wire segments one by one and then do local perturbations to
eliminate vias greedily. However, when one via is eliminated,
other vias might be introduced. Ahn and Sahni [15] proved that
the three-layer constrained via minimization problem remains
to be NP-hard for Manhattan routing even if the routing is
restricted to HVH channel routing. They proposed a track-
by-track heuristic algorithm for layer assignment in the HVH
constrained via minimization problem.

The existing methods for multilayer constrained via mini-
mization suffer from one or more of the following problems:

• handles only a fixed number of layers;
• assumes a grid-base routing solution;
• cannot produce good solutions due to very limited range

of local search;
• cannot scale to large designs efficiently.

All the experimental results on constrained via minimization
reported in the literature are on small test cases with only a
few hundred vias.

In this paper, we introduce the notion of the extended
conflict-continuation (ECC) graph that abstracts the connec-
tivity relations of a given layout for the layer assignment
problem. The ECC graph is general enough to handle gridless
layouts with any number of routing layers. When a formulated
ECC graph is a tree, we show that the layer assignment
problem can be solved in linear time optimally by a dynamic
programming technique. For the general case of the layer
assignment problem where the ECC graph is not a tree, our
algorithm constructs a sequence of induced subtrees from the
ECC graph and applies our linear time optimal algorithm to
each induced subtree. Our experiments show that the average
number of vertices of the induced subtrees constructed by
our algorithm is very large, containing 12%–34% of the
total number of vertices of the ECC graph. It indicates that
our algorithm is able torefine a large portion of the layout
optimally each time, which leads to highly optimized layer
assignment solutions. The application of our layer assignment
algorithm to the constrained via minimization problem is very
successful. We have achieved 13%–15% via reduction on the
routing solutions generated by the V4R router [1], which is
a router known to have low usage of vias. Our algorithm
scales well for handling large designs; it has been successfully
applied to routing examples of over 30 000 wire segments
and over 40 000 vias. An extended abstract of this work was
presented at the 1997 Design Automation Conference [20].

The applications of our algorithm are not limited to the
via minimization problem because our formulation is very
general and can consider optimization objectives other than

Fig. 1. Wire segmentation.

via minimization. At the end of this paper, we will show that
our layer assignment algorithm can also be used for delay and
crosstalk minimization in high-performance IC, printed circuit
board (PCB) and MCM designs, when proper cost functions
are used.

II. PROBLEM FORMULATION

Given a valid -layer layout solution, each net is divided
into a set of wire segments. We assume no vias are allowed
within a wire segment. Therefore, each wire segment must
be assigned to a single layer, while vias can only be used
to connect different wire segments of the same net. The
designer may specify the segmentation of wires to impose
certain layout constraints and control the tradeoff between the
flexibility and complexity of the layer assignment problem.
For example, Fig. 1 shows a simple layout. Assume that the
wires connecting points – are of the same net; all the other
vertical lines are of different nets. A natural way of segmenting
the wires is to break the nets at the points where the horizontal
and vertical wires meet (cf. [6]). In this case, we will break
net into segments , and . Another
possible choice is to break the nets whenever there is enough
space to insert vias (cf. [9]). Suppose that there is enough
space at point to put a via between and . In this case,
we will further break into and . In
the first case, we have less flexibility to insert vias, but smaller
problem size because we have fewer segments to consider. In
the second case, we have less restriction on inserting vias, but
more wire segments for the optimization problem. There are
also other possible ways to break nets. For example, we might
want to restrict the maximum length of a single wire segment.
It is also possible that we want to restrict the minimum length
such that we do not to break wires too often. All these choices
will have impacts on the flexibility and complexity. Depending
on the design, the designer may prefer one option to another
based on the consideration of flexibility they want and the
complexity they can handle. Our algorithm can handle any
given wire segmentation without any restrictions.

After the wire segmentation is done, it is not difficult to
see that there are basically two kinds of relations among wire
segments in the layer assignment problem: wires that cannot
be put in the same layer and wires that must be connected to
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each other. The first is called theconflict relation; it occurs
among wire segments of different nets overlapping with each
other (when layers are ignored). The second is called the
continuation relation; it occurs among wire segments with
common end points of the same net.

Pinter [9] proposed the conflict-continuation graph which
captures the above relationships among wires during his for-
mulation of the two-layer via minimization problem. In his
formulation, afree run is a maximal piece of wire that does
not overlap any other wire, and can accommodate at least one
via. A “wire segment” is a piece of wire connecting two free
runs. Each vertex represents wire segment. The edge
set represents two kinds of relationships among
wire segments. The set is the set ofcontinuation edges.
An edge exists between vertices and if, and
only if, and are in the same net and are connected to
each other. Assigning and to different layers will require
a via to be inserted. The set is the set ofconflict edges;
an edge exists between vertices and if, and
only if, and are in different nets and cannot be assigned
to the same layer.

