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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We introduce a specialized ATMS for efficiently 

computing equivalence relations in multiple con- 

texts. This specialized ATMS overcomes the 

problems with existing solutions to reasoning 

with equivalence relations. The most direct im- 

plementation of an equivalence relation in the 

ATMS-encoding the reflexive, transitive and 

symmetric rules in the consumer architecture- 

produces redundant equality derivations and re- 
quires O(n3) label update attempts (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 

the number of terms in an equivalence class). An 

alternative implementation is one that employs 
simple equivalence classes. However, this solu- 

tion is unacceptable, since the number of classes 

grows exponentially with the number of distinct 

assumptions. The specialized ATMS presented 

here produces no redundant equality derivations, 

requires only O(n2) label update attempts, and 

is most efficient when there are many distinct 

assumptions. This is achieved by exploiting a 

special relationship that holds among the labels 

of the equality assertions because of transitivity. 

The standard dependency structure construction 

and traversal is replaced by a single pass over each 
label in a weaker kind of equivalence class. The 

specialized ATMS has been implemented as part 

of the logic programming language FORLOG. 

1 Introduction 

Consider the following reasoning problem. Given equal- 

ity assertions of the form z = y, where x and y are ei- 

ther Skolem constants or ordinary constants, compute the 
symmetric and transitive closure of the equality relation, 

detect contradictions among the equalities, and answer 

queries of the form x = y. This problem has a long his- 

tory in computer science, beginning with the need to rea- 

son about EQUIVALENCE and COMMON declarations 

in FORTRAN [Arden, Galler, & Graham, 19611. The best 

known solution involves representing equivalence classes 

(sets of constants known to be equal to one another) as 

trees spanning from a chosen constant (the class represen- 

tative) to the other members of the class. This yields the 
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UNION-FIND algorithm [Galler & Fisher, 19641 and sub- 

sequent path compression optimizations [Aho, Hopcroft, & 

Ullman, 19741. 

In this paper, we are interested in the case where the 

various equality assertions are labeled with supporting en- 

vironments (sets of assumptions) of the kind introduced 

by de Kleer’s ATMS [1986a]. In this case, queries ask 

whether x = y is true under some specified set of assump- 

tions. This problem arises in any situation where equality 
assertions are present and there is a need to investigate 

multiple contexts (sets of assumptions) simultaneously. In 

particular, it arises in the FORLOG logic programming 

system [Flann, Dietterich & Corpron, 19871. FORLOG is 

a forward-chaining logic programming language that em- 

ploys Skolem constants in place of Prolog’s “logical vari- 
ables” and performs equality reasoning instead of unifi- 

cation. It is implemented using an extended version of 

de Kleer’s [1986c] consumer architecture. We expect that 

the same problem will arise in any parallel logic program- 

ming system. 

The remainder of this paper explores forward chaining 

approaches to solving this reasoning problem. First, the 

existing approaches, including UNION-FIND, are shown 

to be inefficient when simultaneously maintaining multiple 
contexts. Second, our solution is introduced with an al- 

gorithm description, an example problem, worst case and 

best case analysis, and a proof of correctness. Third, the 
algorithm is generalized and optimized. Finally, a brief 

summary is given. 

2 Existing Approaches 

There are two obvious methods for reasoning with equal- 

ity in multiple contexts: (a) encode the equality axioms in 

de Kleer’s consumer architecture and ATMS and (b) em- 
ploy a multiple-context version of the UNION-FIND algo- 

rithm. 

2.1 Encoding the Equality Axioms 

The simplest approach is to give the equality axioms direc- 

tion to an ATMS-based problem solver. Only the transi- 

tivity axiom must be represented directly. The reflexivity 

axiom (x = x) can be handled by the query routines, and 

the symmetry axiom (5 = y > y = 2) can be handled by 

establishing a canonical ordering over the terms and doing 

some clever pattern matching on the left-hand-side of the 

transitivity axiom: 

vx,y,z x=y A y=z 3 x=z. (1) 

