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An Efficient Approach to Multilayer Layer
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Abstract—In this paper we present an efficient heuristic algo- design a router which can simultaneously optimize many
rithm for the post-layout layer assignment and via minimization  different design objectives, such as wire length, area, delay,
problem of multilayer gridless integrated circuit (IC), printed crosstalk, number of vias, etc. Therefore, it is important to

circuit board (PCB), and multichip module (MCM) layouts. We f tai tl t optimizati to help th ¢
formulate the multilayer layer assignment problem by introduc- periorm certain post-layout optmizations 1o help the router

ing the notion of the extended conflict-continuation (ECC) graph. Meet various design constraints and produce better routing
When the formulated ECC graph of a layer assignment problem solutions.

is a tree, we show that the problem can be solved by an algorithm  One of the important post-layout optimization techniques
which is both linear time and optimal. When the formulated ECC is layer assignment, in which wire segments in a routing

graph is not a tree, we present an algorithm which constructs " . - .
a sequence of maximal induced subtrees from the ECC graph, solution are reassigned to appropriate layers to achieve cer-

then applies our linear time optimal algorithm to each of the tain optimization objectives. Layer assignment has become
induced subtrees to refine the layer assignment. Our experiments an interesting topic for the following two reasons: first, it
show that, on average, the number of vertices of an induced preserves the wire lengths and topologies during optimizations;
subtree found by our algorithm is between 12% and 34% of gacong it provides considerable flexibility for optimizations

the total number of vertices of an ECC graph. This indicates f Vi talk d del In thi ¢
that our algorithm is able to refine a large portion of the layout Ol vias, crosstalk, and defays. In this paper, we present an

optimally on each refinement, thus, producing highly optimized €fficient multilayer layer assignment algorithm for both grided
layer assignment solutions. We applied this algorithm to the via and gridless layout with focus on its application to the via
minimization problem and obtained very encouraging results. We - minimization problem.

achieved 13%-15% via reduction on the routing layout generated The via minimization problem is that of minimizing the

by the V4R router [1], which is a router known to have low usage L L . .
of vias. Our algorithm has been successfully applied to routing number of vias in a VLSI layout. A via is a hole filled with

examples of over 30000 wire segments and over 40000 viasconductive materials to connect wire segments on different
Finally, we outline how our layer assignment algorithm can also layers in a VLSI layout. Because vias often reduce the manu-
be used for delay and crosstalk minimization in high-performance  facturing yield, degrade the circuit performance, and increase
IC, PCB, and MCM designs. layout area (more difficult to compact routing solutions, e.g.,
refer to [2]), it is desirable to minimize the number of vias
|. INTRODUCTION without affecting routability.

S very large scale integration (VLSI) technology ad: The via minimization problem was first studied for two-
vance)é intgrconnection gnd ackaging technolo Q?ZS hel%er VLSl layouts. There are two approaches for the two-layer
become bo'EtIenecks in svstem perforrgnagce For gdvan VeI% minimization problem: unconstrained via minimization (or
integrated circuit (IC) deZi ns 1Pour to six }outin la eriopological via minimization) [3], [4] and constrained via
are gcommonl used in hi gh- 'erformance and hi gh_dgnsjjtninimization [5]-[13]. Topological via minimization computes

. Y | gh-p 9 th the topologies and the layer assignments of all the nets
designs. Multichip module (MCM) technology was develope %fore detailed routing to minimize the overall via count.

to increase packing densities, eliminate the packaging Ievel{-ﬁ:owever, topological via minimization may affect routability

interconnections, and provide more layers for routing. In bo . . . i
. . ) considerably and is usually not used in practice. Moreover, the
the multilayer IC and MCM designs, the designer or automatic . : ST
Wo-layer topological via minimization problem was shown

layout tools may use variable widths and spacings to optimigoe be NP-hard [4]. On the other hand, the constrained via

performance. This often results in multilayer gridless layouts.. .~ . " . L - ) .
. : o minimization problem optimizes aaxistingrouting solution
Because multilayer gridless routing is a complex thre

. : . L a/ only changing the layer assignments of the wire segments.

dimensional general area routing problem, it is not easy [o. .
is also referred to as thiayer assignmenproblem.
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There is also a considerable amount of research wor
done on the multilayer constrained via minimization problem.
Chang and Du first proved that the three-layer constrained a9
via minimization problem on Manhattan routing is NP-hard
[16]. They also proposed a heuristic algorithm which checks| a2
vias one by one and conducts a local search up tevels
on the via-crossing graph to eliminate the via being checked
(in their implementation,n was set to be two). Fangt
al. [17] proposed a two-phase heuristic algorithm. They useg
heuristic ordering and backtracking to assign the layers of
wire segments one by one and then do local perturbations tp al net A
eliminate vias greedily. However, when one via is eliminated,
other vias might be introduced. Ahn and Sahni [15] proved tha
the three-layer constrained via minimization problem remain- 1- Wire segmentation.
to be NP-hard for Manhattan routing even if the routing is
restricted to HVH channel routing. They proposed a trackia minimization. At the end of this paper, we will show that
by-track heuristic algorithm for layer assignment in the HVkbur layer assignment algorithm can also be used for delay and
constrained via minimization problem. crosstalk minimization in high-performance IC, printed circuit

The existing methods for multilayer constrained via miniboard (PCB) and MCM designs, when proper cost functions
mization suffer from one or more of the following problemsare used.

< handles only a fixed number of layers;

e assumes a grid-base routing solution; I

» cannot produce good solutions due to very limited range

a3 ad as a6 a7 a8

. PROBLEM FORMULATION

of local search: Given a valid K-layer layout solution, each net is divided
into a set of wire segments. We assume no vias are allowed

e cannot scale to large designs efficiently. - ; ,
All the experimental results on constrained via minimizatiovmhln a wire segment. Therefore, each wire segment must
P Be assigned to a single layer, while vias can only be used