The conflict-continuation graph is sufficient for the repre-
sentation of the two-layer via minimization problem, but it is
not suitable for multilayer representation when stacked vias
are allowed.1 For example, consider a layout which consists
of three wire segments: wire segmentsand are of the
same net and connected by a continuation edge; wire segment

is from a different net and overlaps with the intersection
of and , thus, conflicting with and . Because stacked
vias are allowed, it is legal to assignto layer 1, and to
layer 3. In this case, if we assignto layer 2, it can pass the
conflict checking imposed by the conflict-continuation graph
because it is assigned to a layer different from those ofand
. However, there is a conflict betweenand the stacked via

which connects and .
We address the above problems by extending the concept of

conflict-continuation graphs so that it can handle the multilayer
layer assignment problem properly. In our ECC graph, the
vertex set containsvia vertices in addition to wire segment
vertices.2 Each via vertex is a possible location to insert a
via. It connects two or more wire segments of the same net
in the given layout. It may overlap with some wires, but
our formulation can represent these conflicts. A via vertex
can also have a layer assignment. The layer assignment for
a via is a pair of integers , indicating that
a via spans from layer to layer . Note that we can
easily represent vias connecting more than one layer (stacked
vias) under this representation. If no stacked vias are allowed,
we restrict . For the sake of simplicity in later
explanation, an integer pair is encoded into one integer.
When we say that we assign the via vertex to some layer,
we mean that will be decoded back into the integer pair.

1However, we can show that this graph can be used if no stacked vias are
allowed, and the layout will not put two vias too close.

2Our definition of wire segment is somewhat different than Pinter’s. In
Pinter’s definition, wire segments are separated by “free runs,” which are also
wires. A via can be inserted in a “free run,” but the location is not determined.
In our definition, wire segments are connected end to end, and vias can only
be inserted in the end points of wire segments.

Fig. 2. (a) A given layout and (b) the corresponding ECC graph.

For a -layer layer assignment problem, we encode to
. It is easy to show that this encoding

function forms a one-to-one mapping between integer pairs
with to integers in .

An simple example on the encoding for is shown below

We use to denote the number of possible assignments
that can be assigned. If is a wire segment vertex, .
If is a via vertex that can span up to layers,

.
In the ECC graph formulation, the continuation edge set

contains only via-to-segment continuation edges. Acontinua-
tion edgebetween two vertices exists if it connects a via vertex
and a wire segment vertex of the same net (and the via and
wire segment are adjacent). The conflict edge set, however,
contains segment-to-segment, segment-to-via, and via-to-via
conflict edges. Aconflict edgeexists if the two vertices it
connects cannot be assigned to the same layer. A conflict edge

between the wire segment vertexand another vertex
is redundant and can be removed ifconnects through a

continuation edge to a via vertex, and has a conflict edge
to . This is because and are connected by a continuation
edge, the layers which via vertex spans must contain the
layer assigned to . Since the conflict edge puts the
constraint that the layer(s) which spans will not overlap
with the layer(s) occupied by, the constraint between and

is also implied.
To give an example for our representation, let us consider

the layout shown in Fig. 2(a). Wire segments are labeled 1–12;
via candidates are labeled– . Note that is a stacked via
connecting to . The corresponding ECC graph is shown
in Fig. 2(b). The solid lines are continuation edges and the
dotted lines are conflict edges. We assume that wire segments
7 and 12 are too close to be put in the same layer. Therefore,
there are conflict edges , , and . Note that we did
not put an edge between vertices 7 and 12, as it would be a
redundant conflict edge and can be eliminated because of the
existence of the continuation edge between via vertexand
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segment vertex 12. If vertex does not have a conflict layer
assignment with vertex 7, nor does vertex 12. We also assume
that via vertex and are too close to be put in the same
layer, e.g., if connects layers and , and connects
layers and at the same time, there will not be enough
routing space on layer . In this situation, we need a conflict
edge . For the case that they may share some layers but
not all layers, we will still introduce a conflict edge but use the
cost function to distinguish the different cases (see the details
of cost functions below).

In our algorithm, we use cost functions to represent the con-
cepts of conflict and continuation. We shall first describe how
to use the cost functions for the via minimization problem in
this section. It is also possible to define suitable cost functions
to solve the layer assignment problems for crosstalk and delay
minimization, which will be explained in Section VI.

We define the cost functions for the via minimization
problem as follows: For each edge , we associate a
cost matrix ; an entry gives the cost for
assigning to layer and to layer at the same time. The
cost matrix will capture the penalty on the conflicting
layer assignment between vertices and . If there is a
conflict for the assignment, the entry will be , otherwise,
it will be zero. The conflicts may be characterized by the
spacing rule violation, overlapping of wires of different nets,
or disconnect of wires or vias of the same net which should
be connected. This scheme is very general; for the cases when
two vertices conflict only on some layers, we set the matrix
entries corresponding to the conflict assignments to, and
the remaining entries to zero.

For each vertex , we also associate a cost array of
size ; an element of the array specifies the costs
of assigning vertex to layer . Clearly the cost array for a
via can be used to specify whether stacked vias are allowed or
not, how many layers can be stacked, etc. For example, if no
stacked vias are allowed, for each via vertex,
if , one if , or if . We can
also allow stacked vias up to layers and count each stacked
via spanning layers with cost , by assigning cost for

if , or if .
We may also replace the cost functions with more complex

ones. For example, we can put layer constraints on a certain net
or part of it such that it cannot be assigned into these forbidden
layers. Our representation can also handle via minimization
for gridless routing where wire segments have variable widths
and spacing requirements on the same or different layers. We
simply model different possible conflicts on each layer using
the cost matrices derived from the design rules.

