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An Efficient Basket Trial Design

Kristen Cunanan, Alexia Iasonos, Ronglai Shen, Colin B. Begg, and Mithat
Gonen

Abstract

The landscape for early phase cancer clinical trials is changing dramatically due
to the advent of targeted therapy. Increasingly, new drugs are designed to work
against a target such as the presence of a specific tumor mutation. Since typi-
cally only a small proportion of cancer patients will possess the mutational target,
but the mutation is present in many different cancers, a new class of basket trials
is emerging, whereby the drug is tested simultaneously in different baskets, i.e.,
sub-groups of different tumor types. Investigators not only desire to test whether
the drug works, but also to determine which types of tumors are sensitive to the
drug. A natural strategy is to conduct parallel trials, with the drug’s effectiveness
being tested separately, using for example, the popular Simon two-stage design
independently in each basket. The work presented is motivated by the premise
that the efficiency of this strategy can be improved by assessing the homogeneity
of the baskets’ response rates at an interim analysis and aggregating the baskets
in the second stage if the results suggest the drug might be effective in all or most
baskets. Via simulations we assess the relative efficiencies of the two strategies.
Since the operating characteristics depend on how many tumor types are sensitive
to the drug, there is no uniformly efficient strategy. However, our investigation
demonstrates substantial efficiencies are possible if the drug works in most or all
baskets, at the cost of modest losses of power if the drug works in only a single
basket.
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Gonen

The landscape for early phase cancer clinical trials is changing dramatically due to the advent of targeted
therapy. Increasingly, new drugs are designed to work against a target such as the presence of a specific tumor
mutation. Since typically only a small proportion of cancer patients will possess the mutational target, but the
mutation is present in many different cancers, a new class of basket trials is emerging, whereby the drug is
tested simultaneously in different baskets, i.e., sub-groups of different tumor types. Investigators not only desire
to test whether the drug works, but also to determine which types of tumors are sensitive to the drug. A natural
strategy is to conduct parallel trials, with the drug’s effectiveness being tested separately, using for example, the
popular Simon two-stage design independently in each basket. The work presented is motivated by the premise
that the efficiency of this strategy can be improved by assessing the homogeneity of the baskets’ response rates
at an interim analysis and aggregating the baskets in the second stage if the results suggest the drug might be
effective in all or most baskets. Via simulations we assess the relative efficiencies of the two strategies. Since the
operating characteristics depend on how many tumor types are sensitive to the drug, there is no uniformly efficient
strategy. However, our investigation demonstrates substantial efficiencies are possible if the drug works in most or
all baskets, at the cost of modest losses of power if the drug works in only a single basket.

Copyright © 0000 John Wiley & Sons, Ltd.
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1. Introduction

Historically, cancer is a disease that has been organized and investigated separately based on the anatomic location of the
primary tumor. Thus, we have breast cancer, lung cancer and so forth. This applies not only to the reporting of the disease
in cancer registries, but also to the way it is treated, both surgically and medically. In fact, new drugs are usually tested
and approved by the U.S. Food and Drug Administration (FDA) for use in specific disease sites, with prescription for
other types of cancer considered “off-label”. However, the current drug development landscape is dominated by efforts
to develop and test drugs that are designed to work against tumors that possess specific somatic mutations. Since these
specific mutational targets typically occur in only a small proportion of tumors but also tend to be present in many tumor
types, investigators increasingly are interested in evaluating the efficacy of the new drug in different groups of patients
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whose tumors possess the mutation. However, they simultaneously need to collect evidence about whether the drug is
efficacious across all or only in some tumor sites. This has led to a new type of early phase clinical trial, variously termed
“basket” trial or “bucket” trial, whereby the drug is tested simultaneously in the different baskets. The term “basket” trial
has been used to refer to different contexts, depending on the drug’s mechanism of action and the molecular selection of
patients [1]. For our paper when refering to a “basket” trial, we consider one target mutation and one drug targeting that
mutation being tested in several tumor types. Here, investigators wish to know, not only if the drug is active, but also the
specific tumor sites in which it is active. Due to the complex nature of these trials and the small sample sizes, these trials
are considered discovery trials and promising efficacious results should be further evaluated in subsequent trials if possible.