reported in the_ literature are on small test cases with onlytéa connect different wire segments of the same net. The
few hur_1dred vias. . designer may specify the segmentation of wires to impose
In .thls paper, we introduce the notion of the extende(fiertain layout constraints and control the tradeoff between the
conflict-continuation (ECC) graph that abstracts the connggs,iniiin, and complexity of the layer assignment problem.
tivity relations of a given layout for the layer assIgNMENE - example, Fig. 1 shows a simple layout. Assume that the
problem. The ECC graph is general enough to handle g“dlgﬁﬁes connecting pointgl—a9 are of the same net; all the other
layouts with any number of routing layers. When a formulateghtic4| lines are of different nets. A natural way of segmenting
ECC graph is a tree, we show that the layer assignmepL \ires is to break the nets at the points where the horizontal
problem can be solved in linear time optimally by a dynamignq vertical wires meet (cf. [6]). In this case, we will break
programming technique. For the general case of the lay&L: 4 into segmentgal, a2), (a2, a8), and(a8, a9). Another
assignment problem where the ECC graph is not a tree, Qijssible choice is to break the nets whenever there is enough
algorithm constructs a sequence of induced subtrees from ce to insert vias (cf. [9]). Suppose that there is enough
ECC graph and applies our linear time optimal algorithm ‘é‘pace at point6 to put a via between5 anda7. In this case,
each induced subtree. Our experiments show that the averggeill further break(a2, a8) into (a2,a6) and (a6, a8). In
number of vertices of the induced subtrees constructed i first case, we have less flexibility to insert vias, but smaller
our algorithm is very large, containing 12%-34% of th@roblem size because we have fewer segments to consider. In
total number of vertices of the ECC graph. It indicates thgke second case, we have less restriction on inserting vias, but
our algorithm is able taefine a large portion of the layout more wire segments for the optimization problem. There are
optimally each timewhich leads to highly optimized layer also other possible ways to break nets. For example, we might
assignment solutions. The application of our layer assignmegiént to restrict the maximum length of a single wire segment.
algorithm to the constrained via minimization problem is ver is also possible that we want to restrict the minimum length
successful. We have achieved 13%-15% via reduction on #&ch that we do not to break wires too often. All these choices
routing solutions generated by the V4R router [1], which i&ill have impacts on the flexibility and complexity. Depending
a router known to have low usage of vias. Our algorithon the design, the designer may prefer one option to another
scales well for handling large designs; it has been successfujlysed on the consideration of flexibility they want and the
applied to routing examples of over 30000 wire segment®mplexity they can handle. Our algorithm can handle any
and over 40000 vias. An extended abstract of this work wgisen wire segmentation without any restrictions.
presented at the 1997 Design Automation Conference [20]. After the wire segmentation is done, it is not difficult to
The applications of our algorithm are not limited to thaee that there are basically two kinds of relations among wire
via minimization problem because our formulation is vergegments in the layer assignment problem: wires that cannot
general and can consider optimization objectives other thke put in the same layer and wires that must be connected to
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each other. The first is called thlenflict relation it occurs
among wire segments of different nets overlapping with each
other (when layers are ignored). The second is called thé N
continuation relation it occurs among wire segments with :
common end points of the same net. I s

Pinter [9] proposed the conflict-continuation graph which
captures the above relationships among wires during his far-|
mulation of the two-layer via minimization problem. In hig |
formulation, afree runis a maximal piece of wire that does
not overlap any other wire, and can accommodate at least ong
via. A "wire segment” is a piece of wire connecting two fre\.E — M2 g~ . cominueodge - : conflictodge
runs Each vertexs € V represents wire segment The edge O+ wire sea O i

i . . . wire segment vertex : via vertex

setE = E°U E/ represents two kinds of relationships among (@) )
wire segments. The st is the set ofcontinuation edges
An edgee, ., € E° exists between vertices and v if, and
only if, w andv are in the same net and are connected to
each other. Assigning andw to different layers will require For a K-layer layer assignment problem, we encddgj) to
a via to be inserted. The sét’ is the set ofconflict edges (2K —j+i+1)(j—i)/2+4. It is easy to show that this encoding
an edgee, , € E/ exists between vertices and v if, and function forms a one-to-one mapping between integer pairs
only if, « andv are in different nets and cannot be assigned;,/..) with 1 <[; <[, < K to integers in1, K(K + 1)/2].
to the same layer. An simple example on the encoding f&r = 4 is shown below

The conflict-continuation graph is sufficient for the repre-

~
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G
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Fig. 2. (a) A given layout and (b) the corresponding ECC graph.

sentation of the two-layer via minimization problem, but it is L1 12 (1,3) (1,4) 15 810

) ; X . (2,2) (2,3) (2,4 = 2 6 9
not suitable for multilayer representation when stacked vias (3.3) (3.4) 3 7
are allowed- For example, consider a layout which consists ’ (4’ M e 4

of three wire segments: wire segmentsand b are of the

same net and connected by a continuation edge; wire segmemnte usel(v) to denote the number of possible assignments

c is from a different net and overlaps with the intersectiofhaty can be assigned. ifis a wire segment verteKv) = K.

of a and b, thus, conflicting witha and b. Because stacked|f  is a via vertex that can span up tolayers, I(v) =

vias are allowed, it is legal to assignto layer 1, andb to S ocics1 (K — ).

layer 3. In this case, if we assignto layer 2, it can pass the |q the ECC graph formulation, the continuation edge set

conflict Checking imposed by the conflict-continuation grapfbntains on|y Via_to_segment continuation edgeggoﬁtinua_

because it is assigned to a layer different from those ahd tion edgebetween two vertices exists if it connects a via vertex

b. However, there is a conflict betweerand the stacked via gnd a wire segment vertex of the same net (and the via and

which connectsz and b. wire segment are adjacent). The conflict edge set, however,
We address the above problems by extending the conceptghtains segment-to-segment, segment-to-via, and via-to-via

conflict-continuation graphs so that it can handle the multilaygpnflict edges. Aconflict edgeexists if the two vertices it

layer assignment problem properly. In our ECC graph, th®nnects cannot be assigned to the same layer. A conflict edge

vertex set containgia verticesin addition towire segment ., between the wire segment vertexand another vertex

vertices? Each via vertex is a possible location to insert g is redundant and can be removeduifconnects through a

via. It connects two or more wire segments of the same n&intinuation edge to a via vertex, andw has a conflict edge

in the given layout. It may overlap with some wires, bufo ;. This is because andw are connected by a continuation

our formulation can represent these conflicts. A via verteige, the layers which via vertex spans must contain the

can also have a layer assignment. The layer assignment f§fer assigned ta:. Since the conflict edge,, ., puts the

a via is a pair of integer¢l;,l.), i < l,, indicating that constraint that the layer(s) whicty spans will not overlap

a via spans from layel; to layer [,. Note that we can with the layer(s) occupied by, the constraint betweem and

easily represent vias connecting more than one layer (stackegs also implied.

vias) under this representation. If no stacked vias are a”OWGd,TO give an examp|e for our representation, let us consider

we restrictl, < [; + 1. For the sake of simplicity in later the layout shown in Fig. 2(a). Wire segments are labeled 1-12;

explanation, an integer pdik;, l,,) is encoded into one integer.via candidates are labeled-f. Note thate is a stacked via

When we say that we assign the via vertex to some lgyerconnectingn?2 to m4. The corresponding ECC graph is shown

we mean thatj will be decoded back into the integer pairjn Fig. 2(b). The solid lines are continuation edges and the
IHowever, we can show that this graph can be used if no stacked vias QI%tted lines are conflict edges. Vv_e assume that wire segments

allowed, and the layout will not put two vias too close. 7 and 12 are too close to be put in the same layer. Therefore,
20ur definition of wire segment is somewhat different than Pinter’s. Ithere are conflict edges ;, ¢7 12, andey ;2. Note that we did

Pinter’s definition, wire segmentf are sepgrated by “free runs,” which are a!jét put an edge between vertices 7 and 12, as it would be a

wires. A via can be inserted in a “free run,” but the location is not determined. . .

In our definition, wire segments are connected end to end, and vias can Jr%gundam conflict edge and can be eliminated because of the

be inserted in the end points of wire segments. existence of the continuation edge between via vebtexd
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segment vertex 12. If vertek does not have a conflict layerthe summation of all the edge costs and via costs, which is
assignment with vertex 7, nor does vertex 12. We also assucmenputed by
that via vertexc and d are too close to be put in the same
layer, e.g., ifc connects layersnl andm2, andd connects COSTo) = Z Ayo(v)] + Z My o[o(w), o(v)]-
layersm?2 andm3 at the same time, there will not be enough eV - ’
routing space on layen?2. In this situation, we need a conflict
edgec. q. For the case that they may share some layers butgyr goal for the layer assignment problem is to find a layer
not all layers, we will still introduce a conflict edge but use thgssignments* with the minimum cost, i.e.COSTs*) <
cost function to distinguish the different cases (see the detail®)s1) for any o.
of cost functions below).

