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Abstract

Based on the classic augmented Lagrangian multiplier method, we propose, analyze and

test an algorithm for solving a class of equality-constrained non-smooth optimization prob-

lems (chiefly but not necessarily convex programs) with a particular structure. The algorithm

effectively combines an alternating direction technique with a nonmonotone line search to min-

imize the augmented Lagrangian function at each iteration. We establish convergence for this

algorithm, and apply it to solving problems in image reconstruction with total variation reg-

ularization. We present numerical results showing that the resulting solver, called TVAL3, is

competitive with, and often outperforms, other state-of-the-art solvers in the field.

1 Introduction

1.1 A Class of Non-Smooth Minimization Problems

In this paper, we consider solving a class of equality-constrained minimization problems of the form

min
x,y

f(x, y), s.t. h(x, y) = 0, (1)

where x ∈ R
n1 , y ∈ R

n2 , the vector-valued function h : Rn1+n2 → R
m (m < n1+n2) is differentiable

with respect to both x and y, but the function f may or may not be differentiable with respect

to y. In addition, we will later impose a special structure on such problems under consideration.

For solving this class of problems, we will propose and study an algorithm in the framework of the

classic augmented Lagrangian multiplier (ALM) method, first suggested by Hestenes [20] and Powell
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[28]. In the ALM framework, one obtains the k-th iterate (xk, yk) by minimizing the augmented

Lagrangian function

LA(x, y, λ;µ) = f(x, y)− λTh(x, y) +
µ

2
h(x, y)Th(x, y), µ > 0, (2)

jointly with respect to both x and y for a given multiplier estimate λ = λk−1, then updates the

multiplier estimate by the formula λk = λk−1 − µh(xk, yk). In principle, the positive parameter µ

in the augmented Lagrangian function, known as the penalty parameter, can also be altered from

iteration to iteration.

It is evident that the iteration-complexity of an ALM algorithm depends almost entirely on how

the augmented Lagrangian function is minimized jointly with respect to both x and y. In order to

solve such subproblems efficiently, one should utilize useful structures existing in the augmented

Lagrangian function. Therefore, we concentrate on solving unconstrained minimization problems

of the form

min
x,y

φ(x, y), (3)

where φ is differentiable with respect to the block variable x but not necessarily to y.

In this paper, we assume that the objective function φ(x, y) in (3) has the following qualitative

structure, called a “structure of uneven complexity”; that is, in some measurement,

the complexity of minimizing φ(x, y) with respect to y is

much lower than that of minimizing with respect to x.

For example, for x, y ∈ R
n a function φ(x, y) has a structure of uneven complexity if the complexity

of minimizing φ(x, y) with respect to y is O(n) while that of minimizing with respect to x is O(n2)

or higher.

With little loss of generality, we assume that

y(x) = argmin
y
φ(x, y) (4)

exists and is unique for each x in a region of interest. Consequently, problem (3) can be reduced

to an unconstrained minimization problem with respect to x only; that is,

min
x
ψ(x) , φ(x, y(x)), (5)

where ψ(x) is generally non-differentiable, but ∂1φ, the partial derivative of φ(x, y) with respect to

x, is assumed to exist.

To solve the unconstrained minimization problem (5), we will construct a nonmonotone line

search algorithm which is a modification of the one [37] proposed by Zhang and Hager. The

modification is necessary since, to the best of our knowledge, existing nonmonotone line search

algorithms require that objective functions be differentiable, or at least have their sub-differentials
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available. In our case, however, we do not require the availability of the sub-differential of ψ(x).

Instead, we only use ∂1φ — the partial derivative of φ(x, y) with respect to x.

Problem (1) has a wide range of applications. For example, a large number of problems in

physics, mechanics, economics and mathematics can be reduced to variational problems of the

form:

min
x
f(x) = f1(x) + f2(Bx),

where both f1 and f2 are convex, proper, lower semicontinuous functions, and B is a linear operator.

We consider the case that f1 is differentiable but f2 is not. In the early 1980s, Glowinski et al.

studied this type of problems in depth using the ALM and operator-splitting methods [14, 16],

which also have close ties to earlier works such as [24]. Clearly, the above unconstrained variational

problem is equivalent to

min
x
f1(x) + f2(y), s.t. Bx− y = 0. (6)

It is evident that problem (6) is a special case of problem (1). As we will see in a concrete example

below, whenever f2 is a separable function, minimizing the augmented Lagrangian function of (6)

with respect y is likely to be trivial.

1.2 An Example: Total Variation Minimization for Compressive Sensing

In recent years, a new theory of compressive sensing (CS) [11, 7, 6] — also known under the

terminology of compressed sensing or compressive sampling — has drawn considerable research

attention. It provides an alternative approach to data acquisition and compression that reduces

the number of required samples, which could translate into simpler sensors, short sensing time,

and/or reduced transmission/storage costs in suitable applications. The theory indicates that a

sparse signal under some basis may still be recovered even though the number of measurements is

deemed insufficient by Shannon’s criterion. Nowadays, CS has been widely studied and applied to

various fields (see [22, 10, 21, 13, 38, 39] for example).