Here x, y, and z are either Skolem constants or ordinary 

constants. Since the problem solver is forward chaining, 
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Figure 1: The dependency structure for three equalities 

whenever the antecedent pattern of this axiom is satisfied 

by a set of facts in the database during problem solving, a 

new assertion is derived and added to the ATMS database 

as an ATMS node. For example, consider the following 

two equality assertions (presented using the basic ATMS 

node data structure: node:(datum, label, justifications)): 

node1 : (skl = Sk23 WH’ um7 (2) 

node2 : (Sk2 = Sk% W H, W Y/). (3) 

These satisfy the antecedents of (1) and produce the fol- 

lowing derived node: 

node3 : (Sk1 = sk3, {{A, B}}, {(nodel, nodea)}). (4) 

Node3 is the only new equality information derivable from 

node1 and node2. But by applying the symmetry ax- 
iom, the newly derived equality in node3 will twice satisfy 

the antecedent of (1) in conjunction with the equalities in 

node1 and node2 respectively, and rederive the following 

two equalities: 

node1 : (skl = sk2, {{A, B)}, ((node2, node3))), (5) 

node2 : (sk2 = sk3, {{A, B}}, {(nodel, node3))). (6) 

One of the requirements imposed on the labels by the 

ATMS is that they be in minimal form. Since the environ- 

ment {A, B) of (5) and (6) is subsumed by {A} of node1 

and {B} of node2, it is not included in the labels of nodes 

node1 and node2. In this sense, the equality derivations 

of (5) and (6) are redundant. However these redundant 

derivations allow the problem solver to generate all of the 

necessary justification links for these three nodes. Without 

these justification links, the ATMS cannot apply its label- 

update algorithm correctly. The dependency structure for 

these three nodes is given in Figure 1. (Justifications for 

each equality assertion are shown as two links merging to 

support that assertion.) 

Although de Kleer’s label-update algorithm [de Kleer, 

19SSa] guarantees that the labels will be consistent and 

complete upon termination of the update process, each 

node label may have been updated more than once. 

By applying this algorithm to a collection of mutually- 

supporting assertions, such as those shown in Figure 1, an 

alarming number of label update attempts will occur due 

to the circular structure of the dependencies. For example, 

suppose a node is given a new supporting environment.-To 

propagate this environment to the rest of the nodes, the 

label-update algorithm will recursively update the conse- 

quent node labels by traversing justification links. Con- 

sider the following series of label update attempts made 
by the label-update algorithm after node1 has been up- 

dated to include the environment {C} in its label. First, 

the algorithm attempts to update the labels of nodel’s 

consequent nodes, node2 and node3: 

For node2’s label, the new environment of nodel, 

namely {C}, and the environment of node3, namely 
{A, B}, are combined by taking the union to pro- 

duce the environment {A, B, C}, which is subsumed 
by nodea’s existing environment, {B}. 

For node3’s label, the new environment of nodel, 

namely {C}, and the environment of node2, namely 

W’ are combined to produce the environment 

{B, C} which is included in node3’s label. 

Since node3’s label has changed (i.e., has been actually 

updated), the algorithm will now attempt to update the 

labels of node3’s consequent nodes, node1 and node2: 

o For nodel’s label, the new environment of node3, 

namely {B, C}, and the environment of node2, namely 

WI’ are combined to produce the environment 

{B, C}, which is subsumed by nodel’s existing en- 

vironment, {C}. 

8 For node2’s label, the new environment of node3, 

namely {B, C}, and the environments of node1 are 

combined to produce the environments {A, B, C} and 

{B,C} both f h’ h o w ic are subsumed by node2’s exist- 

ing environment, {B}. 

The example given above does not demonstrate the worst 

case. This occurs when new support arrives on a de- 

rived node, such as node3-the algorithm must traverse 

every justification of every node. Since there are 
( > 

G , 

or n(n - 1)/2 equalities, where n is the number of terms 

in an equivalence class, and there are n - 2 ways to justify 

an equality, the number of label update attempts made by 

the algorithm is n(n - l)(n - 2)/2 or O(n3). 

The best case occurs when the algorithm terminates af- 

ter attempting to update just one label upon either deriv- 

ing a nogood (an environment that supports a contradic- 
tory fact) or deriving an environment that was subsumed 

by the node label’s existing environments. 