In our algorithm, we use cost functions to represent the con-
cepts of conflict and continuation. We shall first describe how lll. OPTIMAL ALGORITHM FOR TREES

to use the cost functions for the via minimization problem in Although all the vertex and edge costs are defined for
this section. It is also possible to define suitable cost functiofse layer assignment of adjacent vertices, our objective is
to solve the layer assignment problems for crosstalk and defgy minimize the summation over all the costs of vertices
minimization, which will be explained in Section VI. and edges. It is possible that greedy local changes of layer
We define the cost functions for the via minimizatiossignments may restrict the assignments of remote vertices.
problem as follows: For each edge,., we associate a A simple-minded local refinement algorithm, which does not
cost matrix M,.; an entry M, ,[m,n] gives the cost for haye a global view of the problem, may produce poor results.
assigningu to layerm andwv to layern at the same time. The we would like to find an efficient algorithm which can take
cost matrixM,,., will capture the penalty on the conflictingadvantage of the locality of the cost computation and also
layer assignment between verticesand v. If there is a provide an efficient way to compute the impacts on the total
conflict for the assignment, the entry will be, otherwise, cost when a local optimization of layer assignment is made.
it will be zero. The conflicts may be characterized by the Because the muitiiayer |ayer assignment is NP-hard, we do
spacing rule violation, overlapping of wires of different netsyot expect to find an algorithm which can solve the general
or disconnect of wires or vias of the same net which Shouﬁoblem optimally. A special case, however, can be solved
be connected. This scheme is very general; for the cases wapﬂma”y; if an ECC graph is a tree, we can employee the
two vertices conflict Only on some |ayers, we set the matraynamic programming paradigm to form an aigorithm which
entries corresponding to the conflict assignmentsdoand gptimally solves the multilayer layer assignment problem
the remaining entries to zero. in linear time. Furthermore, we can apply this algorithm
For each vertexs, we also associate a cost arraly, of to a large portion of the entire ECC graph with a slight
size l(v); an element4,[m] of the array specifies the costsmodification of the algorithm. This enables us to form an
of assigning vertex to layerm. Clearly the cost array for a efficient heuristic algorithm which can refine a large portion
via can be used to specify whether stacked vias are allowedgtthe layout optimally, thus, providing a more global view on
not, how many layers can be stacked, etc. For example, if fife optimization problem and having a better chance to avoid
stacked vias are allowed, for each via verte¥,[(%i,1.)] =0 bad local decisions and obtain better solutions.
if iy =1,, oneifl, —{; =1, 0rooif l, =l > 1. We can  Before we propose the optimal layer assignment algorithm
also allow stacked vias up ta layers and count each stackedor trees, we need to define some notations. For a vertiex
via spannings layers with costs — 1, by assigning cost for the tree, we defineh(x) to be the set of the child vertices of
A, L) =l =L if L, = <m, orooif 1, =i > m. . For a layer assignmenton a tree, we define the cost for a
We may also replace the cost functions with more compléxyer assignment on a subtree rooted at as COST, (o) =
ones. For example, we can put layer constraints on a certain Aeto(u)] + E'UECh(u)(MU:'U [0(w),o(v)] + COST,(s)). This
or part of it such that it cannot be assigned into these forbiddegst contains three parts: the layer assignment cost,ftine
layers. Our representation can also handle via minimizatiedge costs of edges betweerand its children, and the costs
for gridless routing where wire segments have variable widte$ subtrees rooted at the children @f When is the root of
and spacing requirements on the same or different layers. We tree, COST,(¢) computed by the above definition is the
simply model different possible conflicts on each layer usingame asCOSTo) defined in the previous section. We define
the cost matrices derived from the design rules. MC,[i] = min,{COST,(¢) | o(u) = i}; i.e., it gives the
Please note that the formulation of ECC graph is veminimum cost for the subtree rooted-aunder the condition
general and can handle multilayer gridless layout in advancet is assigned to layer. Note thatMC,[4] for a leaf vertex
IC and MCM designs. It accommodates different widths af is simply A,[¢]. For a nonleaf vertex, it can be computed
wires and vias in the same layer or different layers as wel§ follows:
as different wire-to-wire, wire-to-via and via-to-via spacing in

the same layer or different layers. It also handles stacked viasMc,uy[i] =min{COST,(¢) | o(u) =i} (1)
when allowed by technology. Multiway splitting wires are also 7
handled elegantly by this formulation. =min{A,[i]+ > (Myufi,o(v)]

We define the cost for a layer assignmentvhich assigns vEch(w)

each vertexv into layer o(v),(1 < o(v) < l(v)) to be + COST,(0)) | o(u) =i} 2
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ALGORITHM: K-LAT(K-layer Layer Assignment for Trees)
INPUT: An extended conflict-continuation graph G = (V, E) which
is a tree. A cost matrix M, , for each edge e, ,. A cost array A, for
each vertex u.

OUTPUT: A minimum cost layer assignment.

1. For cach vertex w in the postorder traverse of the tree
For cach layer 1 < i <1(u)
MC, i) = Auli]+
Z?,‘Ech,(u) (mi”lﬁjﬁl(v){*Mu,’v i, 7]+ MCy[5]})
For cach v € ch(u)
myi] = j*,
where j* is the layer which v gives the minimum value
for MC\[i].
2. For root 7 of the tree, find g* which gives
the minimum cost among M Cylg]’s (1 < g <(r))
assign o(r) with g*.
3. For cach vertex v on the preorder traverse of the tree,
o(v) = mylo(u)],
where u is the parent of v.
4. Return o.

Fig. 3. K-layer layer assignment for treesi(LAT) algorithm.

=A,[{]+ Z min{(M,, ,[¢, 0(v)] been computed. To satisfy this condition, we choose to use the
wCon(u) postorder traversal of the tree (other orders are also possible).
+ COST,(0)) | o(u) =i} (3) During the bottom-up cost computation, we also use an
auxiliary arraym, on each vertex to store the optimal layer
=A,[i] + Z mjin {H}jn{(Mu,w [¢, ] assignments for all the possible layer assignments of the parent
vech(u) of v. When a minimum cosMC,,[¢] of vertex« is found, we
+ COST,(0)) | o(u) setm,[i] to j*, wherej* is the corresponding layer number
= i,0(v) :j}} @) of v which givesMC,[i] the minimum cost.