Given measurements b, instead of finding the sparsest solution to Ax = b by a combinatorial

algorithm, which is generally NP-hard [25], one often chooses to minimize the ℓ1-norm or the

total variation (abbreviated TV) of x. In the context of CS, sufficient conditions for exact and

stable recoveries are given in [12] and [6]. The use of TV regularization instead of the ℓ1 term

makes the reconstructed images sharper by preserving the edges or boundaries more accurately.

Instead of assuming the signal is sparse, the premise of TV regularization is that the gradient of the

underlying signal or image is sparse. In spite of those remarkable advantages of TV regularization,

the properties of non-differentiability and non-linearity make TV minimization computationally

more difficult than ℓ1 minimization.

The use of TV has a long and rich history. It was introduced into imaging denoising problems

by Rudin, Osher and Fatemi in 1992 [30]. From then on, TV minimizing models have become one
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of the most popular and successful methodologies for image denoising [30, 8], deconvolution [9, 33]

and restoration [5, 31, 34, 35], to cite just a few.

Specifically, the noise-free discrete TV model for CS reconstruction can be written as

min
x

TV(x) ,
∑

i

‖Dix‖p, s.t. Ax = b, (7)

where x ∈ R
n, or x ∈ R

s×t with s · t = n, represents an image, Dix ∈ R
2 is the discrete gradient of

x at pixel i, A ∈ R
m×n (m < n) is the measurement matrix, b ∈ R

m is the measurement of x, and

p = 1 or 2. The ℓp-norm could either be the ℓ2-norm corresponding to the isotropic TV, or the ℓ1-

norm corresponding to the anisotropic TV. For reconstruction from noise-corrupted measurements,

one can solve the ROF model instead

min
x

TV(x) +
µ

2
‖Ax− b‖2. (8)

For convenience, ‖.‖ refers to the ℓ2 norm hereafter.

To separate the non-differentiable ℓp-norm term, we can split variables by introducing yi = Dix.

Then models (7) and (8) are equivalent to, respectively,

min
yi,x

∑

i

‖yi‖p, s.t. Ax = b and Dix = yi ∀i, (9)

and

min
yi,x

∑

i

‖yi‖p +
µ

2
‖Ax− b‖2, s.t. Dix = yi ∀i. (10)

Both models (9) and (10) can be regarded as special forms of (1), while the non-differentiable parts

of their augmented Lagrangian functions are easy to solve due to separability.

1.3 A Brief Overview of Related Works

For the method proposed in this paper, the ALM method plays a key role, which has been well

researched for decades. The general quadratic penalty method turns a constrained optimization

problem into a series of unconstrained problems by penalizing constraint violations. However, in

theory it requires the penalty parameter to go to infinity to guarantee convergence, which may cause

a deterioration in the numerical conditioning of the method. In 1969, Hestenes [20] and Powell

[28] independently proposed the ALM method which, by introducing and adjusting Lagrangian

multiplier estimates, no longer requires the penalty parameter to go to infinity for the method

to converge. The augmented Lagrangian function differs from the standard Lagrangian function

with an additional square penalty term, and differs from the quadratic penalty function with an

additional term involving the multiplier λ times the constraints.
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Numerically, it is usually impossible to find an exact minimizer of unconstrained minimization

subproblem (2) at each iteration. For convex optimization, Rockafellar [29] proved the global con-

vergence of the ALM method for any positive penalty parameter value, as long as the subproblems

are solved to prescribed tolerances of increasing accuracy. In addition, the convergence theorem

holds without assuming the objective function f to be differentiable.

Extending the classic ALM method, Glowinski et al. [17, 15] also suggested the so-called alter-

nating direction method (often abbreviated as ADM). Instead of jointly minimizing the augmented

Lagrangian function (2) at each iteration, ADM only demands minimizers with respect to x and y

respectively before updating the multiplier, which may produce computationally more affordable

iterations.

ADM is most effective when both subproblems can be efficiently and accurately solved, which

is not always possible. For example, in TV minimization model (9) or (10), one of the subproblems

is usually quadratic minimization that dominates the computation. Without further special struc-

tures, accurately solving such a quadratic minimization problem at each iteration can be excessively

expensive.

Recently, it has been discovered that ALM can also be derived through an alternative approach

called Bregman regularization [27, 36]. In particular, Goldstein and Osher [18] applied Bregman

regularization to a split formulation in [33] to derive an algorithm for TV minimization called split

Bregman, which is equivalent to ALM. In their computational experiments, however, they just used

one sweep of alternating direction iteration to approximately minimize the augmented Lagrangian,

resulting in a numerically efficient implementation that turns out to be equivalent to ADM.

Several solvers have been developed to solve TV minimization problem (7) or (8), or other

variants. Among them, ℓ1-Magic [6, 7], TwIST [3, 4] and NESTA [2] have been widely used.

Specifically, ℓ1-Magic solves a second-order cone reformulation of TV models. TwIST implements

a two-step iterative shrinkage/thresholding (IST) algorithms, which exhibits much faster conver-

gence rate than IST itself when the linear observation operator is ill-conditioned. NESTA is based

on Nesterov’s smoothing technique [26], extended to TV minimization by modifying the smooth

approximation of the objective function. In Section 4, we will apply our proposed method to TV

minimization with comparison to the above three state-of-the-art solvers.