Please note that the formulation of ECC graph is very
general and can handle multilayer gridless layout in advanced
IC and MCM designs. It accommodates different widths of
wires and vias in the same layer or different layers as well
as different wire-to-wire, wire-to-via and via-to-via spacing in
the same layer or different layers. It also handles stacked vias
when allowed by technology. Multiway splitting wires are also
handled elegantly by this formulation.

We define the cost for a layer assignmentwhich assigns
each vertex into layer to be

the summation of all the edge costs and via costs, which is
computed by

COST

Our goal for the layer assignment problem is to find a layer
assignment with the minimum cost, i.e.,COST
COST for any .

III. OPTIMAL ALGORITHM FOR TREES

Although all the vertex and edge costs are defined for
the layer assignment of adjacent vertices, our objective is
to minimize the summation over all the costs of vertices
and edges. It is possible that greedy local changes of layer
assignments may restrict the assignments of remote vertices.
A simple-minded local refinement algorithm, which does not
have a global view of the problem, may produce poor results.
We would like to find an efficient algorithm which can take
advantage of the locality of the cost computation and also
provide an efficient way to compute the impacts on the total
cost when a local optimization of layer assignment is made.

Because the multilayer layer assignment is NP-hard, we do
not expect to find an algorithm which can solve the general
problem optimally. A special case, however, can be solved
optimally: if an ECC graph is a tree, we can employee the
dynamic programming paradigm to form an algorithm which
optimally solves the multilayer layer assignment problem
in linear time. Furthermore, we can apply this algorithm
to a large portion of the entire ECC graph with a slight
modification of the algorithm. This enables us to form an
efficient heuristic algorithm which can refine a large portion
of the layout optimally, thus, providing a more global view on
the optimization problem and having a better chance to avoid
bad local decisions and obtain better solutions.

Before we propose the optimal layer assignment algorithm
for trees, we need to define some notations. For a vertexin
the tree, we definech to be the set of the child vertices of

. For a layer assignment on a tree, we define the cost for a
layer assignment on a subtree rooted at as COST

ch COST . This
cost contains three parts: the layer assignment cost for, the
edge costs of edges betweenand its children, and the costs
of subtrees rooted at the children of. When is the root of
the tree,COST computed by the above definition is the
same asCOST defined in the previous section. We define
MC COST ; i.e., it gives the
minimum cost for the subtree rooted atunder the condition
that is assigned to layer. Note thatMC for a leaf vertex

is simply . For a nonleaf vertex , it can be computed
as follows:

MC COST (1)

ch

COST (2)



612 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 5, MAY 1999

Fig. 3. K-layer layer assignment for trees (K-LAT) algorithm.

ch

COST (3)

ch

COST

(4)

ch

(5)

The deduction from (1) to (2) is based on definitions of
COST . In (2), because the layer assignment ofis fixed,
the layer assignments for its children are independent of each
other, and can be optimized independently. Therefore, we can
transform the minimization of the summation over several
independent terms into a summation over the minimization
of each term, which leads to (3). In (4), we itemize the
minimization over all possible values of. After pulling out
the constant term and applying the definition of
MC , we get (5).

The above equations show how to compute theMC re-
cursively from the layer cost array , the edge cost matrix

and theMC of each child of . Clearly, to compute
the MC , we only need to minimize the summation of the
cost of a subtree rooted atand the edge cost betweenand

for each child of .
Based on this formula, our algorithm consists a bottom-

up cost computation and a top-down layer assignment. For
the bottom-up cost computation, we need to make sure that
whenMC is being computed, for each childof MC has

been computed. To satisfy this condition, we choose to use the
postorder traversal of the tree (other orders are also possible).

During the bottom-up cost computation, we also use an
auxiliary array on each vertex to store the optimal layer
assignments for all the possible layer assignments of the parent
of . When a minimum costMC of vertex is found, we
set to , where is the corresponding layer number
of which givesMC the minimum cost.

After the cost arrayMC is computed for the root , we
know the minimum cost for the whole tree and the best layer
assignment of by checking the minimum cost inMC . For a
nonroot vertex , when its parent’s optimal layer assignment
is known, we know to what layer vertexshould be assigned
in order to give the minimum cost because we have recorded
this information in the array. Clearly, we can compute the
optimal layer assignment of each vertex in the tree by a top-
down traversal which simply assigns layers to vertex
if the parent is known to be assigned to layer.

We summarize our optimal layer assignment algorithm in
Fig. 3.

Theorem 1: Given an ECC graph which
is a tree, the -LAT algorithm finds an optimal -layer
assignment in .