After the cost arrayMC, is computed for the root, we
) ) o ) know the minimum cost for the whole tree and the best layer
=Aufi] + Z <m}n{M“v'”[L’J] T MC'”[J]})' assignment of by checking the minimum cost iMC,.. For a
veen(u) nonroot vertexv, when its parent’s optimal layer assignment
(5) is known, we know to what layer vertexshould be assigned
in order to give the minimum cost because we have recorded

The deduction from (1) to (2) is based on definitions otp|s information in them,, array. Clearly, we can compute the

COST, (o). In (2), because the layer assignment.db fixed, Opt'?ilr;a)éfsra?ss;?;:n grr]:] C}f fg;h \rzzrix n tfr‘]et(;rezrtt:e y a top-
the layer assignments for its children are independent of ea‘t " v whi Imply '9 yens|[i] to vertexv

other, and can be optimized independently. Therefore, we d fne parent IS known to _be assigned tq layer . .
transform the minimization of the summation over several We summarize our optimal layer assignment algorithm in
independent terms into a summation over the minimizati l9- ) )
of each term, which leads to (3). In (4), we itemize the 1heorem 1:Given an ECC graphz = (V,E) which
minimization over all possible values gf After pulling out 1S & tree, theK-LAT algorithm finds an optimalK-layer

the constant term\, ,[i, 5] and applying the definition of @ssignment ino(v). _ _ o
MC,[j], we get (5). Proof: The optimality follows by induction. First, it is

The above equations show how to compute W&, re- trivial to see that the subtree costs at the leaves are minimum.
cursively from the layer cost arrag,, the edge cost matrix For the induction part, we can see that our algorithm computes
M,,., and theMC, of each childv of . Clearly, to compute MC.. by (5), which only requires to knoMC, for v € ch(u);
the MC, [i], we only need to minimize the summation of thgince the cost arrajiC, for each childv of w is optimally
cost of a subtree rooted atand the edge cost betwearand computed by the induction hypothesis, we know tVC,

v for each childv of «. is also optimally computed. Therefore, we can conclude that

Based on this formula, our algorithm consists a bottonthe MC... is optimally computed by thé{-LAT algorithm.
up cost computation and a top-down layer assignment. Fdecause the top-down layer assignment will realize the layer
the bottom-up cost computation, we need to make sure tlassignment for the optimal cost, it gives us an optimal layer
whenMC, is being computed, for each childof «, MC,, has assignment of the tree.



CHANG AND CONG: MULTILAYER LAYER ASSIGNMENT WITH AN APPLICATION TO VIA MINIMIZATION 613

For the complexity of this algorithm, we first discuss th& LGORITHM: K-LATI(K-LAT for Induced subtrees)
number of possible layer§(v) per vertexv. For a wire INPUT: An ECC graph G = (V, E), an induced subtree
segment vertexl(v) = K. For a via vertexy, the number 7' = (V', E'), a feasible layer assignment o, Cost matrices My, o
I(v) depends on how many layers the via can be stacked.fpg cach edge Cus énd cost array A; f91' cach vertex i ‘
the most restricted case, vias can connect only two adjac [[ITPUT: A minimum cost layer assignment for the induced

’ . subtree T'.
layers, l(v) = 2K — 1. For the least restricted case, ther&""¢
can be K(K + 1)/2 possible layer assignments for the via. For cach v € V', 1 <i <{(v),
vertex. Buli] = Alil+ 2pev vie, ecvrir vy Mol o(a)]-

For Step 1, each edge, . requires examining(u)/(v) 2. Invoke K-LAT on T with the cost array A, replaced by B, for
edge costs for the computation ®C,,. Since the number each vertex v.
of edges in the tree V| — 1, the complexity of Step 1 is Fig. 4. K-LATI algorithm.

O(K?|V|) for the most restricted case ani{ K*|V|) for the

least restricted case. Step 2 taked() for the most restricted  Becausek -LAT is optimal, K-layer layer assignment for
case and)(K?) for the least restricted case, and Step 3 tak@sduced treesK-LATI) is also optimal. We have the following
O(|V]) time. So, this algorithm runs i©(K?*|V|) for the corollary:
most restricted case an@(K*|V|) for the least restricted  Corollary 1: Given an ECC graply, a feasible assignment
case. Since( is an integer constant in our algorithm, we havg and an induced subtreéE = (V/,E") of G, the K-LATI
O(|V]) linear time algorithm for optimal layer assignment fogigorithm finds a minimum cost layer assignment Bfin
trees. In practicesy = 2 to 5 for modern IC’s, and is usually O(|v’| + |CUT(V’,V — V’)|) time, where theCUT(V',V —
less than ten for most PCB/MCM designs. O v’) is the set of edges connecting andV — V",
Proof: The optimality follows because we have intro-
duced the costs of the edges to the nontree vertices in the cost
IV. AN EFFICIENT HEURISTIC FOR GENERAL GRAPHS array for each tree vertex, and becauselAT is optimal.

In general, the formulated ECC graph of a layer assignmeH#€ time complexity ofK-LATI is derived as follows. Step
problem may not be a tree. In this section, we shall firdt takes O(K|CUT(V', V' — V’)|) for the most restricted
show that thek -LAT algorithm is also applicable to inducedcase on stacked vias am@d(K?|CUT(V',V — V7)|) for the
subtrees in a general ECC graph. Then we shall use it |§8st restricted case, as we only need to visit every edge in
the basis for our heuristic algorithm to optimize a sequence @K T(V', V' —V”) once and each visit requirég) operations.

induced subtrees in a general ECC graph. Let us first introdutepP 2 take)(|V’|) ti/me as ShOV\/’“ in Th(/aorem 1. Therefore,
the concept of induced subtrees. K-LATI runs in O(|V’| + [CUT(V', V — V7)) time. 0

Definition 1: A subgraph ' = (V' E’) is a (vertex) To illustrate theX -LATI algorithm, we use the example in
induced subgraplof G = (V, E) if, and only if, V/ C V Fig. 5(f), which shows the ECC graph of the layout shown in
andE' = {e,, |u € V',v e V', ande,,, € E}. When an Fig. 2(a). The grey nodes form an induced subtree. We assume
induced subgraph dF is a tree, it is called an induced subtregh® number of layers is four and stacked vias are allowed.

Definition 2: Given an ECC graplG and a layer assign- Suppose vertex 1 is the root, then the §&t3,4,5,8,10, 11}

mente, the layer assignment problem for an induced subgragfe the leaf vertices with no children. Let. us focus on a small
@' is to find a layer assignment* s.t.Vo € V— V', o'*(v) = subtree rooted at vertex 9. It has two children, vertex 11 and

o(v), and COSTo’*) is minimum. vertex e. Vertex e has two children, vertex 4 and vertex 10.

If we choose a subsef of the vertices in the ECC graph Vertex 9 has a nontree neighbor 12 in the graph and vertex 11
G and fix the layer assignments for the vertices outsidg,of Nas a nontree neighbarin the graph. So the layer cost array
the original layer assignment problem is reduced to the layléf vertex 9isBy[] = {0,0, o0, 0} after we add the costs of the
assignment forS. Since we need to consider all the edge@dges to nontree vertices, because vertex 12 is in layer 3 and
among vertices inS which are originally inG, we need to conflicts with vertex 9. Similarly, the layer cost array for vertex
consider the subgraph induced Ky To utilize our optimal 11isBui[] = {oc,20,0,0}, because vertedis in layer(3,4)

algorithm K-LAT, we are interested in an induced subgrapfnd is connected to vertex 11 by a continuation edge. Now we
which is a tree. begin the bottom-up cost computation. Since vertices 4, 10,

11 are leaf vertices, their subtree costs are equal to their layer
, , cost arrays. SMC4[] = {0,0,0,0}, MCyo[] = {0,0,0,0},

A. Extension of thé(-LAT Algorithm to Induced Subtrees 44 MC1.[] = {oc,c,0,0}. Now we compute the cost for
The extension of the optimal’-LAT algorithm for trees to vertexe. Assume that the cost for a stacked via is the height it
induced subtrees is quite simple. For a verteér an induced spans, and recall that we encode the layer pair for a via vertex

subtree, we only need to increase the layer costs loy the in the following sequence(1,1),(2,2),(3,3),(4,4),(1,2),

edge costs between and its adjacent nontree vertices, s62,3),(3,4),(1,3),(2,4),(1,4). The layer cost array for via
that the layer costs for each tree vertex will also include thertexe is B.[] = {0,0,0,0,1,1,1,2,2,3}. Because we can
costs due to its relations with its nontree neighbors. After sualways assign the layers for vertices 4 and 10 to be the same as
modification of the vertex cost arrays, we can apply e ¢ and the costs for subtrees rooted at 4 and 10 are all zero, the
LAT algorithm directly. Our optimal algorithm for inducedMC,[] is the same a8.[], MC.[] = {0,0,0,0,1,1,1,2,2,3}.
subtrees can be summarized in Fig. 4. The corresponding assignment arrays for vertices 4 and
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Vi= {l,a,6,7,2,c,f,9,8,3,5,e, 11})Q = {10> 4} Vi= {1,&,6, 772,37,’,91873’5:3311710,4}, Q= {}
(e) ()

Fig. 5. Example of finding a maximal induced subtr€e= (V' E').