1.4 Contributions

The classic ALM method is a fundamental and effective approach in constrained optimization.

However, to apply it to realistic applications, it is critically important to design subproblem solvers

capable of taking advantages of useful problem structures. In this work, we consider a rather

common structure that in minimizing a non-smooth augmented Lagrangian function of two block

variables, it is much easier to minimize with respect to one of the variables (in which the function

may not be differentiable) than with respect to the other. This structure of uneven complexity
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exists in a wide range of application problems.

We construct an efficient method for problems with the uneven structure that integrates two

existing algorithmic ideas: (a) alternating direction and (b) nonmonotone line search. The former

enables taking full advantages of the low-cost minimization in the “easy” direction; and the latter

allows relatively quick and large steps in the “hard” direction. We are able to establish convergence

for this algorithm by extending existing theoretical results.

Our numerical results on image reconstruction with TV regularization show that the proposed

algorithm is robust and efficient, significantly outperforming several state-of-the-art solvers on most

tested problems. The resulting MATLAB solver, called TVAL3, has been posted online [23].

2 Algorithm Construction

In this section, we first describe a first-order algorithm for solving the non-smooth, unconstrained

minimization problem (5). The algorithm is an extension to the one in [37] designed for minimiz-

ing smooth functions. This non-smooth unconstrained minimization algorithm is then embedded

into the classic ALM framework to form the backbone of an algorithm for solving the equality-

constrained optimization problem (1). The motivation for the proposed algorithms is to take full

advantages of the structure of uneven complexity, explained above, so that the derived algorithm

has a relatively low iteration-complexity.

2.1 Nonmonotone Line Search for Smooth Functions

Grippo, Lampariello and Lucidi [19] proposed a nonmonotone line search scheme in 1986. In stead

of requiring a monotone decrease in the objective function value as in the classic line search schemes,

it only enforces a decrease in the maximum of previous k function values. More recently, Zhang

and Hager [37] modified their line search scheme by replacing the “maximum” by a “weighted

average” of all the previous function values, and showed that their scheme required fewer function

and gradient evaluations on a large set of test problems. Convergence results for both schemes were

established under the assumption that the objective function is differentiable.

In the nonmonotone line search algorithm (NLSA) given in [37], at each iteration the step length

αk is chosen to be uniformly bounded above and to satisfy the nonmonotone Armijo condition:

ψ(xk + αdk) ≤ Ck + αδ∇ψ(xk)
Tdk, (11)

where dk is a descent direction, and Ck is a linear combination of all the previous function values,

updated by the formulas

Qk+1 = ηkQk + 1, Ck+1 = (ηkQkCk + f(xk+1))/Qk+1, (12)

where ηk ≥ 0 controls the degree of nonmonotonicity. Specifically, the larger ηk is, the more

nonmonotone the scheme is allowed to be. Additionally, one may also require that the Wolfe
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conditions:

∇ψ(xk + αdk)
Tdk ≥ σ∇ψ(xk)

Tdk, (13)

be satisfied as well. Under these settings, they proved global convergence for smooth functions,

and R-linear convergence rate for strongly convex functions.

In Section 3, we will extend the convergence proof in [37] to the case of minimizing the non-

differentiable function ψ(x) defined in (5).

2.2 Algorithm NADA

We now describe a nonmonotone line search algorithm for solving the non-smooth unconstrained

minimization problem (5), which is equivalent to (3). From the standpoint of solving (3), the

algorithm has a flavor of alternating minimization or block coordinate descent, but it does not

require a monotone descent. For convenience, we call this approach Nonmonotone Alternating

Direction Algorithm, or simply NADA.

Since our objective function ψ(x) = φ(x, y(x)) is non-differentiable, the nonmonotone line

search algorithm described in [37] is not directly applicable. The main modification is to replace

the search direction dk = −∇ψ(xk), which does not exist in our case, by dk = −∂1φ(xk, y(xk)).

Such a modification can be justified as follows. Suppose that all the involved subdifferentials exist,

then it follows from the chain rule that

dψ(x) = ∂1φ(x, y(x)) + ∂2φ(x, y(x))dy(x).

By the construction of y(x), we have 0 ∈ ∂2φ(x, y(x)), then ∂1φ(x, y(x)) ∈ dψ(x). Hence, the search

direction dk = −∂1φ(xk, y(xk)) can be regarded as a subgradient direction for ψ(x). However, since

we do not require that y(x) be sub-differentiable, a vigorous convergence proof is still necessary for

such a modification.

To suite our situation we need to modify the nonmonotone Armijo condition into the following

form:

φ(xk + αdk, yk) ≤ Ck + α δ ∂1φ(xk, yk)
Tdk, (14)

which is just (11) applied to the function φ(x, yk) as a function of x at every iteration. In our imple-

mentation, we always choose the search direction dk = −∂1φ(xk, yk), even though the convergence

theorem in the next section actually allows a wider range of choices.