Proof: The optimality follows by induction. First, it is
trivial to see that the subtree costs at the leaves are minimum.
For the induction part, we can see that our algorithm computes
MC by (5), which only requires to knowMC for ch ;
since the cost arrayMC for each child of is optimally
computed by the induction hypothesis, we know thatMC
is also optimally computed. Therefore, we can conclude that
the MC is optimally computed by the -LAT algorithm.
Because the top-down layer assignment will realize the layer
assignment for the optimal cost, it gives us an optimal layer
assignment of the tree.
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For the complexity of this algorithm, we first discuss the
number of possible layers per vertex . For a wire
segment vertex, . For a via vertex , the number

depends on how many layers the via can be stacked. In
the most restricted case, vias can connect only two adjacent
layers, . For the least restricted case, there
can be possible layer assignments for the via
vertex.

For Step 1, each edge requires examining
edge costs for the computation ofMC . Since the number
of edges in the tree is , the complexity of Step 1 is

for the most restricted case and for the
least restricted case. Step 2 takes for the most restricted
case and for the least restricted case, and Step 3 takes

time. So, this algorithm runs in for the
most restricted case and for the least restricted
case. Since is an integer constant in our algorithm, we have

linear time algorithm for optimal layer assignment for
trees. In practices, to for modern IC’s, and is usually
less than ten for most PCB/MCM designs.

IV. A N EFFICIENT HEURISTIC FORGENERAL GRAPHS

In general, the formulated ECC graph of a layer assignment
problem may not be a tree. In this section, we shall first
show that the -LAT algorithm is also applicable to induced
subtrees in a general ECC graph. Then we shall use it as
the basis for our heuristic algorithm to optimize a sequence of
induced subtrees in a general ECC graph. Let us first introduce
the concept of induced subtrees.

Definition 1: A subgraph is a (vertex)
induced subgraphof if, and only if,
and , and . When an
induced subgraph of is a tree, it is called an induced subtree.

Definition 2: Given an ECC graph and a layer assign-
ment , the layer assignment problem for an induced subgraph

is to find a layer assignment s.t.
, and COST is minimum.

If we choose a subset of the vertices in the ECC graph
and fix the layer assignments for the vertices outside of,

the original layer assignment problem is reduced to the layer
assignment for . Since we need to consider all the edges
among vertices in which are originally in , we need to
consider the subgraph induced by. To utilize our optimal
algorithm -LAT, we are interested in an induced subgraph
which is a tree.

A. Extension of the -LAT Algorithm to Induced Subtrees

The extension of the optimal -LAT algorithm for trees to
induced subtrees is quite simple. For a vertexin an induced
subtree, we only need to increase the layer costs ofby the
edge costs between and its adjacent nontree vertices, so
that the layer costs for each tree vertex will also include the
costs due to its relations with its nontree neighbors. After such
modification of the vertex cost arrays, we can apply the-
LAT algorithm directly. Our optimal algorithm for induced
subtrees can be summarized in Fig. 4.

Fig. 4. K-LATI algorithm.

Because -LAT is optimal, -layer layer assignment for
induced trees ( -LATI) is also optimal. We have the following
corollary:

Corollary 1: Given an ECC graph , a feasible assignment
, and an induced subtree of , the -LATI

algorithm finds a minimum cost layer assignment ofin
CUT time, where theCUT

is the set of edges connecting and .
Proof: The optimality follows because we have intro-

duced the costs of the edges to the nontree vertices in the cost
array for each tree vertex, and because-LAT is optimal.
The time complexity of -LATI is derived as follows. Step
1 takes CUT for the most restricted
case on stacked vias and CUT for the
least restricted case, as we only need to visit every edge in
CUT once and each visit requires operations.
Step 2 takes time as shown in Theorem 1. Therefore,

-LATI runs in CUT time.
To illustrate the -LATI algorithm, we use the example in

Fig. 5(f), which shows the ECC graph of the layout shown in
Fig. 2(a). The grey nodes form an induced subtree. We assume
the number of layers is four and stacked vias are allowed.
Suppose vertex 1 is the root, then the set
are the leaf vertices with no children. Let us focus on a small
subtree rooted at vertex 9. It has two children, vertex 11 and
vertex . Vertex has two children, vertex 4 and vertex 10.
Vertex 9 has a nontree neighbor 12 in the graph and vertex 11
has a nontree neighborin the graph. So the layer cost array
for vertex 9 is after we add the costs of the
edges to nontree vertices, because vertex 12 is in layer 3 and
conflicts with vertex 9. Similarly, the layer cost array for vertex
11 is , because vertex is in layer
and is connected to vertex 11 by a continuation edge. Now we
begin the bottom-up cost computation. Since vertices 4, 10,
11 are leaf vertices, their subtree costs are equal to their layer
cost arrays. SoMC MC ,
and MC . Now we compute the cost for
vertex . Assume that the cost for a stacked via is the height it
spans, and recall that we encode the layer pair for a via vertex
in the following sequence:

. The layer cost array for via
vertex is . Because we can
always assign the layers for vertices 4 and 10 to be the same as

and the costs for subtrees rooted at 4 and 10 are all zero, the
MC is the same as MC .
The corresponding assignment arrays for vertices 4 and
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Fig. 5. Example of finding a maximal induced subtreeT = (V 0; E0).