10 are: my[] = {1,2,3,4,1,2,3,1,2,1} and mio[] = cost of assigning vertex 9 to other layers is similar. Eventually,
{1,2,3,4,1,2,3,1,2,1}. Note thatm,[5] can be either 1 or 2 we will get MCy[] = {0,0,00,0}, m11[] = {3,3,4,3}, and
as either layers 1 or 2 for vertex 4 gives the same cost for the[] = {1,2,3,4}.

subtree rooted at. When there are several layer assignments Given the above optimal layer assignment algoritiifa

for a vertex with the same minimum cost, we simply pick thbATI, our algorithm finds a sequence of induced subtrees and
one with a smaller layer number. This is why[5] = 1. Now applies K-LATI algorithm to them one by one. In orQer to
we can compute the cost of the subtree rooted at vertex 9!3Ke advantage of th&-LATI algorithm, we need to find a
we assign vertex 9 to layer 1, the minimum sumME,;[j] Seduence of large induced subtrees.

and My 11[1, ] is zero withj = 3 or j = 4. So we have B. Finding Maximal Induced Subtrees

my1[1] = 3. The minimum sum oMC.[j] and My [1, j] is In general, we are interested in forming large induced
zero withm.[1] = 1. We add these two minimum costs tasubtrees. However, finding an induced subtree of the maximum
By[1] and getMCy[1] = 0. The computation of the minimum size is NP-hard [18]. In addition, we wish to findsatof large
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ALGORITHM: FMIST(Finding Maximal Induced SubTree) is exactly one vertex if” with an edge tov. Therefore, the
INPUT: An ECC graph G = (V, E) and a vertex r. induced subgraph generated BY U {v} is both connected
OUTPUT: A maximal induced subtree T = (V', E') rooted at r. and without cycles, thus, it is still a tree. When the algorithm

stops, we cannot add in any other vertex in the graph without

L V! =10. ¢ =0. For each v, label(v) = 0. forming a cycle. Therefore, the subtree found is maximal. For

2. label(r) = 1, parent(r) = r, push r into queue Q.

3. While Q is not empty the time complexity, we need to traverse each tree edge twice
Remove a vertex v from . and the edge in the cut s&UT(V’,V — V') once. The run
If label(v) = 1 time isO(|V'| + |CUT(V',V — V))]). O
Add v into the induced subtree vertex set V'.
For each u, s.t. v, € E, C. An Efficient Algorithm for Layer Assignment

increase label(u) by one.
If label(u) = 1, then
parent(u) = v, push u to the queue Q.

Now we are ready to present our heuristic algorithm for
the general layer assignment problem. Given a feasible layer
assignment solutior with the ECC graph, we refine to
Fig. 6. FMIST algorithm. minimize the layer assignment cost through several passes.

In each pass, we covaf with a set of maximal induced
induced subtrees to cover the graph, rather than a single lasgbtrees computed by the FMIST algorithm, and applyAhe
tree. For our purpose, we find that growing maximal inducddATI algorithm to get the optimal layer assignment for these
subtrees (i.e., induced subtrees which are not contained in angximal induced subtrees one by one. If the cost reduction in
induced subtrees) from different starting vertices is effectivthe current pass is larger than a specified stopping threshold
On average, the maximal induced subtrees cover 12%-34% ofve start another pass. Otherwise, we stop the program. The

the ECC graph. algorithm is summarized in Fig. 7.
Our induced-subtree-finding algorithm starts with an arbi- Please note that each vertex will appear in at least one
trary vertexv and finds a maximal induced subtrdé = induced subtree in each pass. Although we start from an

(V', E’) rooted atv. It is basically a graph traversal algorithmunmarked vertex to grow an induced subtree at each time,
with proper labeling. Each vertex in the graph is initially the induced subtree might also contain a vertex which was
labeled withlabel(v) = 0. We maintain a queu€ for the part of another induced subtree. The run time of i AG
vertices which are adjacent to some vertex in the induc& O(P x > oy p(IV'| + |CUT(V',V — V')|)), where P
subtre€el” under construction. Initiallyg is empty. We choose is number of passes aridP is the set of subtrees found in

a vertexr as the root, label it with one, and add itkd. Once a each pass. In practice, we observed tRais usually a small
vertex is added td&’, we increase the label of all its neighborsiumber less than ten.

by one. Once a vertex has label 1 after the label increase, wén our implementation, our scheduler randomly selects an
put it into Q. Then we extract the vertices fro@ one by one. unmarked vertex as the root of an induced subtree. Other
If the extracted vertex has a label larger than one, we knovheuristics may also be used.

thatv is a neighbor for two or more vertices W. In this case,

vertex v is discarded because if we add it ¥, we would V. EXPERIMENTAL RESULTS

create cycle(s) if". If label(v) = 1, we knowwv has exactly =~ The experiments are conducted on a SUN SPARC ULTRA-
one connection td". In this case, we add to V', increase the 2(168 MHz) work station with 256 megabytes of memory.
labels ofv's neighbors by one, and insert any of its neighbotd/e tested our algorithms with the following test casestl,

with label 1 into@. We repeat this process to extract anothdes®, tesB, mcdl, mc, fract, andstruct The routing results

vertex from(@ again, and stop whe€ is empty. of testl, tes®, tesB, mccl and mc@ are generated by the
We summarize our algorithm for finding maximal induce®&4R router [1]. Test casetestl, tese, tesB, andmccl are
subtrees in Fig. 6. routed in four layersmc@ is in six layers. Test casemccl

Fig. 5 shows how this marking process in the findingnd mc@ are industrial MCM designs provided by MCC
maximal induced subtrees (FMIST) algorithm works. The greglso available at the Collaborative Benchmarking Laboratory
nodes are the vertices we put in the induced subtree, the bl&BL)]. In particular, mc@ is a supercomputer with 37 IC
nodes are the nontree nodes with labels larger than one, ahips. For further information on these V4R test examples,
the hash nodes are the nodes currently labeled as one. Nb&ase refer to [1]. The test cadesct andstructare standard
that in Fig. 5(c), when both the vertices 7 and 2 are addedll designs also available at CBL. The layoutsfiafct and
to V/, the label of vertex increases twice and becomes twostructare gridless layouts routed by an industrial router using
which makes it a nontree vertex. Similarly,and 12 become three routing layers. They are routed with 0.6-, 0.6-, and 1.2-
nontree vertices when eight is addedlf6. um minimum widths and 0.8-, 0.8-, and 1.2-um minimum

Theorem 2: Given an ECC grapltz = (V, E), the FMIST spacings on METAL1, METAL2, and METALS3 respectively.
algorithm computes a maximal induced subt#ée- (V’, E’) The routing area fofractis 181.4 umx 183.3 um and the area
in O(|V'| 4+ |CUT(V',V — V’)|) time. for structis 638.3 umx 599.6 um.