Algorithm 1 (Nonmonotone Alternating Direction Algorithm).

Initialize 0 < δ < 1 < ρ, 0 ≤ ηmin ≤ ηmax ≤ 1, αmax > 0, tol > 0, and Q0 = 1.

Choose starting points (x0, y0), and set C0 = φ(x0, y0) and k = 0.

While ‖∂1φ(xk, yk)‖ > tol Do
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(1) Compute dk = −∂1φ(xk, yk), and an initial trial step ᾱk > 0.

(2) Choose αk = ᾱkρ
−θk where θk is the largest integer such that

αk ≤ αmax and the nonmonotone Armijo condition (14) holds.

(3) Set xk+1 = xk + αkdk.

(4) For some ηk ∈ [ηmin, ηmax], compute Qk+1 and Ck+1 by (12).

(5) Compute yk+1 = y(xk+1) , argminy φ(xk+1, y).

(6) Increment k and continue.

End Do

Some additional remarks are in order.

Remark 1. In our implementation, the initial trial step ᾱk is chosen according to the Barzilai-

Borwein method [1] to achieve good practical performance. For given yk, applying BB method on

minimizing φ(x, yk) with respect to x leads to a trial step

ᾱk =
sTk sk

sTk zk
, (15)

or alternatively ᾱk = sTk zk/z
T
k zk, where sk = xk − xk−1 and zk = ∂1φ(xk, yk)− ∂1φ(xk−1, yk).

Remark 2. The integer parameter θk is not necessarily positive. In practical implementations,

starting from the BB step, one can increase or decrease the step length by forward or backward

tracking until the nonmonotone Armijo condition is satisfied.

Compared to popular existing approaches, NADA differs from the traditional alternating min-

imization approach since it does not require exact (or high-precision) minimizers in all directions,

and it differs from the block coordinate descent (BCD) approach since it does not require a mono-

tone decease in the objective function. The convergence of Algorithm NADA will be analyzed in

Section 3.

2.3 TVAL3

Embedding the unconstrained minimization algorithm NADA into the ALM framework, we obtain

the following algorithm for solving the equality-constrained minimization problem (1).

Algorithm 2 (Augmented Lagrangian Multiplier).

Initialize (x0, y0), µ0 > 0, and λ0 = 0 ∈ R
m. Set k = 0.

While “not converged”, Do

(1) Call NADA to minimize φ(x, y) , LA(x, y, λk;µk)

starting from (xk, yk), giving the output (xk+1, yk+1).

(2) Update the multiplier: λk+1 = λk − µkh(xk+1, yk+1).

(3) If necessary, update the penalty parameter to get µk+1.
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(4) Increment k and continue.

End Do

In order to achieve low-cost minimization with respect to y (the non-smooth part), a variable-

splitting technique is usually coupled with this algorithm. The idea of variable-splitting has been

used in various fields for years, and has recently been introduced into image deconvolution and

TV minimization in [33]. For instance, we could split the ℓ1-norm term from the finite difference

operation as illustrated in Section 1.2.

Specifically, we apply NADA to the variants of TV regularized linear inverse problems (9)

and (10) presented in Section 1.2, resulting in a solver that we call TVAL3 [23] (Total Variation

Augmented Lagrangian ALternating-direction ALgorithm). In the particular case of solving (9),

we have

φ(x, y) , LA(x, y, ν, λ;β, µ)

=
∑

i

(

‖yi‖p − νTi (Dix− yi) +
β

2
‖Dix− yi‖

2

)

+
µ

2
‖Ax− b− λ/µ‖2.

Then we can easily derive

∂1φ(x, y) =
∑

i

(βDT
i (Dix− y)−DT

i νi) + µAT (Ax− b− λ/µ), (16)

and, when p = 2 (isotropic TV),

yi(x) , argmin
yi

φ(x, y) = max

{

‖Dix− νi/β‖2 −
1

β
, 0

}

Dix− νi/βi
‖Dix− νi/βi‖

, (17)

which is the so-called 2D shrinkage formula. When p = 1, one would apply an equally simple 1D

shrinkage formula to obtain yi(x). As we can see, the computation of y(x) is indeed very low in

comparison to that of updating x from solving (16) at a fixed y value. Hence, the structure of

uneven complexity is present.

In our implementation of NADA in TVAL3, dk is chosen as the negative partial gradient given

in (16), and y(x) is computed using (17). A similar derivation is applicable to solving problem (10).

3 Convergence Results

As discussed earlier, the convergence of ALM has been thoroughly studied, so the convergence of the

proposed Algorithm 2 relies on the convergence of Algorithm 1 (i.e., NADA) for the unconstrained

subproblems. By extending Zhang and Hager’s proof in [37], we present a convergence result for

Algorithm-NADA in this section (its proof is given in the appendix). The fundamental extension

is to allow the objective function, previously assumed to be continuously differentiable, to take

the form φ(x, y(x)) where we do not assume any differentiability of y(x). As such, NADA is no

longer a standard gradient or subgradient method previously studied in nonmonotone line search

frameworks
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3.1 Assumptions and Main Result

First recall the definition that ψ(x) = φ(x, y(x)) for y(x) = argminy φ(x, y). We need to impose

the following assumption on the function φ(x, y).

