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e aircra� arrival sequencing and scheduling (ASS) problem is a salient problem in airports’ runway scheduling system, which
proves to be nondeterministic polynomial (NP) hard. 
is paper formulates the ASS in the form of a constrained permutation
problem and designs a new approximation algorithm to solve it. 
en the numerical study is conducted, which validates that this
new algorithm has much better performance than ant colony (AC) algorithm and CPLEX, especially when the aircra� types are
not too many. In the end, some conclusions are summarized.

1. Introduction

With the rapid development of airline industry, serious
congestions and frequent delays have been hittingmostmajor
airports in the world, especially in the United States and
Europe [1]. How to enhance the air tra�c capacity and reduce
the delay becomes a severe problem [2, 3].

In 1998, runway has been identi
ed as the primary bot-
tleneck in air tra�c [4]; that is, even small enhancements to
runway throughput will signi
cantly reduce the delay. How-
ever, buildingmore runways is o�en considered not a realistic
option because of practical constraints and huge investment
costs. 
erefore, many researches and technologists resort to
a promising approach, which is to more optimally schedule
the aircra� arrival sequence so that the runway can land
as many aircra� as possible within a period of time. 
e
optimization process is formulated in this paper as the aircra�
arrival sequencing and scheduling (ASS) problem (see in
Section 2).

However, ASS is inherently hard to solve [5]; it is non-
deterministic polynomial (NP) hard [6, 7]. To cope with it,
two methods are o�en adopted, which are mixed integer
programming (MIP) and ant colony (AC) algorithm [5, 8–
10].

ASS can be expressed by MIP formulations. In 1992,
Brinton [11] has introduced, as far as we know, the 
rst
MIP formulations and designed an implicit enumeration (IE)
algorithm to optimize it. In 1993, another MIP is presented
by Abela et al. [12] for single-runway ASS. A branch and
bound (B&B) algorithm is developed to solve it. Back in
1999, the MIP is presented not only in single but also in
multiple runway [8]. Beasley et al. [5] give an improved B&B
algorithm by employing linear programming (LP) based tree
search.
en Bennell et al. [13] provide an extensive literature
overview for ASS.

Ant colony (AC) algorithm [9, 10, 14] is another e�ective
method for ASS. It is originally proposed by Dorigo in 1992
[15–17]. In 2002, Randall [10] presents its 
rst application
in ASS, which shows great advantages. 
en AC is used
to generate initial solutions and to incorporate local search
heuristic for single- and multiple-runway ASS [9, 18]. Back
in 2010, AC is developed to tackle the real-time ASS based on
the receding horizon control by Zhan et al. [14]. Experimental
results validate that AC is robust, e�ective, and e�cient for
ASS.

In this paper, rather than using the above two methods,
we develop a new approximation algorithm for ASS.
e core
idea is to 
nd the lower bound solution of the ASS problem.
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Table 1:MST (in sec.) between operations on the same runway [22].

Following

1 2 3

1 82 69 60

Leading 2 131 69 60

3 196 157 96

1 = small aircra�, 2 = large aircra�, and 3 = heavy aircra�.


en the algorithm presents solutions in
nitely approaching
this bound. We compare the performance of this new algo-
rithm with AC and MIP (by CPLEX). Computational results
verify that this new algorithm returns much better solution
and costs less time than AC and MIP, especially when there
are several aircra� types.


is paper is organized as follows. In Section 2, some con-
straints for ASS are introduced.
e approximation algorithm
is proposed in Section 3. In Section 4, ant colony (AC) and
MIP are designed for ASS. In Section 5, numerical study is
conducted to compare the performance of this new algorithm
with AC and MIP (by CPLEX), while some conclusion is
summarized in Section 6.

2. Basic Concepts

2.1. Aircra� Sequencing and Scheduling (ASS) Problem. ASS
aims to make the most use of runway, that is, to minimize the
makespan of the landing sequence so that to land as many
aircra� as possible within a period of time. 
e objective
function is

min�� = ��end , (1)

where ��end is the landing time of the last aircra� in sequence�. For the �th aircra� in sequence �, its landing time is
achieved by

���
= {{{

max {
�� , current time} , if � = 1;
max
���−1≤���−1

{
�� , ���−1 +MSTTP(��−1),TP(��)} , if 1 < � ≤ 
,
(2)

where 
� and �� insure the time-window constraint and MST
insures the minimum separation time constraint. 
ese two
constraints, as well as some other constraints, are described
below. If ���−1 ≤ ���−1 is not satis
ed, ��� equals +∞.