Proof: We prove the correctness by induction. It is trivial It is forbidden to drop vias on the terminal locations in
that a single vertex in the grap& is an induced subtree. fract and struct Stacked vias are not allowed except for the
AssumeT’ = (V' E") is an induced subtree. When we addlistribution vias in the V4R test cases, in which they are used
a vertexwv to 77, the labeling process guarantees that thete bring the terminals to their proper routing layers.
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ALGORITHM: K-LAG(K-layer Layer Assigument for ECC Graph)
INPUT: An ECC graph G = (V, E), a feasible layer assigument o,

a cost matrix M, , for each edge e, ., a cost array A, for

each vertex v, and a stopping threshold t.

OUTPUT: A refined layer assignment ¢* with minimal cost.

1. Use a scheduler to get a vertex r.

2. Run FMIST algorithm with r to get a maximal induced
subtrec T rooted at r and mark all vertices in 7.

. Apply the K-LATT algorithm to 7.

. If there exists unmarked vertices, goto Step 1.

. If improvement larger than ¢, unmark all vertices, goto Step 1.

6. Output the refined layer assignment o*.

Ut = W

Fig. 7. K-layer layer assignment for ECC grapf {LAG) algorithm.

TABLE |
EXPERIMENTAL RESULTS OF I{-LAG ALGORITHM (WITH DEFAULT PARAMETER SETTING)
examples 7 of # of # of 7 of 7 of avg. tree size(%) | via reduction(%) | CIPPU time (sec)
layers vias vertices edges subtrees

ract 3 428 2843 10603 17.3 975.2(34.3) 2.8(0.7) 1.1
struct 3 5229 39376 151783 136.2 5372.8(13.6) 138.7(2.7) 63.3

test1 4 1965 1328 38740 111.4 1383.7(32.0) 257.0(13.1) 11.8
test2 1 1888 8606 139017 195.2 2407.3(28.0) 691.6(11.2) 61.8
test3 4 6298 11204 217152 172.8 3116.1(28.1) 791.8(12.6) 80.2
mcel 4 5733 11649 152104 378.5 1357.3(11.7) 827.9(14.4) 59.2
mce2 6 40267 67555 2573594 325.8 14560.9(21.6) 6064.9(15.1) 1459.9

A. Impacts of MultiLayer Via Minimization all the subtrees generated in all runs. In the same column, the

Table | shows the experimental results of the test cadddmbers in the parentheses are the ratio of the average number

by K-LAG algorithm. These experiments are done with th@f vertices in the maximal induced subtrees to the total number
default parameter settings which will be explained later. ~ ©f Vertices in the ECC graph. The eighth column shows the

Each entry in the table is the average of ten experiments'Bfmber of vias re.duced and the ratio of via reduction to the
the same data and parameters. The nondeterministic naturéP8}! number of vias. S _
the program comes from random selection of starting vertices! "€ average size of maximal induced subtrees shown in
for growing induced subtrees and random tie-breaking fd@Ple I is from 12% to 34% of the total number of vertices.
choosing vertices to be added to the induced subtree. Althoulf¥S indicates that our algorithm can optimally refine the layer
we could easily make the program deterministic, we found th@gsignment of a large portion of the entire graph on each run
randomization usually improves run time and solution qualitpf £-LATI algorithm, which leads to highly optimized layer

Some columns in Table | may need further explanationdssignment solutions.

The third column shows the number of vias in the original The results fromfract and struct are modest compared to
layout before we apply th&-LAG algorithm. For the V4R the results from the V4R test casésact andstructare routed
test cases, we count all the vias on the routing lay&sr the in three layers using an industrial router, and no vias are
test casefract andstruct which are standard cell designs, wedllowed in terminal locations; this leaves little opportunity for
count all the vias of the interconnects among cells, but we éBprovement through layer assignment. This industrial router
not count vias inside any cell. The fourth column shows tHas also been integrated with some post-layout optimization
total number of vertices in the ECC graph for each test cag¥ocedures for via minimization. The via reduction in the
The fifth column shows the total number of edges in the ECZ4R test cases are from 12.6% to 15.1%. This is a significant
graph. The sixth column shows the average total number fegduction since V4R is a router known to have low usage of
maximal induced subtrees constructed in each ruk afAG Vvias. The V4R test cases are routed in four or six layers; vias
algorithm. The seventh column shows the average numberas¢ also allowed in those terminal locations. As a result, we

vertices in a maximal induced subtree; the average is takenh@ve considerable freedom to do the via minimization in these
test cases, and obtain much better via reductions.

3The via numbers shown here are different from those reported in [1]. . .
V4R, the distribution vias can be stacked to bring the input—output pins on the AIgorlthm Options

surface to any routing layer. Each distribution via is counted as one, no matterQur K-LAG algorithm for multilayer gridless layouts has

whether it is stacked or not. Also, due to an oversight, the distribution vias . . . .
in a multiterminal net are over-counted [19] (as each multiterminal net Wé@veral optlons.. We Sh‘?"” explam these thlons here. The”
broken as a set of independent two-terminal-nets). In our via counting routingapacts to solution quality and run time will be evaluated in
we count each distribution via by the number of layers it spans excludi@actions V-C to V-E.

the surface layer. Moreover, we corrected the via over-counting problem for . . .

multiterminal nets. The same via counting procedure is used to report the vial) Wire Segmen.tatlonWe assume the 'npUt IayOUtS of
numbers in all the tables. our program are given as collections of wire segments and
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TABLE I
EFFECTS ON WIRE SEGMENTATION

no segmentation medium segmentation maximum segmentation

examples original # # of # of vias run time # of # of vias run time # of # of vias run time

of vias vertices reduced (sec) vertices reduced (sec) vertices reduced (sec)
testl 1965 4328 259.2 19.7 13914 263.2 86.5 52254 270.0 460.6
test2 4888 8606 695.0 94.3 29180 702.0 252.1 111470 726.6 2080.9
test3 6298 11201 793.6 175.9 35136 802.0 538.3 178718 822.2 5138.9
mececl 5733 11649 831.8 120.7 36827 832.8 411.3 162693 852.3 2835.8
mcc2 10267 67555 6118.0 4876.2 288087 6172.6 12909.7 172395 6201.9 291143.9