Assumption 1. The function φ(x, y) is continuously differentiable with respect to x, and sub-

differentiable with respect to y. Furthermore, y(x) = argminy φ(x, y) uniquely exists for each x.

We note that the above assumption does not imply the sub-differentiability of ψ(x) = φ(x, y(x))

since y(x) is not assumed to be sub-differentiable. In addition, φ(x, y) does not have to be convex

with respect to y for y(x) to uniquely exist.

Let ∂1φ and ∂2φ refer to the sub-differentials of φ with respect to x and y, respectively. The

convergence proof of NADA makes use of the following assumptions.

Assumption 2 (Direction Assumption). There exist c1 > 0 and c2 > 0 such that

{

∂1φ(xk, yk)
Tdk ≤ −c1‖∂1φ(xk, yk)‖

2,

‖dk‖ ≤ c2‖∂1φ(xk, yk)‖.
(18)

This assumption obviously holds for dk = −∂1φk(xk) with c1 = c2 = 1. However, this assump-

tion allows more generality. For instance, certain approximations to −∂1φk(xk) would become

permissible.

Assumption 3 (Lipschitz Condition). There exists L > 0, such that at any given y, and for all x

and x̃,

‖∂1φ(x, y)− ∂1φ(x̃, y)‖ ≤ L‖x− x̃‖. (19)

Assumption 4 (Boundedness from below). The function φ(x, y) is bounded below, i.e.,

φ(x, y) ≥ −M

for some M > 0 and for all (x, y).

We note that Lipschitz continuity and the boundedness from below are widely assumed in the

analysis of convergence of gradient-type methods.

The main convergence result of this paper is as follows:

Theorem 1. Under Assumptions 1-4, the iterate sequence {(xk, yk)} generated by Algorithm-

NADA, which is well defined, satisfies







lim
k→0

∂1φ(xk, yk) = 0,

∂2φ(xk, yk) ∋ 0.
(20)
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Our proof of this theorem follows a similar path as the convergence proof in [37], with extra

steps to connect the non-differentiable part with the differentiable part by means of alternating

minimization. We include the detailed proof in the appendix.

Based on Theorem 1, we can easily deduce global convergence of Algorithm-NADA under a

further convexity assumption. We state the following corollary without a proof.

Corollary 1. If φ(x, y) is jointly convex, lower semi-continuous and coercive, then under Assump-

tions 1-4 the sequence {(xk, yk)} generated by Algorithm-NADA converges to a minimizer (x∗, y∗)

of problem (3).

As indicated before, the convergence of the overall ALM algorithm, Algorithm 2, follows from

that of NADA.

4 Numerical Results in Image Reconstruction

To demonstrate the performance of the proposed method on problems with the structure of un-

even complexity, we conducted numerical experiments on TV minimization problems from image

reconstruction in CS; that is, solving model (9) or (10). Our implementation of Algorithm 2 is

the solver TVAL3, which was compared to three other state-of-the-art TV minimization solvers:

ℓ1-Magic [6, 7], TwIST [3, 4] and NESTA [2]. All experiments were performed on a Lenovo X301

laptop with a 1.4GHz Intel Core 2 Duo SU9400 and 2GB of DDR3 memory, running Windows XP

and MATLAB R2009a (32-bit).

Throughout the experiments, we always used a default set of parameter values for TVAL3.

Specifically, we set η = .9995, ρ = 5/3, δ = 10−5 and αmax = 104 (see Algorithm 1), and initialized

multiplier estimate to the zero vector as presented in Algorithm 2. Additionally, the penalty

parameter might vary in a range of 25 to 29 according to distinct noise level and required accuracy.

In spite of a lack of theoretical guidance, we have found that it is not particularly difficult to choose

adequate values for penalty parameters since the algorithm is not overly sensitive to such values as

long as they fall into some appropriate but reasonably wide range. A few trial-and-error attempts

are usually needed to find good penalty parameter values, judged by observed convergence speed.

In an effort to make comparisons as fair as possible, for each of the aforementioned solvers we

tried to tune parameters provided in the interface of the solver in order to obtain as good a per-

formance as we possibly could. Nevertheless, the possibility still exists that a solver’s performance

could be further improved by making changes that we are unaware of. Therefore, the performance

data presented in this section should be considered only within the context of our tests, but not be

regarded as general judgements.
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4.1 Tests on Synthetic Data

The first three tests are base on synthetic data. In the first test, the data x is an n = 64 × 64

phantom image from which an observation b = Ax is generated without additive noise. The matrix

A ∈ R
m×n, where m = 0.3n, is generated from orthogonalizing the rows of a Gaussian random

matrix by QR factorization. Then we apply TVAL3, TwIST, NESTA and ℓ1-Magic to model (7)

and obtain a recovered image from each solver. The quality of recovered images is measured by the

signal-to-noise ratio (SNR). Parameters were extensively tuned to achieve a near-best performance

possible. The test results are presented in Figure 1.