2.1.1. Minimum Separation Time (MST) Constraints. MST is
a hard constraint to insure safety.When an aircra� �ies in the
air, it generates wake-vortex (WV). However, WVmay result
in the instability of the following aircra� (to shake or to li�)
[19]. To avoid this, a MST is strictly kept between them.

Table 1 illustrates a typical MST table concerning three
main types of aircra�. Generally, a smaller aircra� followed
by a larger aircra� requires much shorter MST than the other
way around. For example, a small aircra� has to wait for 196 s

Heavy Large Small

Sequence 1

Sequence 2

Small Large Heavy

157 s 131 s

288 s

69 s 60 s

129 s

Figure 1: Two orderingmethods result in di�erentmakespan for the
same three aircra�.

a�er the landing of a heavy aircra�. However, when a heavy
aircra� lands a�er a small aircra�, the MST is only 60 s.
One reason is that larger aircra� commonly generates and
tolerates more turbulent air, while smaller aircra� generates
and tolerates less.


e asymmetric nature of MST results in the feasibil-
ity and necessity of runway scheduling. Proper scheduling
strategies can save a lot of landing time. For example in
Figure 1, the makespan of sequence 1 equals 288 s; however,
for sequence 2, the makespan is only 129 s, which saves more
than 50% time.

2.1.2. Time-Window Constraints. Time-window is a hard
constraint to insure that aircra� lands between its earliest and
latest possible landing time, which is in the interval time set[
�, ��]. 
e earliest possible landing time (
�) depends on the
constraints such as maximum airspeed to speed up, runway
availability, and possiblemanoeuvres, while the latest possible
landing time (��) depends on the fuel limitation, maximum
allowed delay, minimum airspeed, and so on [13]. Actually,
it is not necessary that the time-window for an aircra� is
only one that continues interval set [19]. 
ough we only
discuss the single-interval case in this paper, our approach
is also applicable to handle the situation that time-window
constraints are disjoint intervals.

2.1.3. Precedence Constraints. Precedence constraints are
pairwise requirements to insure whether one aircra� must
land before another [19].
ere are two reasons for these con-
straints. One is due to the airline company, which sometimes
has strict restriction that one should land 
rst for the reason
of priority, banking operations, and so on. Another is due to
the jet route, which does not allow two aircra� within the
same jet route to overtake each other [20].

3. Approximation Algorithm for ASS

In this section, we design an approximation algorithm to
solve ASS.
e core idea is to 
nd the lower bound solution of
ASS. 
en the approximation algorithm gives ASS solutions
in
nitely approaching this bound.

3.1. 
e Lower Bound Solution of ASS-MST. In the following
we give the lower bound solution of ASS. 
is bound relates
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Figure 2: Decomposition of minimum separation time (MST�).

to a new generated MST (denoted by MST�), which is an
approximation of the actual MST. How to determine MST�

is shown in LP1 (formulas (3)–(6)).

e objective function (formula (3)) is to minimize the

di�erences between MST and MST� since ΔMST measures
their di�erences (formula (4)).

Formula (5) calculates out MST�. We decompose each
element in MST� into two parts (see in Figure 2). One is the
ability of the leading aircra� to generate theWV (denoted by�	), and the other is the ability of the following aircra� to bear
the disturbance (denoted by �
).

In formula (6), ΔMST	
, �	, and �
 are restricted non-
negative. ΔMST	
 ≥ 0 insures that the elements in MST� are
not bigger than the corresponding elements in MST, which
insures 
eorem 1.

It is worthy to note that we do not restrict MST�	
 ≥ 0,
because it does not a�ect the result in 
eorems 1, 2,
and 4 from the perspective of mathematical calculation. In
addition, it allows more elements in ΔMST	
 to be 0:

(LP1) : min
�∑
	=1

�∑

=1
ΔMST	
, (3)

subject to

MST	
 −MST�	
 = ΔMST	
; ∀�, � ∈ Λ, (4)

�	 − �
 = MST�	
; ∀�, � ∈ Λ, (5)

ΔMST	
 ≥ 0, �	 ≥ 0, �
 ≥ 0; ∀ (�, �) ∈ Λ. (6)

�eorem 1. 
emakespan of each sequence � in ASS-MST� is
the lower bound of � in ASS-MST.