10 are: and
. Note that can be either 1 or 2

as either layers 1 or 2 for vertex 4 gives the same cost for the
subtree rooted at. When there are several layer assignments
for a vertex with the same minimum cost, we simply pick the
one with a smaller layer number. This is why . Now
we can compute the cost of the subtree rooted at vertex 9. If
we assign vertex 9 to layer 1, the minimum sum ofMC
and is zero with or . So we have

. The minimum sum ofMC and is
zero with . We add these two minimum costs to

and getMC . The computation of the minimum

cost of assigning vertex 9 to other layers is similar. Eventually,
we will get MC , and

.
Given the above optimal layer assignment algorithm-

LATI, our algorithm finds a sequence of induced subtrees and
applies -LATI algorithm to them one by one. In order to
take advantage of the -LATI algorithm, we need to find a
sequence of large induced subtrees.

B. Finding Maximal Induced Subtrees
In general, we are interested in forming large induced

subtrees. However, finding an induced subtree of the maximum
size is NP-hard [18]. In addition, we wish to find asetof large
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Fig. 6. FMIST algorithm.

induced subtrees to cover the graph, rather than a single large
tree. For our purpose, we find that growing maximal induced
subtrees (i.e., induced subtrees which are not contained in any
induced subtrees) from different starting vertices is effective.
On average, the maximal induced subtrees cover 12%–34% of
the ECC graph.

Our induced-subtree-finding algorithm starts with an arbi-
trary vertex and finds a maximal induced subtree

rooted at . It is basically a graph traversal algorithm
with proper labeling. Each vertex in the graph is initially
labeled with label . We maintain a queue for the
vertices which are adjacent to some vertex in the induced
subtree under construction. Initially, is empty. We choose
a vertex as the root, label it with one, and add it to. Once a
vertex is added to , we increase the label of all its neighbors
by one. Once a vertex has label 1 after the label increase, we
put it into . Then we extract the vertices from one by one.
If the extracted vertex has a label larger than one, we know
that is a neighbor for two or more vertices in . In this case,
vertex is discarded because if we add it to, we would
create cycle(s) in . If label , we know has exactly
one connection to . In this case, we add to , increase the
labels of ’s neighbors by one, and insert any of its neighbors
with label 1 into . We repeat this process to extract another
vertex from again, and stop when is empty.

We summarize our algorithm for finding maximal induced
subtrees in Fig. 6.

Fig. 5 shows how this marking process in the finding
maximal induced subtrees (FMIST) algorithm works. The grey
nodes are the vertices we put in the induced subtree, the black
nodes are the nontree nodes with labels larger than one, and
the hash nodes are the nodes currently labeled as one. Note
that in Fig. 5(c), when both the vertices 7 and 2 are added
to , the label of vertex increases twice and becomes two,
which makes it a nontree vertex. Similarly,and 12 become
nontree vertices when eight is added to.

Theorem 2: Given an ECC graph , the FMIST
algorithm computes a maximal induced subtree
in CUT time.

Proof: We prove the correctness by induction. It is trivial
that a single vertex in the graph is an induced subtree.
Assume is an induced subtree. When we add
a vertex to , the labeling process guarantees that there

is exactly one vertex in with an edge to . Therefore, the
induced subgraph generated by is both connected
and without cycles, thus, it is still a tree. When the algorithm
stops, we cannot add in any other vertex in the graph without
forming a cycle. Therefore, the subtree found is maximal. For
the time complexity, we need to traverse each tree edge twice
and the edge in the cut setCUT once. The run
time is CUT .

C. An Efficient Algorithm for Layer Assignment

Now we are ready to present our heuristic algorithm for
the general layer assignment problem. Given a feasible layer
assignment solution with the ECC graph, we refine to
minimize the layer assignment cost through several passes.
In each pass, we cover with a set of maximal induced
subtrees computed by the FMIST algorithm, and apply the-
LATI algorithm to get the optimal layer assignment for these
maximal induced subtrees one by one. If the cost reduction in
the current pass is larger than a specified stopping threshold
, we start another pass. Otherwise, we stop the program. The

algorithm is summarized in Fig. 7.
Please note that each vertex will appear in at least one

induced subtree in each pass. Although we start from an
unmarked vertex to grow an induced subtree at each time,
the induced subtree might also contain a vertex which was
part of another induced subtree. The run time of the-LAG
is CUT , where
is number of passes and is the set of subtrees found in
each pass. In practice, we observed thatis usually a small
number less than ten.

In our implementation, our scheduler randomly selects an
unmarked vertex as the root of an induced subtree. Other
heuristics may also be used.

