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An Efficient Approach to Multivariate Nakagami-m Distribution Using
Green’s Matrix Approximation

George K. Karagiannidis, Member, IEEE, Dimitris A. Zogas, Student Member, IEEE, and Stavros A. Kotsopoulos

Abstract—In this letter, an efficient approach for the evaluation
of the Nakagami- multivariate probability density function (pdf)
and cumulative distribution function (cdf) with arbitrary corre-
lation is presented. Approximating the correlation matrix with a
Green’s matrix, useful closed formulas for the joint Nakagami-
pdf and cdf, are derived. The proposed approach is a significant
theoretical tool that can be efficiently used in the performance anal-
ysis of wireless communications systems operating over correlative
Nakagami- fading channels.

Index Terms—Correlated fading, diversity systems, Nak-
agami- fading, Rayleigh fading, selection combining.

I. INTRODUCTION

DURING THE last years, there has been a continuing in-
terest in modeling various wireless propagation channels

with the generalized Nakagami-distribution, which provides
optimum fits to collected data in indoor and outdoor mobile
radio environments [1]. In wireless applications, as in diver-
sity reception, which is used extensively to reduce the effect of
fading on the system’s performance in both fixed and mobile ter-
minals, the usual assumption is that combined signals are inde-
pendent of one another. However, this assumption is valid only
if the diversity channels are sufficiently separated, which is not
true for some applications, such as in wireless terminals with
insufficient antenna spacing, equipped with space and polar-
ization antenna diversity (mobile terminal, indoor base-station,
etc). In such cases, the fading among the channels is correlative,
resulting in a degradation of the diversity gain obtained [2]–[4].
Multivariate (correlated) Nakagami- and Rayleigh distribu-
tions analysis is an important tool in the performance investi-
gation of the above-mentioned correlative fading applications,
with space or frequency diversity and in multichannel reception.
Moreover, it can be used to find the transition probabilities in
first- (or higher) order Markov chain that can model the Nak-
agami- fading process [5], although Tan and Beaulieu in [6]
refute the suitability of the Markovian assumption to the Nak-
agami- fading process. The usefulness of a functional form for
the trivariate Nakagami- or Rayleigh probability density func-
tion (pdf) and a summary of works about multivariate Rayleigh
densities were also referred in [7].

Manuscript received March 25, 2002; revised September 12, 2002; accepted
September 17, 2002. The editor coordinating the review of this paper and ap-
proving it for publication is R. Murch.

G. K. Karagiannidis is with the Institute for Space Applications and Re-
mote Sensing, National Observatory of Athens, 15236 Athens, Greece (e-mail:
gkarag@space.noa.gr).

D. A. Zogas and S. A. Kotsopoulos are with the Electrical and Computer
Engineering Department, University of Patras, 26442 Patras, Greece (e-mail:
zogas@space.noa.gr; kotsop@ee.upatras.gr).

Digital Object Identifier 10.1109/TWC.2003.816792

From a literature review, there are few approaches to the Nak-
agami- multivariate analysis. Nakagami in [1] defined the bi-
variate- pdf. Later, Nakagami and Okui in [8] reported that
the multivariate- pdf with exponential correlation has a closed
easy maniputable form. Tan and Beaulieu in [9] presented an
infinite series representation for the bivariate Nakagami-cu-
mulative distribution function (cdf), while Simon and Alouini in
[10] derived an expression for the bivariate Rayleigh cdf in the
form of a single integral with finite limits and an integrand com-
posed of elementary functions. Recently, the authors in [11] pro-
posed a useful formulation for the multivariate-distribution
with exponential correlation. However, to our knowledge, an
approach for the evaluation of the arbitrary correlated-variate
( ) Nakagami- pdf and cdf, does not exist in the litera-
ture.

In this letter, capitalizing on the results for the generalized
Rayleigh distribution in [12] and approximating the correlation
matrix with a Green’s matrix [13], a useful approach for the
evaluation of the multivariate Nakagami-pdf and cdf, is pre-
sented. The proposed closed formulas can be efficiently used
in the performance analysis of wireless applications, such as in
space diversity systems (selection and switched diversity) or in
Markov chain modeling of the Nakagami-fading channel.

II. M ULTIVARIATE NAKAGAMI - PDF AND CDF WITH

ARBITRARY CORRELATION

If is a Nakagami- variable, then its corresponding pdf is
described by [1]

(1)

with being the Gamma function, , with being
the average signal power, andis the inverse normalized vari-
ance of which must satisfy , describing the fading
severity. Moreover, it is well known thatcan be considered as
the square root of the sum of squares ofindependent Rayleigh
or independent Gaussian variates [1]. Let
be -dimensional column vectors, which are independent and
normally distributed with means zero and correlation matrix
given (without loss of generality) by for and

for , with and the inverse of
being tridiagonal. It is considered here that is the power

correlation, which is the square of the correlation coefficient of
the underlying Gaussian processes. Moreover, without loss of
generality and for simplification purposes of the matrix, it is
assumed into the following that , with being
the variance.