SNR: 77.64dB,  CPU time: 4.27s SNR: 46.59dB,  CPU time: 13.81s

SNR: 34.18dB,  CPU time: 24.35s SNR: 51.08dB,  CPU time: 1558.29s

Original                                  TVAL3                                    TwIST                  

NESTA                                    l  -Magic1

Figure 1: Recovery of a 64×64 phantom image (shown in the top-left) from 30% noiseless measure-

ments. Top-middle: reconstructed by TVAL3. Top-right: reconstructed by TwIST. Bottom-

left: reconstructed by NESTA. Bottom-right: reconstructed by ℓ1-Magic.

From Figure 1, we observe that TVAL3 achieved the highest SNR at 77.6dB, while taking the

shortest running time (4.3 seconds). The second highest SNR was obtained by ℓ1-Magic at 51.1dB

at the cost of taking an unacceptable amount of time (1558.3 seconds). TwIST and NESTA attained

relatively medium-quality images (SNR around 46.6dB and 34.2dB respectively) within reasonable

running times (13.8 and 24.4 seconds, respectively). This test suggests that TVAL3 is capable

of achieving high accuracy within an affordable running time on the tested image reconstruction
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problems, outperforming some state-of-the-art solvers.

The second test is much more challenging with a larger image and rather high-level Gaussian

noise. Specifically, the data is a 256× 256 MR brain image contained rather complicated features.

This time, the measurement matrix A is a column permuted, partial Walsh Hadamard matrix with

only 10% rows selected at random. To the observation vector b = Ax we added Gaussian noise at

the level of 10% in magnitude. Specifically, a noisy observation is synthesized by the formula (in

the Matlab format)

b = b+ σ ∗ mean (abs (b)) ∗ randn (m, 1), (21)

where b ∈ R
m on the right-hand side is the noiseless observation, and σ represents the noise level.

From the first test on the phantom image, we know that ℓ1-Magic, though producing good

quality solutions, can become excessively expensive on relatively large-scale problems. For this

reason, we excluded it from the second test. In Figure 2, we present test results for TVAL3, TwIST

and NESTA solving ROF model (8). We observe from Figure 2 that TVAL3 produced the best

recovery quality with the shortest amount of running time, TwIST produced the poorest recovery

quality with the longest amount of running time, while NESTA is in the middle on both accounts.

These results indicate that TVAL3 is likely to be more efficient and more robust in solving certain

highly difficult problems.

Finally, in the third test we fix the Gaussian noise level to 10% and repeat the experiment for

90 different sampling ratios ranging from 9% to 98% with 1% increment. All the parameters are

set as the same as in the second test. The results are plotted in Figure 3, showing the recovery

quality and running time for TVAL3, TwIST and NESTA. Figure 3 indicates that on these test

cases TVAL3 always achieves the best quality (highest SNR) with the shortest running time among

the three tested solvers. TwIST and NESTA attain similar accuracy, but TwIST is much slower

especially when the sampling ratio is relatively low. These facts are consistent with what we have

discovered from Figure 2.

4.2 A Test with Hardware-Measured Data

To see the performance of the solvers under a more realistic environment, we did a test using data

collected by Rice’s single-pixel camera [32]. Simply speaking, it is a compressive sensing camera

using digital micro-mirror device to generate measurements (for more details see [32]) . In this test,

we focused on reconstructing infrared data captured by this single-pixel camera.

As is shown in Figure 4, a canvas board with two letters “IR” written on it by charcoal pencil is

entirely covered by blue oil paint, which makes the letters “IR” invisible to human eyes. This board

was illuminated by a 150-watt halogen lamp and measurements were gathered by the single-pixel

camera equipped with an infrared sensor. We applied TVAL3, TwIST, NESTA and ℓ1-Magic to

ROF model (8) in order to recover the image, respectively from top to bottom in Figure 5, where

13



SNR: 9.40dB,  CPU time: 10.20s

SNR: 4.66dB,  CPU time: 142.04s SNR: 8.03dB,  CPU time: 29.42s

Original                                       TVAL3       

                                
 TwIST                                        NESTA       

                                

Figure 2: Recovery of a 256 × 256 MR brain image (top-left) from 10% measurements with noise

at 10% level. Top-right: reconstructed by TVAL3. Bottom-left: reconstructed by TwIST.

Bottom-right: reconstructed by NESTA.
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Figure 3: Recoverability for 256 × 256 MR brain image. The noise level is 10%. Left: average

SNR. Right: average running time. SNR and running time are measured simultaneously with the

growth of the sampling ratio.

the recovered images, from left to right, are corresponding to 15%, 35%, and 50% sampling ratios,

respectively.

In this test, measurements were not synthesized, but collected from hardware. Hence, there is

no “ground-truth” solution available. As such, recovery quality can only be judged by subjective

visual examinations. It is perhaps agreeable that, in Figure 5, the results by TwIST (on the second

row) are visually inferior to others. Another unmistakable observation is that ℓ1-Magic took at

least 10 times longer running time than others, while the others required much less running times.