V. EXPERIMENTAL RESULTS

The experiments are conducted on a SUN SPARC ULTRA-
2(168 MHz) work station with 256 megabytes of memory.
We tested our algorithms with the following test cases:test1,
test2, test3, mcc1, mcc2, fract, andstruct. The routing results
of test1, test2, test3, mcc1 and mcc2 are generated by the
V4R router [1]. Test casestest1, test2, test3, and mcc1 are
routed in four layers;mcc2 is in six layers. Test casesmcc1
and mcc2 are industrial MCM designs provided by MCC
[also available at the Collaborative Benchmarking Laboratory
(CBL)]. In particular, mcc2 is a supercomputer with 37 IC
chips. For further information on these V4R test examples,
please refer to [1]. The test casesfract andstruct are standard
cell designs also available at CBL. The layouts offract and
struct are gridless layouts routed by an industrial router using
three routing layers. They are routed with 0.6-, 0.6-, and 1.2-
um minimum widths and 0.8-, 0.8-, and 1.2-um minimum
spacings on METAL1, METAL2, and METAL3 respectively.
The routing area forfract is 181.4 um 183.3 um and the area
for struct is 638.3 um 599.6 um.

It is forbidden to drop vias on the terminal locations in
fract and struct. Stacked vias are not allowed except for the
distribution vias in the V4R test cases, in which they are used
to bring the terminals to their proper routing layers.
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Fig. 7. K-layer layer assignment for ECC graph (K-LAG) algorithm.

TABLE I
EXPERIMENTAL RESULTS OFK-LAG ALGORITHM (WITH DEFAULT PARAMETER SETTING)

A. Impacts of MultiLayer Via Minimization

Table I shows the experimental results of the test cases
by -LAG algorithm. These experiments are done with the
default parameter settings which will be explained later.

Each entry in the table is the average of ten experiments of
the same data and parameters. The nondeterministic nature of
the program comes from random selection of starting vertices
for growing induced subtrees and random tie-breaking for
choosing vertices to be added to the induced subtree. Although
we could easily make the program deterministic, we found that
randomization usually improves run time and solution quality.

Some columns in Table I may need further explanations.
The third column shows the number of vias in the original
layout before we apply the -LAG algorithm. For the V4R
test cases, we count all the vias on the routing layers.3 For the
test casesfract andstruct, which are standard cell designs, we
count all the vias of the interconnects among cells, but we do
not count vias inside any cell. The fourth column shows the
total number of vertices in the ECC graph for each test case.
The fifth column shows the total number of edges in the ECC
graph. The sixth column shows the average total number of
maximal induced subtrees constructed in each run of-LAG
algorithm. The seventh column shows the average number of
vertices in a maximal induced subtree; the average is taken on

3The via numbers shown here are different from those reported in [1]. In
V4R, the distribution vias can be stacked to bring the input–output pins on the
surface to any routing layer. Each distribution via is counted as one, no matter
whether it is stacked or not. Also, due to an oversight, the distribution vias
in a multiterminal net are over-counted [19] (as each multiterminal net was
broken as a set of independent two-terminal-nets). In our via counting routing,
we count each distribution via by the number of layers it spans excluding
the surface layer. Moreover, we corrected the via over-counting problem for
multiterminal nets. The same via counting procedure is used to report the via
numbers in all the tables.

all the subtrees generated in all runs. In the same column, the
numbers in the parentheses are the ratio of the average number
of vertices in the maximal induced subtrees to the total number
of vertices in the ECC graph. The eighth column shows the
number of vias reduced and the ratio of via reduction to the
total number of vias.

The average size of maximal induced subtrees shown in
Table I is from 12% to 34% of the total number of vertices.
This indicates that our algorithm can optimally refine the layer
assignment of a large portion of the entire graph on each run
of -LATI algorithm, which leads to highly optimized layer
assignment solutions.

The results fromfract and struct are modest compared to
the results from the V4R test cases.Fract andstructare routed
in three layers using an industrial router, and no vias are
allowed in terminal locations; this leaves little opportunity for
improvement through layer assignment. This industrial router
has also been integrated with some post-layout optimization
procedures for via minimization. The via reduction in the
V4R test cases are from 12.6% to 15.1%. This is a significant
reduction since V4R is a router known to have low usage of
vias. The V4R test cases are routed in four or six layers; vias
are also allowed in those terminal locations. As a result, we
have considerable freedom to do the via minimization in these
test cases, and obtain much better via reductions.

B. Algorithm Options

Our -LAG algorithm for multilayer gridless layouts has
several options. We shall explain these options here. Their
impacts to solution quality and run time will be evaluated in
Sections V-C to V-E.

1) Wire Segmentation:We assume the input layouts of
our program are given as collections of wire segments and
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TABLE II
EFFECTS ON WIRE SEGMENTATION

vias. Our program has an option to further break each long
wire segment into a set of smaller wire segments and via
candidates. The breaking points are chosen from the middle
points between locations where this wire segment crosses
other wire segments. Furthermore, only those middle points
of segments which are longer than a certain lengthwill
be considered as breaking points. The lengthis usually
determined by the minimum space required by design rule for
a via insertion. However, we can specify some larger number
to reduce the number of breaking points.

Let us consider the wire segment in Fig. 1 to
illustrate how to do the wire segmentation. The wire segment

crosses other wire segments at points
, and . Assume the lengths of wire segments

, and are all smaller than , thus,
they will not be broken. Because the length of wire segment

is larger than , we have a breaking point , which
is the middle point of . In this case, is broken
to and .