One approach to reducing the generation of redundant 

equality assertions is to employ typed consumers. The ba 

sic idea is to postpone construction of the circular depen- 

dency links until they are needed to allow label propagation 

and updating. The example used by de Kleer [1986c] is the 

relation pbus(x, y, z). Such relations are implemented by a 

set of constraint consumers, one for each variable that com- 

putes its value from the values of the other variables. For 

example, when x and y are known, a constraint consumer 

computes the value for z. However, this value for z will 

be used with x (or y) and another constraint consumer to 

recompute y (or x). To avoid such redundancies, a special 

mechanism was proposed by de Kleer that involved assign- 

ing a unique type to each constraint consumer of a relation 

and barring the use of data derived from such consumers 

to satisfy other consumers of the same type. This prevents 

the circular justifications and redundant assertions from 

being created until additional support is given to the value 
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for Z. At that point, the justifications will be created so 

that this new support can be propagated to x and to y. 

Because redundant assertions and circular justifications 
are eventually created, typed consumers do not improve 

the worst-case behavior of this approach to equality rea- 

soning. 

2.2 Extending UNION-FIND Figure 2: The equivalence class from Figure 1 

The second approach is to employ some kind of equiva 
lence class data structure like the UNION-FIND tree. An 

equivalence class is a set of constants and Skolem constants 

that are all equal to one another in a single context. In 

single-context systems (like Prolog and RUP [McAllester, 

19821)) the context in question is implicit, and this is very 

efficient. 

question need not be the same for all pairs of terms in the 

class. 

However, when we move to multiple context sys- 

tems like de Kleer’s ATMS, the number of equivalence 

classes explodes. Suppose we have three equality as- 

sertions: (a = u, {A}), (a = Y, (B}), and (a = 

w, {C}). In this case, four non-trivial equivalence classes 

must be constructed: 

bv,wWW~, 

bvvH4Bh bvw~b%C~, 
and {a, u, v, w}(A) B, C}. If we only con- 

structed the last class, we would not be able to answer the 

query (u = 21, {A, B}) correctly. What is happening is 

that every distinct context gets its own equivalence class. 

Since there are 2” contexts for k primitive assumptions, 

this results in an exponential explosion. Hence, this solu- 

tion is unacceptable. 

The terms of an equivalence class under this definition 

form the nodes of a complete graph. The edges of the graph 
are equality assertions. The edge from node tl to node t2 

asserts that tl = t2. Figure 2 shows the equivalence class 

of Figure 1 using this notation. The edges are labeled with 
the ATMS labels for the corresponding equality nodes. 

3.2 The Problem Solver 

The problem solver of the specialized ATMS is given equal- 

ities of the form tl = t2 with their corresponding labels. 

Its task is to create and maintain equivalence class nodes 

by deriving new equality nodes from the given assertion. 

To differentiate the nodes derived by the problem solver 

from the nodes given to the problem solver, we will call 

the latter the vri‘mitive equalities, and their environments, 

the Primitive invironments. Let us assume for now that 
eachof the primitive environments introduced to the prob- 

lem solver is disjoint. 

3 A Specialized ATMS for 

Equivalence Relations 

Both of the approaches given above for implementing 

equality reasoning under multiple contexts are inefficient 

either because they construct explicit justification links 
or because they use the implicit justification structure of 

equivalence classes. The method described below avoids 

both of these problems by using a weaker kind of equiva- 

lence class and exploiting special properties of the ATMS 

labels. It does not construct any explicit justification links. 

There are three components to this specialized ATMS: the 
equality database (hereafter, ED), the problem solver, and 

the label-update algorithm. 

3.1 The Equality Database 

The equality database consists of equality nodes and equiv- 
alence class nodes. The equality node is like the ATMS 

node, but it has no justifications, and its datum is an 

equality assertion such as x = y. All equality assertions, 
whether given or derived, are explicitly represented by 

equality nodes. Hence, in the worst case, we will have 

O(m’) equality nodes in ED, where m is the total number 

of terms known. 