Proof. Referring to formulas (4) and (6), we have MST	
 −
MST�	
 ≥ 0. So for any sequence �, MST�TP(��−1),TP(��) ≤
MSTTP(��−1),TP(��). It is easy to con
rm that ��� ≤ �� (see
formulas (1) and (2)).

Actually, this lower bound is very close to the optimal
solution when the time-window constraint is not in consid-
eration since its optimality only depends on the 
rst and last
aircra� in the sequence (
eorem 2).

�eorem 2. 
e optimal solution of minimizing makespan for
ASS-MST� only depends on the �rst and the last aircra� in the
�nal sequence, if the time-window constraint is not taken into
consideration and �	 and �	 are given constant, ∀� ∈ Λ.

Makespan

0
Sequences

ASS-MST

G

H

m1

m2

(strongly hypooptimal)
ASS-MST�

ΔW�

�

Figure 3: Makespan of sequences in ASS-MST and ASS-MST�.

Proof. For the landing sequence (�) with 
 aircra�, the MST�

between aircra� �� and ��+1 is (�TP(��) − �TP(��+1)). So we have
��� =

�−1∑
�=1
(�TP(��) − �TP(��+1)) , (7)

which is equivalent to

��� =
�∑
�=1
(�TP(��) − �TP(��)) + (�TP(�1) − �TP(��)) . (8)

In formula (8),∑��=1(�TP(��)−�TP(��)) is a constant number
since the type of each aircra� in � is known. So themakespan
(���) is determined by (�TP(�1)−�TP(��)), which only concerns
the 
rst and last aircra� in �.
De�nition 3. A sequence is called strongly hypo���� !� if and
only if the change of the 
rst and the last aircra� leads to its
optimality.

So any sequence in ASS-MST� is at least strongly hypoop-
timal (SHO). Figure 3 lists the relationship between ASS-
MST curve and ASS-MST� curve when the time-window
constraint is not in consideration. ( 1 −  2) is very small.
We wish to minimize Δ�� which measures how a solution is
close to SHO solution (the lower bound).

3.2. Approximation Algorithm Approaches the Lower Bound.

e approximation algorithm gives ASS solutions in
nitely
approaching the lower bound; that is, it attempts to 
nd
a sequence � with minimized Δ�� (see in Figure 3) sinceΔ�� measures how a solution is close to a SHO solution
(the lower bound) when the time-window constraint is
not in consideration (Δ�� is also a useful measure when
considering time-window).
e numerical result in Section 5
validates the statement and the e�ciency of algorithm.

3.2.1. Contain Time-Window with Aircra� Not Too Many. In
ASS, each aircra� is associatedwith an estimated landing time
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(ELT), which is used to estimate the time when the aircra�
lands. 
e ELT relates to the earliest and the latest landing
time of the time-window. Generally, the earliest landing time
(
�) is one minute less than the ELT, because more than one-
minute forward move is o�en not economical [20].
e latest
landing time (��) can be 60 minutes a�er the ELT if aircra�
have enough fuel and without any emergency accident.

Based on the above discussion, the earliest landing time 
�
is themain constraint in time-window, since the latest landing
time is o�en inactive if the number of aircra� is not toomany.
So we 
rstly develop an algorithm for ASS without too many
aircra� (o�en less than 30). And then we extend it to solve
the case with many aircra� (o�en more than 30).


e core idea is to in
nitely approach the lower bound,
that is, minimizing additional makespan when comparing
ASS-MST and ASS-MST�. 
e additional makespan consists
of ΔMST and the earliest landing time (
�). We give the
approximation of the additional makespan.

For the FSFC sequence ϝ, all aircra� with the same
type are put together according to their order in ϝ to
construct subsequences.
ere are � subsequences, which areϝ1, ϝ2, . . . , ϝ
, where TP(ϝ	� ) = �, � ∈ Λ, and ϝ	� is the �th
aircra� in ϝ	.