Our program can also restrict the number of breaking points
to be less or equal to by iterating through all feasible

breaking points and selecting only one out of every of
them, where is an user-specified number andis the number
of vertices of the ECC graph. This gives us some controls on
the degree of wire segmentation.

2) Induced Subtree Growing Strategies:During the run-
ning of FMIST algorithm to grow a maximal induced subtree,
there are usually more than one vertex which can be added
to the induced subtree at the same time. Choosing different
vertices may end up with different maximal induced subtrees.
Since different maximal induced subtrees may give different
via reductions, we experimented with different strategies to
grow maximal induced subtrees.

Recall the procedure FMIST, which grows a maximal
induced subtree (described in Section IV-B). It uses a queue
to store the vertices which are adjacent to the induced subtree.
It repeatedly extracts a vertex from the queue to determine
if it can be added to the induced subtree. When inserting
a vertex to the induced subtree, it increases the labels of
all the neighbors of by one. If there are some neighbors
of with label 1 after the increments, it inserts them to the
queue. Because we extract and check the vertices of the queue
in a first-in-first-out order, the order of insertions determines
the order of vertices being added to the induced subtree.
We have the following two strategies to decide the order of
insertions.

Strategy A: When adding vertex to the induced sub-
tree, we first insert neighbor vertices which are connected to

by continuation edges, then the vertices connected by conflict
edges.

Strategy B: We first separate the neighbor vertices that
need to be added into the queue into two groups. The first
group consists of the vertices which have not been included
in any maximal induced tree in the current pass. The second
group consists of the rest. The vertices in the first group will
be added before the second group. We then use the ordering
in Strategy A to determine the ordering in both groups.

The reason that we want to use Strategy A to grow the
induced subtree is that we wish to give some preference to
the continuation edges because via reduction can only happen
in reassigning vertices connected by the edges. The reason
why we have Strategy B is that we want to avoid growing
subtrees which are similar (having a lots of vertices and edges
in common) to other induced subtrees generated before.

In both strategies, there may be vertices with the same
priority. Our program randomly break ties, and this explains
why multiple runs of our program may give different results.

If wire segmentation is applied, we will grow the induced
subtree using the original wire segments, and then break wires
according to the wire segmentation.

3) Stopping Thresholds:Our program usually obtains
most of the improvements from the first few maximal induced
subtrees. The reduction in later passes also tends to be small.
Our program has an option to stop earlier when it sees the
improvement in one pass is less than an adjustable fraction of
the total number of vias (the default value is set to 0.5%). We
call this option “quick stopping.”

C. Impacts of Wire Segmentation

Table II shows the effects on wire segmentation.4 The data
are obtained by using tree growing Strategy B and no quick
stopping. All the numbers in this table are the average of ten
experiments of the same setting.

We have three sets of experiments on the same data: no
segmentation, medium segmentation, and maximum segmen-
tation. In the maximum segmentation, we use all the possible
breaking points defined in the subsection V-B.1 to break
the wires (except formcc2, which would require more than
300 megabytes of memory to do so. To limit the number
of breaking points inmcc2, we have doubled the minimum
length required to break a wire segment.) In the medium
segmentation, we limit the number of breaking points to
roughly the same as the original number of vertices in the ECC

4We do not include test casesfract andstruct in Table I because there are
not many long wire segments to be broken in these two test cases.
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TABLE III
EFFECTS ON DIFFERENT SUBTREE GROWING STRATEGIES (WITH QUICK STOPPING)

TABLE IV
EFFECTS ON DIFFERENT SUBTREE GROWING STRATEGIES (WITHOUT QUICK STOPPING)

TABLE V
EFFECTS ON QUICK STOPPING (WITH STRATEGY B)

graph, thus, limiting the increment of the number of vertices
to roughly three times the original size.

This experiment shows that doing segmentation is always
helpful to get better via reduction, but at the cost of generating
larger ECC graphs, which means higher memory requirements
and longer run times. In most of the examples, the improve-
ment by maximum segmentation is less than 0.7% of the total
vias, while the run time increases by six to 29 times. We have
observed similar results by using different combinations of tree
growing strategies and stopping thresholds.

D. Impacts of Different Subtree Growing Strategies

Tables III and IV show the effects on different tree growing
strategies with different stopping thresholds. No wire segmen-
tations are used to obtain these data. The column “# of subtrees
of size %” is to show the total number of subtrees which
is larger than 20% of the total number of vertices of the ECC
graph. Again, all the numbers in the tables are the average
over ten experiments.

Tables III and IV show that the difference on the solution
quality is not significant when applying different strategies (all
within 0.2% of total number of vias). The difference on run
time is case by case. In most of the test cases, the differences
are within 1.5 times. However, the run time may have big
differences in some test cases. In test casestruct, the run time
of Strategy A is 17 times larger than the run time Strategy B.
In this case, both the number of subtrees per pass and average
subtree sizes are reduced by using Strategy B. Since there is
still considerable amount of “large” subtrees (subtrees larger
than 20% of the ECC graph) generated in this case, we do not
see much impact on the solution quality.