The equivalence class node lists the terms (and asser- 

tions) that belong to that equivalence class. The notion of 

equivalence class employed for the remainder of the paper 

is the following: a weak eqtiivalence class is a maximal set 

of terms that are weakly equivalent. Two terms tl and 

t2 are weakly equivalent if there exists an environment un- 

der which tl = t2 is true. Note that the environment in 

ski w33 sk2 

sk3 

For the purpose of describing how the new equality nodes 

are derived, let Eq be the primitive equality tl = t2, 

with IE~ as its label consisting of only primitive envi- 

ronments, and let EC1 and EC2 be two separate equiv- 

alence class nodes of size n1 and n2 respectively. Let 

Label be a function which takes an equality and returns 

its label. Let Combine be a function which takes two 

labels, dl and 62, and produces a new label by putting 

in a minimal form the set of environments d,,,, where 

d new = {envli U eTlV2j 1 envli E dl A enV2j E 12). 

The four cases that must be considered for deriving new 
equality nodes are given below. 

Case 1: If neither tl nor t2 exist in any of the equivalence 

class nodes in ED, i.e., both tl and t2 are new terms never 

before encountered, create and assert into ED an equality 
node with Eq and bEq, and an equivalence class node listing 

tl and t2. 

case 2: Sunnose tl E EC1, but t2 does not exist in ED, 
that is, one yf the terms (in this case, tl) has been previ- 
ously encountered while the other is being introduced for 

the first time. Let EC; = EC1 - {tl}. Then Vti E EC:, 

for i = 1 . . . nl - 1, create and assert into ED an equality 

node with the equality t2 = ta, where its label is computed 
as Corn bine( I,r+, Labe!(tl = ti)). Th en, create and assert 

into ED an equality node for Eq and dam, and add t2 to 
EC1. 

Case 3: Suppose tl E EC1 and t2 E EC2, that is, both 
terms were previously encountered but were never pre- 

viously equated. Let EC{ = EC1 - {tl} and EC; = 

EC2 - (t2). Then Vti E EC:, for i = 1.. .n1 - 1, and 
Vtj E EC;, for j = I... n2 - 1, create and assert into ED 

the following: 
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ski sk2 

Figure 3: Before the label updates 

8 An equality node with ta = tj and its label computed 

as: Combine(lE,,Combine(Labed(tl = ti), 
Label(t2 = tj))). 

e An equality node with t2 = ti and its label computed 

as: Combine(lEq, Labeb(t1 = t i)). 

e An equality node with t l = t j and its label computed 

as: Combine(bE,, Label(t2 = tj)). 

Hence, the number of new equalities derived from joining 

EC1 and EC2, is (nr - l)(na - 1) + (nl - 1) + (722 - 1) = 

nln2 - 1. Finally, create and assert into ED an equality 

node for EQ and bEg, and update EC1 to be EC1 U EC2. 

Case 4: When tl, t2 E ECl, that is, both terms were 

previously encountered and were also equated, the label- 

update procedure is called, since bEO is providing new en- 

vironment(s) to be added to the existing label of Eq. 

While deriving new equality nodes, if the problem solver 

detects a derived equality between two different (non- 

Skolem) constants (a contradiction), its label is declared 

nogood (see [Koff, 19SS]). 

3.3 The Label-Update Algorithm 

3.3.1 The Algorithm 

The label-update procedure is given an existing equality 

node, called the entry node, along with a new environment, 

env,,, . Its task is to add this new environment to the 
existing label, dold, of the entry node and to update all the 

labels of the other equality nodes in the equivalence class. 

Let L updates be the set of all labels in the equivalence class 
containing the entry node, but not including lOId. The 

procedure is as follows: 

e For each la E &p&&s do: 

e For each envi,j E li do: 
@ For each envOld,k E lOld do: 

1. If (e~?JO~d,k fl enva,j) = 8, do nothing. 

2. Else, compute a new environment to be 

added to di as: 

*  (en%ld,k G3 en%,j) U enhew  

o If the newly computed environment is 

not subsumed by any environment in da 

then add it to li. 

3.3.2 An Example 

Consider the equivalence class shown in Figure 3. Sup- 

pose new environment {D} arrives on the label for sbl = 

sk2. The updated label for this entry node is {{A}, {D}}, 

skl sk2 

Figure 4: After the label updates 

Table 1: Summary of the label-update process 

(({A) @  envi,j) 

i j HlVij ({A) n envij) WV 

and enVO1d,J is {A} and env,,, is {D}. The other labels 

in the equivalence class shown in Figure 3 are updated 

as prescribed by the label-update algorithm given above. 