Let be dimensional column vectors,
with composed of the th components of the and
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, where means the
norm of . Then, are Nakagami- variables
and following the same procedure as in the proof of Theorem I
in [12], their joint pdf can be extracted as shown in (2), at
the bottom of the page, with being the inverse of , i.e.,

with elements , , and is the
first kind and th order modified Bessel function. Although the
parameter in (2) seems to be restricted as a positive half-in-
teger or integer, it can be any positive number not less than 0.5,
since (2) satisfies the necessary and sufficient conditions to be
a joint distribution function, as it is also referred in [1] for the
bivariate case. Setting in (2), the well-known bivariate
Nakagami- pdf is derived [1], since for the -variate
Rayleigh pdf is resulted from (2) as

(3)

The -variate Nakagami- cdf is, by definition

(4)

and following a similar procedure as in [9], resulting in (5), at
the bottom of the page, with being the incomplete Gamma
function. The nested infinite series in (5) converges quickly for
any values of and any correlation matrix (see
Section V). For , the bivariate Nakagami- cdf is derived
as in [9], since for the -variate Rayleigh cdf is given by
(6), at the bottom of the page.

An upper bound for the error resulting after the truncation of
the nested infinite series in (5) can be derived following a similar
procedure as in [11].

III. SELECTION COMBINER (SC) OUTPUT PDF AND CDF

Equation (5), which describes the joint Nakagami-cdf, can
be used to evaluate directly the performance of an SC, finding

(2)

(5)

(6)
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the one-dimensional cdf and pdf at the output. The SC output
cdf can be used to evaluate the outage probability, while the
SC output pdf for the evaluation of the average error proba-
bility and the average signal-to-noise ratio (SNR) [2]. As an
example, let be the random variable that characterizes the
output of a three-branches SC with inputs, , and , i.e.,

. Then, the cdf of is obtained evalu-
ating the joint cdf of , , and using (5) for and
equating the three arguments resulting in (7), at the bottom of
the page. Differentiating (7), the pdf of can be written as

(8)

where

Following the same procedure, the cdf and the pdf of the output
of an SC receiver with arbitrary number of branches, can be
obtained.

IV. GREEN’S MATRIX APPROXIMATION

In the general case, the inverse of the correlation matrix
does not have the tridiagonal property and (2) does not apply.
In this case, a useful form for the multivariate Nakagami-pdf
with arbitrary correlation seems to be intractable. Hence, it is
necessary to find such a way that the analysis of Section II being
applicable for arbitrary correlation matrices. One answer to this
problem, as proposed in this letter, is the approximation of
with another matrix with elements the closest possible values
to the entries of , in order to be tridiagonal. A symmetric,
irreducible nonsingular matrix, is tridiagonal, if and only if its
inverse is a Green’s matrix [13]. Hence, in our casemust have
the form

...
...

.. .

(9)

with and , , be two sequences of real numbers,
and , due to the form of . Equating with , a
nonlinear system equation is produced, as shown in (10), at the
bottom of the page.

This system can be solved forusing well-known nonlinear
methods as Levenberg–Marquardt, quasi-Newton, or conjugate
gradient [15], available in most well-known mathematical soft-
ware packages, as MATHEMATICA, MATLAB, MAPLE, etc.
Since , can be defined and the analysis of Section II
can also be applied using matrix as the new (approximated)
correlation matrix.

V. NUMERICAL-SIMULATION RESULTS ANDDISCUSSION

In this section, numerical examples and simulation results are
provided, for several correlation models, well known from prac-
tical diversity systems [2], in order to provide the applicability
and check the usefulness of the proposed analysis.

(7)

...
...

. . .
. . .

(10)
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A. Exponential Model

The correlation matrix of this model is defined by [3] as
for and for and corresponds

to the scenario of multichannel reception from equispaced di-
versity antennas, in which the correlation between the pairs of
combined signals decays as the spacing between the antennas
increases [2, p. 324]. The exponential model was used by several
researchers who deal with the performance analysis of space di-
versity techniques [2], and is close to the practical situation of
linear arrays, though it requires the antennas to be placed un-
evenly [4]. It is well known that the inverse of the exponential
correlation matrix, also called the Markov matrix [16], is tridi-
agonal. Hence, the multivariate Nakagami-pdf and cdf can be
evaluated directly using (2) and (5), which after manipulations
can be simplified as shown in (11), at the bottom of the page,
with

for

for

The exponentially correlated multivariate Nakagami-distri-
bution has been treated in detail in [11]. The corresponding mul-
tivariate cdf can be written as shown in (12), at the bottom of the
page, with

for

for

As referred above, the nested infinite series in (12) converges
rapidly with a significant speedup factor compared to numerical
integration techniques used to evaluate the multiple integral of
(4). In Fig. 1, the number of required terms for each sumis

depicted in order to obtain seven significant figure accuracy for
the trivariate and the quatrivariate case, using (12). These terms
are calculated empirically using MAPLE 7. For simplicity it is
assumed here that . As it is shown in
this figure, an increase to the correlation leads also to an in-
crease of the required terms need to be summed in order to ob-
tain a given accuracy. Furthermore, the number of the required
terms depends strongly on the signals envelope and increases
proportionally with it. However, this increase is smoother than
the corresponding in the bivariate case [9]. It is also interesting
to observe here that the nested infinite series representation it-
self converges and gives results for all values ofbetween zero
and one. Even for the extreme case of , (12) also gives
accurate results with and for {

} and { },
correspondingly.