For example, a FCFS sequence is of types 1, 2, 3, 2, 1, 2,3, 3, Λ = {1, 2, 3}. 
en there are 3 subsequences. ϝ1 is
constructed by the 1st and 5th aircra� in FCFS according to

their order, ϝ2 is by the 2nd, 4th, and 6th aircra�, and ϝ3
is by the 3rd, 7th, and 8th aircra�. 
e complete algorithm
consists of the following 3 steps to determine the 
nal landing
sequence Π.
Step 1. Determine the 
rst aircra� ofΠ. Find the smallestΔ$	
in formula (9) and transfer the aircra� ϝ	1 to the 
rst position
in Π; delete ϝ	1 from subsequence ϝ	. 
en set � := 2:

Δ$	 = {
ϝ�1 , � = �∗

ϝ�1 + ΔMSTTP(	),TP(	∗), otherwise, (9)

where �∗ = min{� : � ∈ Λ, ϝ
 ̸= ⌀}.
Step 2. Determine the �th aircra� of Π. Find the aircra� ϝ	1
with the smallest Δ$	 in formula (10). Transfer it to the �th
position inΠ and delete it from subsequence ϝ	. 
en set � :=� + 1:

Δ$	 = {ΔMSTTP(Π�−1),	 + * (�, �) , � = �∗
ΔMSTTP(Π�−1),	 + * (�, �) + ΔMST	,	∗ , otherwise,

(10)

where *(�, �) = max{0, 
ϝ�1 − (�Π�−1 +MSTTP(Π�−1),	)} and �∗ =
min{� : � ∈ Λ, ϝ
 ̸= ⌀}.
Step 3. Terminal criteria: if all aircra� in subsequences (ϝ	,� ∈ Λ) are transferred into Π, return sequence Π; otherwise,
go to Step 2.

�eorem4. 
e complexity of the approximation algorithm to
generate the �nal sequence with 
 aircra� and � aircra� types
is -(�
).
Proof. Step 2 costs -(�) to 
nd the smallest Δ$	. Since there
are 
 aircra�, Step 2 repeats for 
 times. So the complexity is-(�
).

3.2.2. Contain Time-Window with Many Aircra�. If the num-
ber of aircra� is too large (o�en more than 30), the “inactive”
assumption of the latest landing time is o�en broken, since
some aircra� may be assigned to land 1 hour later. To avoid
this, we 
rstly reschedule the 
rst 30 aircra� (from the 1st to
the 30th) in FCFS by the above algorithm and then reschedule
the next 30 aircra� (from the 31st to the 60th) and then the
next 30 aircra� (from the 61st to the 90th) and go on until
all aircra� have been considered. In the end, we connect
all the rescheduled sequences one by one to construct the
ultimate sequence. Here the length of 30 aircra� is based
on the numerical result in Section 5. Of course we can set
other lengths for subrescheduling but without such a good
solution.
ese whole processes do not exceed the complexity
of 
eorem 4.

3.2.3. Contain Precedence. To consider the precedence, we
may freeze the subsequence. For example, aircra� � in
subsequence ϝ
 should land before aircra� / in ϝ	; we can
freeze subsequence ϝ	 when / is in the 
rst position of ϝ	.

e only su�cient condition to unfreeze ϝ	 is that aircra� �
has been transferred into the 
nal sequence Π.

4. Ant Colony and MIP for ASS

4.1. Ant Colony (AC) for ASS. Ant colony (AC) algorithm
is an intensively studied method [13]. Many papers adopt it
for single-runway scheduling [9, 10, 14]. Here AC is used to

nd a solution for ASS, which is a valid comparison with the
approximation algorithm. 
e following are some important
settings of AC in the computation.

4.1.1. State TransitionCheck. All aircra� are labeled according
to their positions in the FCFS. A�er 
nishing visiting an
aircra� �, all ants choose the next allowable aircra� / to visit.
To make sure most routes returned by ants satisfy the time-
window constraints, we restrict the allowable aircra� to the
integer set {max{1, � − 4}, . . . ,min{
, � + 4}} when an ant does
its �th visit. 
is principle is also called 4-CPS [19].

Under this principle, an aircra� � should be visited before
an ant does its (� + 4 + 1)th visit. So if aircra� � has not been
visited when an ant does its (� + 4)th visit, it is forced to be
visited by this ant. In the numerical study here, setting the
integer number 4 = 5 is good to satisfy time-window.
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4.1.2. State Transition Rule. A�er 
nishing visiting an aircra��, all ants choose the next allowable aircra� / according to the
probability of Pb(�, /):
Pb (�, /)

=
{{{{{{{

[> (�, /)]� [@ (�, /)]�
∑�∈allowed� [> (�, A)]� [@ (�, A)]�

, if / ∈ allowed�
0, otherwise.