The results of applying the steps are summarized in Table 

1. The updated equivalence class of Figure 3 is shown in 

Figure 4. Note that in this example the algorithm did not 

compute any redundant environments. 

3.3.3 An Explanation 

To see why this algorithm succeeds, consider Figure 5, 

which shows a portion of an equivalence class. All of 
the equalities with singleton environments are primitive 

(given) assertions. Let us focus on the two derived equal- 

ities tl = t2 and t5 = t6. Notice two things. First, the 

graphical counterpart of the transitivity axiom is a con- 

nected path. To compute the environment for t5 = t6, we 

find a path from t5 to t6 containing only primitive envi- 

ronments. In this case, the path is (t5, t3, t4,t6), which 

gives us the environment {B, C, E}. Second, the intersec- 

tion of the environments for tl = t2 and t5 = t6, {C}, is 
the shared environment-that is, the shared path. 

Suppose that an environment, {F}, is given as new 

support for tl = t2. The label-update algorithm will, 

among other things, update the label for t5 = t6 to in- 

clude the environment ({A, C, D} $ {B, C, E}) U {F} = 

(A,B,D,E,F}. Th is can be viewed as (a) subtracting 

the path shared by the two equalities tl = t2 and t5 = t6 

t1 CA3 t3 IB3 t5 

CA,W3 mw3 

t2 w3 VI {E) if5 
I$ is the disjoint union operation defined as: A @  I3 = 

(A - B) u (B - A). Figure 5: Shared support and label updates 
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and (b) computing a new path, (t5, t3,tl,t2,t4, t6), that 
passes through the newly supported equality tl = t2. In 

effect, {F}, along with {A} and {D}, is substituted for the 
old shared environment, {C}, to provide a new supporting 

environment for t5 = t6. The entire calculation can be 

performed without explicitly traversing paths or justifica- 

tion links, since the labels implicitly hold the dependency 

structure. 

The fact that we are using the labels to obtain the de- 

pendencies among the equalities requires that we must re- 

tain the nogood environments within the labels. In fact, a 

nogood environment cannot be removed from a label un- 

til it can be replaced with a non-nogood environment that 

implicitly holds the same dependency structure (see [Koff, 
19SS]). 

3.3.4 Computational Costs 

Since there are n(n - 1)/2 equalities in an equivalence 

class with n terms, and since the algorithm always at- 
tempts to update all but one of the labels for those equal- 

ities, the number of label update attempts is O(n2). This 
figure is significantly better than the O(n3) label computu- 

tions performed by de Kleer’s algorithm. Moreover, note 

from the algorithm that not all label update attempts will 

reSUlt in a label computation (since (env,[d,k fl en?Ji,j) = 0 

may be true). In fact, it can be shown that m the best case, 

only o(n) label computations will be performed [Koff, 
19881. 

3.3.5 Proof of Correctness 

We demonstrate 
ductive proof. 

the algorithm’s correctness by an in- 

First we consider the base case-a three term equiva- 

lence class. Given any two equalities x = y (in environ- 

ment envl) and y = z (in environment env2) the third 

equality z = z can be derived using the transitivity ax- 

iom. (We will refer to these simple three way equalities 

as ‘triangles’ since they form triangles in the graphical no- 

tation introduced earlier.) Since x = z was derived from 

the equalities supported with envl and env2, the derived 

environment env3, which supports x = z, is defined as 

env3 = env2 U envl. Since we have assumed that envl 

and env2 are disjoint environments, the following relation- 

ships hold for the three environments in a triangle: 

env3 = envl @  env2 

env2 = envl @  env3 

(7) 

(8) 

envl = env2 @  env3 (9) 
We now prove that for any triangle in an equivalence 

class, equations (7)) (8) and (9) hold. The proof is by in- 
duction on n, the size of the equivalence class. Consider 
the equivalence class of n terms illustrated in Figure 6. 