vias. Our program has an option to further break each lobg continuation edges, then the vertices connected by conflict
wire segment into a set of smaller wire segments and \éages.
candidates. The breaking points are chosen from the middle Strategy B: We first separate the neighbor vertices that
points between locations where this wire segment crossezed to be added into the queue into two groups. The first
other wire segments. Furthermore, only those middle poirggoup consists of the vertices which have not been included
of segments which are longer than a certain lengthwill in any maximal induced tree in the current pass. The second
be considered as breaking points. The lengthis usually group consists of the rest. The vertices in the first group will
determined by the minimum space required by design rule foe added before the second group. We then use the ordering
a via insertion. However, we can specify some larger numbiér Strategy A to determine the ordering in both groups.
to reduce the number of breaking points. The reason that we want to use Strategy A to grow the
Let us consider the wire segmef2,a8) in Fig. 1 to induced subtree is that we wish to give some preference to
illustrate how to do the wire segmentation. The wire segmelfie continuation edges because via reduction can only happen
(a2, a8) crosses other wire segments at pous a3, a4, a5, in reassigning vertices connected by the edges. The reason
a7, and a8. Assume the lengths of wire segmeri2, «3), Why we have Strategy B is that we want to avoid growing
(a3,a4), (ad,a5), and (a7, a8) are all smaller thann, thus, subtrees which are similar (having a lots of vertices and edges
they will not be broken. Because the length of wire segmelit common) to other induced subtrees generated before.
(a5,a7) is larger thanm, we have a breaking poim#s, which In both strategies, there may be vertices with the same
is the middle point of a5, a7). In this case(a2, a8) is broken Priority. Our program randomly break ties, and this explains
to (a2, a6) and (a6, ag). why multiple runs of our program may give different results.
Our program can also restrict the number of breaking points!f wire segmentation is applied, we will grow the induced
b to be less or equal ton by iterating through allB feasible subtreg using the orlglnal wire segments, and then break wires
breaking points and selecting only one out of evéyyn of according to the wire segmentation. _
them, wherey is an user-specified number ands the number ~ 3) Stopping ThresholdsOur - program  usually ~ obtains
of vertices of the ECC graph. This gives us some controls g#PSt of the improvements from the first few maximal induced
the degree of wire segmentation. subtrees. The reduction in later passes glso tends _to be small.
2) Induced Subtree Growing StrategieBuring the run- OUr Program has an option to stop earlier when it sees the
ning of FMIST algorithm to grow a maximal induced subtredMpProvement in one pass is less than an a_djustable fraction of
there are usually more than one vertex which can be ad totgl number of.V|as (the.default value is set to 0.5%). We
to the induced subtree at the same time. Choosing differ&it! this option “quick stopping.”
vertices may end up with different maximal induced subtrees.
Since different maximal induced subtrees may give differe@ Impacts of Wire Segmentation

via reductions, we experimented with different strategies t0Tapje || shows the effects on wire segmentatidfhe data
grow maximal induced subtrees. are obtained by using tree growing Strategy B and no quick

~ Recall the procedure FMIST, which grows a maximaltopping. All the numbers in this table are the average of ten
induced subtree (described in Section IV-B). It uses a queggneriments of the same setting.

It repeatedly extracts a vertex from the queue to determigggmentation, medium segmentation, and maximum segmen-
if it can be added to the induced subtree. When insertiigtion. In the maximum segmentation, we use all the possible
a vertexu to the induced subtree, it increases the labels pfeaking points defined in the subsection V-B.1 to break
all the neighbors ofu by one. If there are some neighborghe wires (except fomc@, which would require more than

of « with label 1 after the increments, it inserts them to thgggo megabytes of memory to do so. To limit the number
gueue. Because we extract and check the vertices of the quet'®reaking points inmc?, we have doubled the minimum

in a first-in-first-out order, the order of insertions determinqgngth required to break a wire segment.) In the medium
the order of vertices being added to the induced subtrg@gmentation, we limit the number of breaking points to
We have the following two strategies to decide the order @bughly the same as the original number of vertices in the ECC
insertions.

Stratggy.A: When_ addmg V?rtem to_ the induced sub- 4We do not include test casémct andstructin Table | because there are
tree, we first insert neighbor vertices which are connected taot many long wire segments to be broken in these two test cases.
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TABLE 11l
EFFECTS ON DIFFERENT SUBTREE GROWING STRATEGIES (WITH QUICK STOPPING
example | strategy # of # of # of subtrees avg. subtree via reduction avg. # of subtrees time
‘ passes | subtrees | of size > 20% size (%) (%) per pass (sec)
fract A 1.8 85.1 72.9 992.4(34.9) 3.6(0.8) 47.3 5.5
B T4 17.3 4.7 975.2(34.3) 2.8(0.7) 2.4 T1
struct A 2.0 1414.8 916.7 9219.8(23.4) 152.9(2.9) 707.4 1096.6
B 2.0 136.2 51.4 5372.8(13.6) 138.7(2.7) 68.1 63.3
testl A 2.1 120.8 119.5 1387.6(32.1) 258.6(13.2) 57.5 16.0
B 2.0 111.4 111.3 1383.7(32.0) 257.0(13.1) 55.7 14.8
test2 A 2.0 188.3 183.9 2407.2(28.0) 695.2(14.2) 94.2 59.5
B 2.0 195.2 190.9 2407.3(28.0) 694.6(14.2) 97.6 61.8
test3 A 2.0 244 .4 244.4 3190.0(28.5) 793.2(12.6) 122.2 115.2
B 2.0 172.8 172.8 31/16.1(28.1) 791.8(12.6) 86.1 80.2
mccl A 2.0 386.5 115.9 1229.8(10.6) 829.5(14.3) 193.2 51.7
B 2.0 378.5 121.8 1357.3(11.7) 827.9(14.4) 189.2 59.2
mcc2 A 2.0 309.9 268.1 1462/1.9(21.6) 6085.1 (15.1) 151.9 1398.6
B 2.0 325.8 283.1 14560.9(21.6) 6064.9(15.1) 162. 9 1159.9
TABLE IV
EFFECTS ONDIFFERENT SUBTREE GROWING STRATEGIES (WITHOUT QUICK STOPPING
example | strategy # of # of # of subtrees avg. subtree via reduction avg. # of subtrees time
‘ passes | subtrees | of size > 20% size (%) (%) per pass (sec)
fract A 2.1 100.9 86.0 987.9(34.7) 2.0(0.9) 48.0 6.5
B 2.4 29.8 25.1 964.1(33.9) 3.0(0.7) 2.4 1.9
struct A 4.2 2969.8 1929.0 9243.1(23.5) 155.5(3.0) 707.1 2343.8
B 6.4 440.4 167.3 5409.1(13.7) 150.0(2.9) 68.8 207.9
testl A 2.7 136.3 134.8 1389.3(32.1) 258.2(13.1) 50.5 17.9
B 3.1 146.7 146.6 1393.1(32.2) 259.2(13.2) 47.3 19.7
test2 A 2.9 232.2 226.1 2404.6(27.9) 695.6(14.2) 80.1 72.8
B 3.1 295.0 287.9 2409.6(28.0) 695.0(14.2) 95.2 91.3
test3 A 2.7 299.9 299.9 3134.5(28.0) 793.4(12.6) 111.1 139.7
B 3.8 373.8 373.8 3175.5(28.3) 793.6(12.6) 98.1 175.9
mccl A 4.5 855.7 248.1 1193.3(10.2) 833.6(14.5) 190.2 117.1
B 4.6 831.6 253.7 12/19.0(10.7) 831.8(14.5) 181.1 120.7
mcc2 A 6.7 1140.0 998.1 14779.8(21.9) 6115.5(15.2) 170.1 5231.6
B 6.9 1071.2 928.8 14569.6(21.6) 6118.0(15.2) 155.7 1876.2
TABLE V
EFFECTS ON QUICK STOPPING (WITH STRATEGY B)
with quick stopping H without quick stopping
example | # of passes | via reduction | run time |[ # of passes | via reduction | run time
fract 1.1 2.8(0.7) 1.1 2.1 3.0(0.7) 1.9
struct 2.0 138.7(2.7) 63.3 6.4 150.0(2.9) 207.9
Testl 2.0 257.0(13.1) 14.8 3.1 259.2(13.2) 19.7
Test2 2.0 694.6(14.2) 61.8 3.1 695.0(14.2) 94.3
test3 2.0 791.8(12.6) 80.2 3.8 793.6(12.6) 175.9
meel 2.0 827.9(14.4) 59.2 4.6 831.8(14.5) 120.7
mcc2 2.0 6064.9(15.1) 1459.9 6.9 6118.0(15.2) 41876.2