(11)

4.1.3. Pheromone Updating Rule. 
e pheromone updating
operation is carried out on each arc in the completed tour as
in formulas (12) and (13) for each ant:

>�� (� + 1) = (1 − B) >�� (�) + Δ>��, (12)

where (1 − B)>��(�)models the evaporation of the pheromone
and Δ>�� is the lately released pheromone by ants. For an ant

A, Δ>��� is de
ned as

Δ>��� = {{{
C
�� , if arc (�, /) is visited by ant A
0, otherwise, (13)

whereC is a given constant and�� is makespan of tour route
by ant A.
4.2. Mixed Integer Programming (MIP) for ASS. In 2000,
Beasley et al. [5] proposed a MIP for the single-runway
scheduling problem. Here we extend it to ASS as a solution
comparison of the approximation algorithm. 
e following
are some important settings.


e objective function (formula (14)) is to minimize the
makespan. � ≥ �� (formula (18)) insures � is the landing
time of the last aircra�.

In formula (15), D�� is a 0-1 variable. D�� = 1 (aircra� � lands
before /) and D�� = 0 (� a�er /). D�� and D�� must not equal 0
(or 1) at the same time. D�� + D�� = 1 ensures this requirement.

Formula (16) is the separation constraint. 
ere are two
cases.

(a) D�� = 0. 
en �� ≥ �� +MSTTP(�),TP(�), which ensures
a time separation.

(b) D�� = 1. 
en �� ≥ �� +MSTTP(�),TP(�) − E, which is
e�ectively inactive ifE is large enough.

Formula (17) insures the time-window constraint:

(MIP1) : min � (14)

s.t. D�� + D�� = 1; ∀ (�, /) ∈ F (15)

�� − �� ≥ MSTTP(�),TP(�) − D�� ⋅ E;
∀ (�, /) ∈ F (16)


� ≤ �� ≤ ��; � = 1, 2, . . . , 
 (17)

� ≥ ��; ∀� = 1, 2, . . . , 
 (18)

�� ≥ 0, � ≥ 0, D�� = 0, 1; ∀ (�, /) ∈ F. (19)

Table 2: MST (in sec.) between operations on the same runway [6].

Following

1 2 3 4

Leading

1 90 80 70 72

2 110 80 70 72

3 130 100 70 72

3 228 200 181 96

1 =Mc Donnel Douglas DC9, 2 = Boeing 727, 3 = Boeing 707, and 4 = Boeing
747.

We use CPLEX Optimization Studio 12.5 to solve MIP1,
and the traditional Branch and Bound (B&B) search function
inCPLEX is used. From the point of view of the LP relaxation,E (in formula (16)) is wished to be as small as possible.
Because largeE leads (MSTTP(�),TP(�) − D�� ⋅ E) to be much
smaller than MSTTP(�),TP(�) even if D�� is very small, the smallE is achieved by replacing it with (�� +MSTTP(�),TP(�) −
�) [5].
5. Numerical Study of Three Methods

Here is the numerical result of the approximation algorithm
for ASS. 
e AC and CPLEX are used as a valid comparison
of this new algorithm.

5.1. Randomly Generate the MST. In ASS, the concerning
MST is important. Table 1 gives a typical MST table by a
classical aircra� types classi
cation. However, there are some
otherMST tables by other classifying principles. For example,
Table 2 illustrates another MST table with more than 3
aircra� types. We believe that our algorithm applies almost
all possible MST matrixes. So in the numerical study we
randomly generate MST matrixes which have two common
properties.

For MST matrixes with � aircra� types, their general
properties are summarized as follows.

(1) Larger aircra� landing before the same aircra� needs
more (at least equal) separation; that is, MST	,
 ≥
MST	−1,
, � = 2, 3, . . . , �; � = 1, 2, . . . , �.

(2) Larger aircra� landing a�er the same aircra� needs
less (at least equal) separation; that is, MST	,
 ≥
MST	,
+1, � = 1, 2, . . . , �; � = 1, 2, . . . , (� − 1).