The new equality added between t2 and the existing term 
tl will result in n - 1 triangles being added to the equiva- 

lence class. Since each new triangle is computed in exactly 

the same way as the simple triangle above and we assume 
that each new environment envs is unique, then the re- 

lationships of (7), (8), and (9) must hold for each new 

triangle added. Hence, by induction, the relationships of 

(7)) (8)) and (9) hold for all triangles in an equivalence 

class. 

n-l 

Figure 6: Incremental extension of an equivalence class 

Suppose an equality Eql is in an equivalence class of size 

n. Let Eq2i and Eq3a be the equalities that form the n - 1 

triangles with Eql. Now consider new support envlnew ar- 

riving on Eql. To update this equivalence class, the labels 

of Eq2i and Eq3i for each of the triangles are updated. Let 

envl, env2, and env3 be pre-existing environments of Eql, 

Eq2i, and Eq3i respectively. According to de Kleer, the 
new environments to be added to the labels of Eq2i and 

Eq3i (referred to as env2,,, and env3,,, respectively) are 

computed as follows: 

env%,, = env3 U envlnew (10) 

env3 neM = env2 U envl,,, 

From (7) we can substitute into (lo), and from (8) we can 
.  I  .  I  

substitute into (11) to obtain the following two equations: 

enGew = (envl @  env2) U envl,,, (12) 

env%,, = (envl @  env3) U envl,,, (13) 

The equations (12) and (13) directly correspond to the 

disjoint union and union step of the label-update algo- 

rithm. Hence, we have shown that the algorithm behaves 

correctly. 

4 Extending t 

It is clear from the proof given above that the label-update 

algorithm will behave incorrectly if any of the incoming en- 

vironments are not unique, since the disjoint relationship 

will not hold among environments in an equality triangle. 

To accommodate non-unique environments, incoming envi- 

ronments are made unique by an equality token mechanism 

described below. 

4.1 Equality Tokens 

Uniqueness can be guaranteed by assigning globally unique 

names, which we will call equdity tokens, to each and 
ery environment introduced to the equality database, 

ev- 
ei- 

ther through new equality assertions or as new support for 

an existing equality. This assignment of globally unique 
names can be viewed as a substitution where each envi- 

ronment, {Al, AZ, . . . , Ai), is replaced with {Tj }, where 
each Tj is globally unique. Under this design, label up- 

dates. as well as the comnutation of labels for the newly 

derived equalities, will be done on labels containing equal- 

ity tokens, not ATMS assumptions. 
For example, suppose two equality assertions skl = sk2 

with {A, B} and sk2 = sk3 with {B,C} are given to the 

problem solver. Then, the following renaming, denoted as 

-f, will occur: {A, B} + {l}, and {B, C} -+ (2). The 

derived equality node skl = sk3 will have {{ 1,2}} as its 
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label instead of {{A, B, C}}. When the new support, say 

{D}, on ski = sk2 is introduced, it will be renamed as 

(3). The label-update algorithm will proceed as usual, 
but using the equality tokens, and will cause {2,3} to be 

included in the skl = sk3 label. (One can see that this 

update is correct since {2,3} maps to {B, C, D}.) 

The equality tokens must be translated back to their 

equivalent ATMS form for the purposes queries into the 

equality database2 to determine if an environment consist- 

ing of equality tokens is a nogood. The mapping from 

the equality tokens to their corresponding ATMS envi- 

ronments can be done efficiently by storing the mapping 

from the individual equality tokens to their corresponding 

ATMS environments. 

4.2 Optimization 

A significant cost in both de Kleer’s and our label-update 

algorithm is the subsumption check that must be per- 

formed for each of the newly derived environments. How- 

ever, there are certain cases where the subsumption checks 

can be skipped in our label-update algorithm because the 

derived environments are guaranteed to be non-redundant. 

Suppose an entry node N which contains a primitive 

environment (a singleton token) {Told}, within its existing 

label, is given the new support-a new primitive environ- 

ment, {T,,,}. All of the new environments to be added to 

all other labels in the same equivalence class as N can be 

computed by simply substituting T,,, in place of all oc- 

currences of Told. This is because the inferences performed 

when Toid was propagated during previous updates will be 

exactly the same inferences needed for T,,, to be propa- 

gated. Therefore T,,, may Simply replace Told. 