graph, thus, limiting the increment of the number of vertices Tables Il and IV show that the difference on the solution
to roughly three times the original size. quality is not significant when applying different strategies (all
This experiment shows that doing segmentation is alwaygthin 0.2% of total number of vias). The difference on run
helpful to get better via reduction, but at the cost of generatifiighe is case by case. In most of the test cases, the differences
larger ECC graphs, which means higher memory requiremeg{® within 1.5 times. However, the run time may have big
and longer run times. In most of the examples, the improvgifferences in some test cases. In test cigect, the run time
ment by maximum segmentation is less than 0.7% of the toEﬁ'Strategy Ais 17 times larger than the run time Strategy B.
vias, while the run time increases by six to 29 times. We hayg this case, both the number of subtrees per pass and average
obse'rved S|m|Ia_r results by using different combinations of tre€ piree sizes are reduced by using Strategy B. Since there is
growing strategies and stopping thresholds. still considerable amount of “large” subtrees (subtrees larger
D. Impacts of Different Subtree Growing Strategies than 20% of the ECC graph) generated in this case, we do not

Tables Ill and IV show the effects on different tree growing®€ Much impact on the solution quality.
strategies with different stopping thresholds. No wire segmen- ) _
tations are used to obtain these data. The column “# of subtr&edMPacts of Different Stopping Thresholds
of size >20%" is to show the total number of subtrees which Table V shows the data on different stopping thresholds with
is larger than 20% of the total number of vertices of the EC8trategy B and no segmentation. The results on Strategy A are
graph. Again, all the numbers in the tables are the averaggite similar, so we do not show them. If quick stopping is
over ten experiments. used, the program will stop when the via reduction in one pass
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is less than 0.5% of total number of vias. Our experimental This function makes any assignment with crosstalk exceed-
data show that the program stops roughly at two passesing the allocated slack to have a large penalty cost. Otherwise,
every test case when quick stopping is used. If quick stoppitite cost is just the difference between the actual crosstalk and
is not used, the program may require more passes to staljocated slack times the corresponding coefficient constant.
For example, on average, it requires as many as 6.9 pasbke weight coefficient), , allows us to put priority on

in mcc2 The sacrifice on the solution quality by using quicklifferent pairs according to their importance.

stopping is almost negligible (all within 0.2% compared to the The cost for vertices andwv to be assigned to layeisand

total number of vias). However, the improvement on run timgis 3, ,[¢, j] + CM,,_,(¢,4). There is no vertex cost for this

may up to a factor of three. problem if only crosstalk minimization is considered, and the
optimization objective becomes to minimize the total cost on
F. Recommended Parameter Settings all the edges. If we want to optimize both vias and crosstalk,

In conclusion, when the run time and memory usage is com€Se objectives may conflict each other. However, we can
cerned and a slight sacrifice on solution quality is acceptab'l@‘,:IUd? each vertex cost with a suitable yvelght, and minimize
we recommend running our program without segmentatiow,e weighted sum of the costs on al! vertices and edges to find
but using quick stopping and using Strategy B to grow tH€ tradeoffs between these objectives.

induced subtree. In fact, this is the default parameter setting//e €an also apply this layer assignment formulation to delay

of our program (The results in Table | are obtained under tHf9timization. In VLSI layout, wires routed in different layers
parameter setting). If we wish to maximize via reduction &'@Y have different widths, spacings and RC constants, so the
any cost, maximum segmentation should be used, and pdglay of a wire may be different when it is assigned to different

Strategy A and Strategy B should be tried. The program sholftyrs- Assume that we have a delay bolril, for each wire
be run repeatedly and the best result selected. segment: and the delay for on layeri is d,,(¢). We can define
costDA,(¢) as the cost of each segment verieas follows:

VI. LAYER ASSIGNMENT FORDELAYS . Aa(dy(i) — DBy), if du(i)— DB, <0
AND CROSSTALK MINIMIZATION DA, (7) = {M AX, " otherwise -
As we mentioned in the previous sections, the ECC graph ) _ o o )
is a very general model of the layer assignment probletW.here)‘u is a preassigned weighting coefficient to adjust the

With proper definitions of cost functions, our layer assignmeRfiority of minimization delay on vertex. _
algorithm can also be used to further reduce crosstalk andl e cost function gives the maximum value if the delay ex-

delay after routing. ceeds the delay bound allocated, otherwise it is the difference
In fact, our algorithm will work on any cost function on anpetween the delay and the delay bound times the corresponding
ECC graph with the following properties. coefficient constant. The total cost is the sum of the costs over

vertices DA arrays) and edgesy{ matrices).
%iven these definitions of cost functions, we can apply the
-LAG algorithm to solve the multilayer layer assignment
e[i)roblem with optimization objectives as weighted combina-
tions of via, crosstalk, and delay minimization.

1) The costs are distributed on vertices and edges, and ﬂlll
total cost is the summation of weighted costs over a}u(
vertices and edges.

2) The cost of a vertex is determined only by its lay

assignment.
3) The cost of an edge is determined only by the layer
assignment of the two vertices it connects. VII. CONCLUSION

For the layer assignment problem in VLSI layout, we can We have introduced the notation of an ECC graph to
always represent the penalties for conflict and discontinuiggpresent the layer assignment problem in multilayer gridless
by a cost matrix for each edge. We assume that we have fagout. We showed how to use the ECC graph to represent
cost matrixM,, ,[¢, j] as defined previously to represent sucthe layer assignment problem for via minimization, crosstalk
penalties. All we need is to add extra cost functions to modelinimization, and delay minimization.
the problem we want to solve. We have presented a linear time optimal layer assignment

For the crosstalk minimization problem, we could add ialgorithm K-LAT that solves the case when an ECC graph is
the crosstalk penalty for wire segments pairs with crosstadktree. After a slight modification on th&-LAT algorithm,
concern. Assuming that for each pair of wire segments’)) we obtained theK-LATI algorithm which optimally solves
in which we need to consider crosstalk, there is a preallocatig@ layer assignment problem for induced subtrees in an
slack CB,,,, on the amount of crosstalk allowed for that paiECC graph. Ourk-LAG algorithm is an efficient heuristic
of wire segments. Let us deno@SK, ,,[¢, j] as the crosstalk algorithm for the layer assignment for a general ECC graph.
betweenu and v when they are assigned to layérand j The K-LAG algorithm utilizes the K-LATI algorithm as
respectively. We can define our cost for crosstalk as the optimization engine and can handle very large designs
CM, (i, §) = e:icienrfly, vr\]/g; \I/_eArégtl)od sr(])lutions. Our (lex]E)e(rjimentaI rlesults

’ o . o show that thef - algorithm consistently finds many large
{)‘“:’”(CSKW[Z’]] —CB..), if CSK@’”['L’]] —CBuy <0 induced subtrees in the ECC graph, and achieves significant

MAX, otherwise via reduction compared to the results of the V4R router, which

where ), ., is a preassigned weighting coefficient. is known to have low usage of vias.
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