In numerical study, MST can be generated by

MST	


=
{{{{{{{{{{{{{{{

4	
MST	,
+1, if � = 1;
� = 1, 2, . . . , � − 1

4	
MST	−1,
, if � = 2, 3, ⋅ ⋅ ⋅, �;
� = �

4	
 ⋅max {MST	,
+1,MST	−1,
} , otherwise,
(20)

where MST1
 is a given number and 4	
(≥ 1) is a random
number. In the following numerical study, if � ≤ 4, 4	
 is in
the interval of [1, 2] satisfying uniform distribution; if � > 4,
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Table 3: WVM, AC, and MIP to minimize makespan in ASS when � = 3, 9.

Aircra� types Number of aircra�

AC CPLEX Approx. algo.

Time Runway Time Runway Time Runway

(sec.) enhancement (sec.) enhancement (sec.) enhancement

� = 3

20 4.9 1.34% 0.2 4.07% 0.003 4.60%

30 7.7 3.04% 0.2 4.77% 0.002 6.21%

40 10.5 1.63% 0.4 2.58% 0.003 4.39%

60 16.4 2.93% 0.7 2.70% 0.004 5.09%

80 22.0 1.87% 0.9 1.51% 0.006 4.18%

100 27.8 2.94% 1.2 1.80% 0.007 3.39%

120 33.6 3.68% 1.9 1.59% 0.008 3.81%

140 39.1 2.47% 2.2 1.40% 0.010 3.13%

160 45.2 2.38% 2.1 0.87% 0.011 4.55%

180 51.1 2.05% 2.9 1.16% 0.012 3.69%

200 57.5 2.38% 3.7 1.23% 0.014 2.67%

� = 9

20 4.9 1.69% 0.2 3.82% 0.004 2.81%

30 7.7 1.32% 0.3 2.35% 0.003 2.64%

40 10.5 2.06% 0.4 1.98% 0.004 4.15%

60 16.2 1.07% 0.6 0.98% 0.006 2.41%

80 22.0 1.17% 1.0 0.74% 0.007 2.63%

100 27.8 1.28% 1.3 0.82% 0.009 1.28%

120 33.7 1.21% 1.9 0.48% 0.011 1.08%

140 39.4 1.36% 2.6 0.84% 0.012 1.04%

160 45.5 1.79% 2.9 0.55% 0.015 1.00%

180 51.9 1.55% 3.1 0.90% 0.020 0.80%

200 57.8 0.99% 3.5 0.68% 0.018 1.09%

Bold characters mark the maximum runway enhancement by these methods.

4	
 is in [1, 1+1/(�−3)] satisfying uniform distribution.
is
setting insures MST
1 is not too much bigger than MST1
. It
is in accord with the actual MST; for example, Tables 1 and 2
are basically satis
ed.

It is worthy to note that even if a MST does not strictly
satisfy the above settings, it can also be well coped with by
the approximation algorithm.

5.2. Numerical Result. We test the cases of� = 3 and� = 9. In
each case, ten groups (aircra�number 
 = 20, 40, 60, . . . , 200)
of aircra� sequences are randomly generated. Each group
contains 20 random sequences; the number of all types of
aircra� is the same in each sequence. 
e MST is randomly
generated for each sequence (see detailed setting and its
parameters explanation in formula (20)).


e estimated landing time (ELT) of aircra� is simulated
by a Poisson arrival process, which has been validated by
Willemain et al. [21].
e expectation of interval time between
neighbor aircra� in ELT is set to be (4/5)O(MST), whereO(MST) is the mean value of all elements in MST. It models
how crowded an airport is. 
e earliest landing time is set to
be one minute less than the ELT, because more than a minute
forwardmove is o�en not economical [20].
e latest possible
landing time is set 60 minutes a�er the earliest landing time.

For approximation algorithm, long aircra� sequences
(with more than 30 aircra�) are scheduled each time for 30

aircra� (see the explanation in Section 3.2.2). For AC algo-
rithm, the termination criteria are themaximal generations of
100.
e parameters in formulas (11)–(13) are set as ! = 1, P =5, B = 0.1, and C = 100. 
e allowable aircra� are restricted
in set {max{1, � − 5}, . . . ,min{
, � + 5}} when an ant does its�th visit. For MIP, the traditional B&B search in CPLEX is
used and the maximal tree nodes of B&B search are set to be
4000. 
e numerical result is shown in Table 3 with average
runtime and average runway enhancement of the tested 20
sequences in each group. For each sequence, the “runway
enhancement” is achieved by (�FCFS − �Π)/�FCFS × 100%.
It is comparison of the makespan between the 
nal sequenceΠ and the FSFC sequence since FCFS is a widely usedmethod
in current runway scheduling system.