E. Impacts of Different Stopping Thresholds

Table V shows the data on different stopping thresholds with
Strategy B and no segmentation. The results on Strategy A are
quite similar, so we do not show them. If quick stopping is
used, the program will stop when the via reduction in one pass
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is less than 0.5% of total number of vias. Our experimental
data show that the program stops roughly at two passes in
every test case when quick stopping is used. If quick stopping
is not used, the program may require more passes to stop.
For example, on average, it requires as many as 6.9 passes
in mcc2. The sacrifice on the solution quality by using quick
stopping is almost negligible (all within 0.2% compared to the
total number of vias). However, the improvement on run time
may up to a factor of three.

F. Recommended Parameter Settings

In conclusion, when the run time and memory usage is con-
cerned and a slight sacrifice on solution quality is acceptable,
we recommend running our program without segmentation,
but using quick stopping and using Strategy B to grow the
induced subtree. In fact, this is the default parameter setting
of our program (The results in Table I are obtained under this
parameter setting). If we wish to maximize via reduction at
any cost, maximum segmentation should be used, and both
Strategy A and Strategy B should be tried. The program should
be run repeatedly and the best result selected.

VI. L AYER ASSIGNMENT FORDELAYS

AND CROSSTALK MINIMIZATION

As we mentioned in the previous sections, the ECC graph
is a very general model of the layer assignment problem.
With proper definitions of cost functions, our layer assignment
algorithm can also be used to further reduce crosstalk and
delay after routing.

In fact, our algorithm will work on any cost function on an
ECC graph with the following properties.

1) The costs are distributed on vertices and edges, and the
total cost is the summation of weighted costs over all
vertices and edges.

2) The cost of a vertex is determined only by its layer
assignment.

3) The cost of an edge is determined only by the layer
assignment of the two vertices it connects.

For the layer assignment problem in VLSI layout, we can
always represent the penalties for conflict and discontinuity
by a cost matrix for each edge. We assume that we have the
cost matrix as defined previously to represent such
penalties. All we need is to add extra cost functions to model
the problem we want to solve.

For the crosstalk minimization problem, we could add in
the crosstalk penalty for wire segments pairs with crosstalk
concern. Assuming that for each pair of wire segments
in which we need to consider crosstalk, there is a preallocated
slack CB on the amount of crosstalk allowed for that pair
of wire segments. Let us denoteCSK as the crosstalk
between and when they are assigned to layerand
respectively. We can define our cost for crosstalk as

CM

CSK CB if CSK CB
MAX otherwise

where is a preassigned weighting coefficient.

This function makes any assignment with crosstalk exceed-
ing the allocated slack to have a large penalty cost. Otherwise,
the cost is just the difference between the actual crosstalk and
allocated slack times the corresponding coefficient constant.
The weight coefficient allows us to put priority on
different pairs according to their importance.

The cost for vertices and to be assigned to layersand
is CM . There is no vertex cost for this

problem if only crosstalk minimization is considered, and the
optimization objective becomes to minimize the total cost on
all the edges. If we want to optimize both vias and crosstalk,
these objectives may conflict each other. However, we can
include each vertex cost with a suitable weight, and minimize
the weighted sum of the costs on all vertices and edges to find
the tradeoffs between these objectives.

We can also apply this layer assignment formulation to delay
optimization. In VLSI layout, wires routed in different layers
may have different widths, spacings and RC constants, so the
delay of a wire may be different when it is assigned to different
layers. Assume that we have a delay boundDB for each wire
segment and the delay for on layer is . We can define
costDA as the cost of each segment vertexas follows:

DA
DB if

MAX otherwise

where is a preassigned weighting coefficient to adjust the
priority of minimization delay on vertex .

The cost function gives the maximum value if the delay ex-
ceeds the delay bound allocated, otherwise it is the difference
between the delay and the delay bound times the corresponding
coefficient constant. The total cost is the sum of the costs over
all vertices (DA arrays) and edges ( matrices).

Given these definitions of cost functions, we can apply the
-LAG algorithm to solve the multilayer layer assignment

problem with optimization objectives as weighted combina-
tions of via, crosstalk, and delay minimization.

VII. CONCLUSION

We have introduced the notation of an ECC graph to
represent the layer assignment problem in multilayer gridless
layout. We showed how to use the ECC graph to represent
the layer assignment problem for via minimization, crosstalk
minimization, and delay minimization.

We have presented a linear time optimal layer assignment
algorithm -LAT that solves the case when an ECC graph is
a tree. After a slight modification on the -LAT algorithm,
we obtained the -LATI algorithm which optimally solves
the layer assignment problem for induced subtrees in an
ECC graph. Our -LAG algorithm is an efficient heuristic
algorithm for the layer assignment for a general ECC graph.
The -LAG algorithm utilizes the -LATI algorithm as
the optimization engine and can handle very large designs
efficiently, with very good solutions. Our experimental results
show that the -LAG algorithm consistently finds many large
induced subtrees in the ECC graph, and achieves significant
via reduction compared to the results of the V4R router, which
is known to have low usage of vias.
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