In short, numerical results indicate that TVAL3 is at least competitive to other state-of-the-art

TV solvers for CS reconstruction. In fact, it seems to be more efficient and more robust in most

tests using synthetic data.

5 Conclusions

In this paper, we have proposed, analyzed and tested an algorithm for solving non-smooth uncon-

strained optimization problems with a structure called uneven complexity in terms of minimizing

the objective with respect to two groups of variables. Such a structure widely exists in application

problems including some total-variation minimization problems in various image processing tasks.

The proposed algorithm effectively integrates the ideas of alternating direction and nonmonotone
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Figure 4: Target image under visible light with letters IR covered by paint.

line search to take advantages of both techniques, leading to relatively low-cost iterations for suit-

ably structured problems.

We have established convergence for this algorithm by extending convergence results in [37] that

are applicable only to smooth objective functions. When embedded into the ALM framework as

the subproblem solver, the proposed approach leads to efficient ALM implementations for solving

targeted equality-constrained optimization problems. Based on this approach, a TV minimization

solver called TVAL3 is constructed. Extensive experiments demonstrate that TVAL3 compares

competitively, and often favorably, with several state-of-the-art TV solvers in the field.
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          CPU time: 7.61s           CPU time: 6.79           CPU time: 6.04s      

   15% measurements                   35% measurements                   50% measurements

 

        TVAL3                                                          

          CPU time: 9.41s           CPU time: 9.66s           CPU time: 10.42s

        TwIST                                                          

          CPU time: 8.31s           CPU time: 7.16s           CPU time: 6.75s

        NESTA                                                          

          CPU time: 194.63s           CPU time: 177.19s           CPU time: 158.51s

l  -Magic1

Figure 5: Recovery of a 256×256 infrared image. The four rows (top to bottom) are reconstructed

by TVAL3, TwIST, NESTA and ℓ1-Magic, respectively, for sampling ratios (left to right) 15%,

35%, and 50%, respectively.
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Appendix: Proof of Theorem 1

For notational simplicity, let us define

φk(·) = φ(·, yk) and ∇φk(·) = ∂1φ(·, yk). (22)

The proof of the theorem relies on two lemmas. The two lemmas are modifications of their

counterparts in [37]. Since our objective may contain a non-differentiable part, the key modifi-

cation is to connect this non-differentiable part to the differentiable part by means of alternating

minimization. Otherwise, the line of proofs follows closely that given in [37].

The first lemma presents some basic properties and established that the algorithm is well-

defined.

Lemma 1. If ∇φk(xk)
Tdk ≤ 0 holds for each k, then for the sequences generated by Algorithm-

NADA, we have φk(xk) ≤ φk−1(xk) ≤ Ck for each k and {Ck} is monotonically non-increasing.

Moreover, if ∇φk(xk)
Tdk < 0, a step length αk > 0 always exists so that the nonmonotone Armijo

condition (11) holds.

Proof. Define real-valued function

Dk(t) =
tCk−1 + φk−1(xk)

t+ 1
for t ≥ 0,

then

D′

k(t) =
Ck−1 − φk−1(xk)

(t+ 1)2
for t ≥ 0.

Due to the nonmonotone Armijo condition (11) and ∇φk(xk)
Tdk ≤ 0, we have

Ck−1 − φk−1(xk) ≥ −δαk−1∇φk−1(xk−1)
Tdk−1 ≥ 0.

Therefore, D′

k(t) ≥ 0 holds for any t ≥ 0, and then Dk is non-decreasing.

Since

Dk(0) = φk−1(xk) and Dk(ηk−1Qk−1) = Ck,

we have

φk−1(xk) ≤ Ck, ∀k.

As is defined in Algorithm-NADA,

yk = argmin
y

φ(xk, y).

Therefore,

φ(xk, yk) ≤ φ(xk, yk−1).

Hence, φk(xk) ≤ φk−1(xk) ≤ Ck holds for any k.
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Furthermore,

Ck+1 =
(ηkQkCk + φk(xk+1))

Qk+1

≤
(ηkQkCk + Ck+1)

Qk+1

,

i.e.,

(ηkQk + 1)Ck+1 ≤ (ηkQkCk + Ck+1),

i.e.,

Ck+1 ≤ Ck.

Thus, {Ck} is monotonically non-increasing.

If Ck is replaced by φk(xk) in (11), the nonmonotone Armijo condition becomes the standard

Armijo condition. It is well-known that αk > 0 exists for the standard Armijo condition while

∇φk(xk)
Tdk < 0 and φ is bounded below. Since φk(xk) ≤ Ck, it follows αk > 0 exists as well for

the nonmonotone Armijo condition:

φk(xk + αkdk) ≤ Ck + δαk∇φk(xk)
Tdk.

Now we defining the quantity Ak by

Ak =
1

k + 1

k
∑

i=0

φk(xk). (23)

By induction, it is easy to show that Ck is bounded above by Ak. Together with the facts that

Ck is also bounded below by φk(xk) and αk > 0 always exists, it is clear that Algorithm-NADA is

well-defined.

In the next lemma, a lower bound for the step length generated by Algorithm-NADA will be

given.