When there are fewer aircra� types (3 types), the approx-
imation algorithm enhances the runway throughput more
than AC and CPLEX and costs less time. It validates the
performance of the algorithm.Actually classifying the aircra�
into 3 types is o�en enough. If there are too many aircra�
types, we can classify the aircra� into several big categories
and reconstruct the MST table concerning the big categories
other than the aircra� types—each big category contains
aircra� types with very close properties. So the ASS in this
condition can also be well coped with by the approximation
algorithm.

When there are 9 aircra� types, the approximation
algorithm generally has higher runway enhancement when
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the number of aircra� is not too many (<100 aircra�). For
toomany aircra� (100–200 aircra�), AC enhances the runway
throughput more. However, the approximation algorithm
costs less time than the other two methods.

By comparing AC andMIP, we 
nd thatMIP (by CPLEX)
has better performance when both the number of aircra�
types and aircra� are small. For a large number of aircra� (or
many aircra� types), it is better to useAC for scheduling other
than CPLEX. It is also worthy to note that the approximation
algorithm has better performance than CPLEX in almost all
the enumerated cases in Table 3.

6. Conclusions

To cope with aircra� sequencing and scheduling (ASS) prob-
lem, we design an approximation algorithm, which is in
-
nitely approaching the lower bound of the optimal solution.
Numerical result validates that this algorithm, with less
runtime, can get a smaller makespan than AC and CPLEX,
especially when the number of aircra� types is not too many.

is is a big increase of the runway.

Nomenclature and Notation

Nomenclature

AC: Ant colony
ASS: Aircra� sequencing and scheduling
ASS-MST: ASS problem concerning MST; that is, in

ASS the separation between aircra� is
determined by MST matrix

ASS-MST�: In ASS the separation is determined by
MST� matrix

FCFS: First come 
rst served
LP: Linear programming
MIP: Mixed integer programming
MST: Minimum separation time (matrix).

MST�� denotes the MST of an aircra� of
type � followed by another aircra� of type/. MST	
 ⩽ MST	� +MST�
, ∀�, �, � ∈ Λ

MST�: A newly generated MST matrix. MST�	

denotes the MST� of an aircra� of type �
followed by another of type �ΔMST: Di�erences between MST and MST�.ΔMST = MST −MST�. ΔMST	
 denotes
the ΔMST of an aircra� of type � followed
by another of type �. All elements inΔMST are nonnegative

SHO: Strongly hypooptimal
WV: Wake-vortex.

Notation

allowed�: A set of allowed aircra� for ants to visit
followed by aircra� �!, P: Parameters determining the relative
importance of > versus @

(�, /): Arc from aircra� � to aircra� /
: 
e number of the total aircra� in the FCFS
sequence�: 
e number of aircra� types in MST

Pb(�, /): 
e probability of ants to choose arc(�, /)
TP(�): 
e aircra� type of the �th aircra� in FCFSF: An integer set F = {(�, /) : � =1, 2, . . . , 
; / = 1, 2, . . . , 
; � ̸= /}��: 
e makespan of sequence � in ASS-MST,

that is, the landing time of the last aircra�
in sequence � in ASS-MST���: 
e makespan of sequence � in ASS-MST�Δ��: Additional makespan from��� to��; that
is, Δ�� = �� −���Δ$	�: Additional makespan of adding aircra� of
type � to a sequence��: 
e landing time of aircra� ��	: 
e ability of the leading aircra� of type �
to generate WV�
: 
e ability of the following aircra� of type� to bear disturbanceΛ: 
e aircra� type setE: A large positive constantϝ: 
e FSFC sequence. ϝ	 is a subsequence
where all aircra� of the same type � are put
together according to their order in ϝ�: An aircra� landing sequence. �� is the �th
aircra� in sequence �, and �end is the last
aircra� in �Π: 
e
nal aircra� landing sequence.Π� is the�th aircra� in ΠD��: Aircra� � lands before aircra� / (D�� = 1)
and � a�er / (D�� = 0)>(�, /): Pheromone in arc(�, /) in AC. >0(�, /) is
initial pheromone@(�, /): Heuristic information in arc(�, /), where@(�, /) = 1/MSTTP(�)TP(�)B: Parameter modeling the pheromone evap-
oration ratio.
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