B. Linearly Arbitrary Model

This is a more general case than the exponential one with a
correlation matrix for and for

. This matrix has a Toeplitz structure. In this case, the
inverse of is not a tridiagonal matrix and a Green’s matrix
approximation is needed, following the procedure of Section IV.
The correlation coefficients decrease as the distance between the
elements of increase. This kind of correlation corresponds to
the practical situation of linear arrays, with the antennas not to
be placed unevenly. An example of a correlation matrix from a
linear array with three branches created by empirical curves was
given in [4] as

(11)

(12)
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Fig. 1. Number of terms need to be summed for each sum of the infinite series of (12) versus the correlation coefficient�. (a)[(R =R =R =R =1); (R =
R =R =1)]. (b) [(R =R =1; R =R =10); (R =R =1; R =10)]. (c) [(R =R =R =R =10); (R =R =R =10)].

In this case, is not tridiagonal and its corresponding
Green’s matrix can be found using the Levenberg–Marquardt
method as

Another example for a four-branches linear array is

which is approximated using the Levenberg–Marquardt method
with the matrix

The above examples will be used below to check the accuracy
of the proposed analysis.

C. Constant Model

The constant correlation model, discussed in [2] and [3], is
related to the situation of identically distributed Nakagami-
channels with constant correlation across all channels. In such
a case, the correlation matrix is defined as for
and for . In the context of antenna diversity, the
spatial correlation is a function of the distance between the an-
tennas and this model will then apply to equidistant antennas.
This situation corresponds to size-limited scenarios with diver-
sity reception from an array of three antennas placed on an equi-
lateral triangle or from closely placed antennas on other than
linear arrays. It must be mentioned here that one may expect
that an antenna array with a totally symmetrical triangular con-
figuration would have a constant correlation. But, this is not true
since the signal incident angle also has an impact on the branch

correlation, and it is never symmetrical to all three broadsides
of a triangle [4]. In the case of constant correlation, the inverse
of is not a tridiagonal matrix and Green’s matrix approxima-
tion is also needed. As an example of constant correlation in the
case of antenna arrays with correlation matrices given by

and

the corresponding Green’s matrices are obtained using the Lev-
enberg–Marquardt method as

and

D. Circular Model

In the case of circular correlation [17], the correlation matrix
is not only symmetric, but also hasth order symmetry, i.e.,

...
...

. . .
. . .

...

(13)

which implies that . This model may
apply to antennas lying on a circle or four antennas placed on a
square. It must be noted here that the applicability of this model
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Fig. 2. Theoretical and simulation results for a three-branches SC output cdf.

Fig. 3. Theoretical and simulation results for a four-branches SC output cdf.

in practical situations is questionable since the signal incident
angle also has impact on the branch correlation and it is never
symmetrical to all four edges of a circle or a polygon. As an
example of circular model could be the case of four antennas
placed on the edges of a square with correlation matrix

The inverse of this type of matrix is not tridiagonal and the
closest Green’s matrix approximation was obtained using the
Levenerg-Marquardt method as

E. Results and Discussion

In order to check the accuracy and the usefulness of the pro-
posed Green’s matrix approximation technique, simulation was
performed for the arbitrary correlation case and the results were
compared to the corresponding from the mathematical anal-
ysis, after the Green’s matrix approximation. Using the exam-
ples presented above, the cdf at the output of three- and four-
branches SC are depicted in Figs. 2 and 3, correspondingly. The
computer simulation was performed using the Cprogram-
ming language. The algorithm that has been used is presented
in [18]. For the generation of the correlated Nakagami-fading
envelops, over a million samples were used. Some comments
on the applicability of the analysis proposed in this letter to the
above-described correlation models can be derived from Figs. 2
and 3. As was expected, (2) and (5) for the multivariate Nak-
agami- pdf and cdf can be applied directly in the case of the
exponential correlation, which is used in the important practical
case of linear antenna arrays. The simulation results were the
same as the outcomes from the numerical analysis. Moreover,
for the other correlation models (linearly arbitrary, constant, cir-
cular), the Green’s matrix approximation gives accurate results
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and the analysis of Section II can be efficiently applied without
a considerable effect. This is true, when performance evaluation
techniques as the calculation of the outage probability are used.

VI. CONCLUSION

In this letter, a useful approach to the joint-variate Nak-
agami- pdf and cdf with arbitrary correlation is presented.
After simulation, it was observed that the proposed approach
could be efficiently applied in the performance analysis of di-
versity systems operating over arbitrary correlated Nakagami-
or Rayleigh fading channel. Moreover, it can be used in other
applications as in finding the transition probabilities in the first
(or higher order) Markov chain modeling of the Nakagami-
fading channel.1
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