Lemma 2. Assume that ∇φk(xk)
Tdk ≤ 0 for all k and that Lipschitz condition (19) holds with

constant L. Then

αk ≥ min

{

αmax

ρ
,
2(1− δ)

Lρ

|∇φk(xk)
Tdk|

‖dk‖2

}

. (24)

Proof. It is noteworthy that ρ > 1 is required in Algorithm-NADA. If ραk ≥ αmax, then the lemma

already holds. Otherwise,

ραk = ᾱkρ
θk+1 < αmax,

which indicates that θk is not the largest integer to make the k-th step length less than αmax.

According to Algorithm-NADA, θk must be the largest integer satisfying the nonmonotone Armijo

condition (11), which leads to

φk(xk + ραkdk) ≥ Ck + δραk∇φk(xk)
Tdk.
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Lemma 1 showed Ck ≥ φk(xk), so

φk(xk + ραkdk) ≥ φk(xk) + δραk∇φk(xk)
Tdk. (25)

On the other hand, for α > 0 we have

∫ α

0

(∇φk(xk + tdk)−∇φk(xk)) dk dt = φk(xk + αdk)− φk(xk)− α∇φk(xk)
Tdk.

Together with the Lipschitz condition, we obtain

φk(xk + αdk) = φk(xk) + α∇φk(xk)
Tdk +

∫ α

0

(∇φk(xk + tdk)−∇φk(xk)) dk dt

≤ φk(xk) + α∇φk(xk)
Tdk +

∫ α

0

tL‖dk‖
2 dt

= φk(xk) + α∇φk(xk)
Tdk +

1

2
Lα2‖dk‖

2.

Let α = ραk, then

φk(xk + ραkdk) ≤ φk(xk) + ραk∇φk(xk)
Tdk +

1

2
Lρ2α2

k‖dk‖
2. (26)

Comparing (25) to (26), we deduce that

(δ − 1)∇φk(xk)
Tdk ≤

1

2
Lραk‖dk‖

2.

Since ∇φk(xk)
Tdk ≤ 0,

αk ≥
2(1− δ)

Lρ

|∇φk(xk)
Tdk|

‖dk‖2
.

Therefore, the step length αk is bounded below as in (24).

With the aid of the lower bound (24), we now are ready to prove Theorem 1. We need to

establish the two relationships given in (20).

Proof. First, by definition in Algorithm-NADA,

yk = argmin
y

φ(xk, y).

Hence, it always holds true that

0 ∈ ∂2φ(xk, yk).

Now it suffices to show that the limit holds true in (20). Consider the nonmonotone Armijo

condition:

φk(xk + αkdk) ≤ Ck + δαk∇φk(xk)
Tdk. (27)
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If ραk < αmax, in view of the lower bound (24) on αk in Lemma 2 and the direction assumption

(18),

φk(xk + αkdk) ≤ Ck − δ
2(1− δ)

Lρ

|∇φk(xk)
Tdk|

2

‖dk‖2

≤ Ck −
2δ(1− δ)

Lρ

c21‖∇φk(xk)‖
4

c2
2
‖∇φk(xk)‖2

= Ck −

[

2δ(1− δ)c21
Lρc2

2

]

‖∇φk(xk)‖
2.

On the other hand, if ραk ≥ αmax, the lower bound (24), together with the direction assumption

(18), gives

φk(xk + αkdk) ≤ Ck + δαk∇φk(xk)
Tdk

≤ Ck − δαkc1‖∇φk(xk)‖
2

≤ Ck −
δαmaxc1

ρ
‖∇φk(xk)‖

2.

Introducing a constant

τ̃ = min

{

2δ(1− δ)c21
Lρc2

2

,
δαmaxc1

ρ

}

,

we can combine the above inequalities into

φk(xk + αkdk) ≤ Ck − τ̃‖∇φk(xk)‖
2. (28)

Next we show by induction that for all k

1

Qk

≥ 1− ηmax, (29)

which obviously holds for k = 0 given that Q0 = 1. Assume that (29) holds for k = j. Then

Qj+1 = ηjQj + 1 ≤
ηj

1− ηmax
+ 1 ≤

ηmax

1− ηmax
+ 1 =

1

1− ηmax
,

implying that (29) also holds for k = j + 1. Hence, (29) holds for all k.

It follows from (28) and (29) that

Ck − Ck+1 = Ck −
ηkQkCk + φk(xk+1)

Qk+1

=
Ck(ηkQk + 1)− (ηkQkCk + φk(xk+1))

Qk+1

=
Ck − φk(xk+1)

Qk+1

≥
τ̃‖∇φk(xk)‖

2

Qk+1

≥ τ̃(1− ηmax)‖∇φk(xk)‖
2. (30)

25



Since φ is bounded below by assumption, {Ck} is also bounded below. In addition, by Lemma 1,

{Ck} is monotonically non-increasing, hence convergent. Therefore, the left-hand side of (30) tends

to zero, so does the right-hand side; i.e., ‖∇φk(xk)‖ → 0. Finally, by definition (22),

lim
k→0

∂1φ(xk, yk) = 0,

which completes the proof.
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