Consider the alternate case in which the entry node, N, 

contains only derived (non-singleton) environments within 

its label. Suppose it is given the environment {T,,,}, as 

a new support. If, during the label update process, we 

encounter a node M whose label contains a primitive en- 

vironment {Told), we can completely update M’s label by 

only considering {Told} in combination with the existing 
tokens of N. We do not need to consider the other tokens 

in M’s label. Furthermore, the newly computed environ- 

ments for M do not need to be checked for subsumption. 
(See [Koff, 19881 for the complete label-update algorithm 

with the optimizations.) 

The first optimization is applicable whenever an equality 

node receives multiple external supporting environments. 

When our specialized equality ATMS is embedded within 
a de Kleer-style ATMS, this happens often, because each 

supporting ATMS environment is mapped into a primitive 

environment with a unique equality token. 

5 Summary 

The advantages of the specialized ATMS are summarized 

by comparing it to the approach of incorporating the tran- 

sitivity axiom into de Kleer’s ATMS (described in Section 

2.1): 

o The worst case time complexity of the label-update al- 

gorithm has been reduced from O(n3) to O(n2) label 

2The translation will also be necessary during label updates 

if the specialized ATMS is linked to the standard ATMS. 

update attempts. In addition, since not all of these at- 

tempts result in label computations, the actual num- 

ber of these label computations can be significantly 

lower. 

Through optimization techniques, the label-update al- 
gorithm can skip subsumption checks in certain cases. 

The problem solver that derived two redundant equal- 

ities for every new equality derived has been replaced 

by one that only derives the necessary equalities. 

The space required to store the justification links is 

eliminated. 

One important future research direction is to explore the 

apparent tradeoff between the performance of de Kleer’s 

ATMS and the specialized ATMS when applied to non- 

trivial problems: the label-update algorithm of the special- 

ized ATMS performs efficiently when the problem produces 

few nogoods and many distinct primitive environments. In 
contrast, de Kleer’s label-update algorithm performs effi- 

ciently when the problem produces many nogoods or if it 

produces very few distinct primitive environments. 

This tradeoff can be explored by empirically studying 

the performance of both methods when applied to a va- 

riety of problems that vary the following problem charac- 

teristics: the ratio of non-nogoods to nogoods, the ratio 

of internal nogoods (i.e., those found through contradic- 

tory equalities) to external nogoods, and the distribution 

of primitive to derived environments. 

One remaining open problem is extending the specialized 

ATMS to cover compound terms. We anticipate that this 

can be accomplished by extending the problem solver to 

perform full unification among the equated terms. 

The specialized ATMS has been implemented as a part 

of the equality system for FORLOG [Flann, et al., 19871 

and interfaced with the standard ATMS and the consumer 

architecture. 

Aho, A. V., Hopcroft, J. E., and Ullmann, J. E., 1974. The 

Design and Analysis of Computer Algorithms. Addison- 

Wesley, Reading, Mass. 

Arden, B. W., Galler, B. A., and Graham, R. M., 1961. An 

Algorithm for Equivalence Declaration. Comm. ACM, 4 

(7), pp. 310-314. 

de Kleer, J., 1986a. An Assumption-based TMS. Artificial In- 

telligence, 28 (2), pp. 127-162. 

de Kleer, J., 1986c. Problem-solving with the ATMS. Artificial 

Intelligence, 28 (a), pp. 197-224. 

Flann, N. S., Dietterich, T. G., and Corpron, D. R., 1987. 

Forward Chaining Logic Programming with the ATMS. 

AAAI, pp. 24-29. 

Galler, B. A., and Fisher, M. J., 1964. An Improved Equiva- 

lence Algorithm. Comm. ACM, 7 (5), pp. 301-303. 

Koff, C., 1988. A  Specialized ATMS for Equivalence Relations. 

M.S. Thesis, Department of Computer Science, Oregon 

State University. 

McAllester, D., 1982. Reasoning Utility Package User’s Man- 

ual. Artificial Intelligence Laboratory, AIM-667, MIT, 

Cambridge, MA. 

Koff, Flann and Dietterich 187 