There are two very prominent examples of such basket trials. In 2006, imatinib mesylate (Novartis) was approved
by the FDA for 5 different types of cancer on the basis of a single phase II trial. In this study, 186 patients with 40
different non-gastrointestinal stromal tumor malignancies with KIT mutations were evaluated. The number of different
malignancies, or baskets, and the number of patients per basket were not pre-specified, as this study was intended
to be a proof-of-concept about the activity of imatinib to warrant future trials. Consequently, no inferential methods
were used and power analyses did not contribute to sample size considerations. Each basket was permitted to enroll
up to 10 patients, with the possibility of enrolling additional patients in baskets suggesting clinical efficacy [2]. While
this study showed promising activity of imatinib in 6 malignancies, 40 different tumor subtypes were included and 24
indications (subgroups) were evaluated. There was no control of the false positive error rate, since no hypothesis testing

was performed (or planned).

More recently, vemurafenib has been approved for patients with BRAF V600 positive-mutations in two types of
nonmelanoma cancers, based on an on-going phase II trial. In this study, investigators defined 6 disease-specific baskets
and an all-others basket, enrolling patients with any BRAF V600 mutation-positive, non-melanoma cancer. A total of
122 patients were enrolled with 27 patients with colorectal cancer receiving combination therapy, after observing futile
results using monotherapy of vemurafenib. An adaptive two-stage design was planned for each disease-specific basket
[3]. The all-others basket was purely exploratory with no inferential methods planned; however, investigators added the
flexibility to create a disease-specific basket, should enrollment be large enough [4]. This trial explicitly stated response
rate thresholds for what is considered promising and not promising and the design quantified the false positive error rate

and power within each basket.

Conventional testing of a new drug addresses one question of overriding interest. Does the drug work? In the
setting of testing targeted agents, investigators also need to know whether the drug works uniformly in all cancer sites
with the mutation of interest or whether the activity is site-dependent. The basket design, in which patients are recruited
purposefully to gain knowledge of the drug’s efficacy in distinct cancer sites, or baskets, is a natural design strategy to
address these questions. A logical analytic strategy is to regard each basket as a separate, independent study of the drug’s
efficacy. Thus one can, for example, perform separate two-stage study designs in each basket. Indeed this strategy of
parallel, independent designs has been performed in at least one prominent trial [4], as well as in some other categories of
basket trials [5, 6]. Such an approach can, of course, lead to a substantially inflated false positive error rate in the context
of the question “does the drug work?” but this can be easily remedied by adjusting the significance levels in the individual

trials to account for multiple comparisons.

There are numerous statistical methods for phase II trials with multiple strata proposed in the literature. Several
methods have been developed specifically to identify promising biomarkers and are not easily generalizable to other
settings [7, 8, 9]. Some of the proposals in the literature originally developed for phase II trials with multiple subtypes
are candidates for use in basket trials [10, 11, 12]. The design by London and Chang [11] is primarily concerned with
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obtaining stratified estimates and tests, and does not address the question of “does the drug work?”. The design of Thall
et al. [10] is more applicable but requires accepting hierarchical modeling and is more computationally demanding.
The design of Leblanc et al. [12] is the closest to a basket trial among the three, evaluating individual and overall
response rates simultaneously, however it does not offer protection against FWER. To the best of our knowledge, very
few alternative designs appropriate for addressing the primary goals of basket trials, while controlling the false positive
error rate, have been proposed in the literature. Berry et al. used Bayesian hierarchical modeling to evaluate the overall
and basket-specific response rates, while sharing information across baskets to improve power [13]. More recently, Simon
et al. used Bayesian model averaging to simulataneously model the baskets as homogeneous and heterogeneous, with
an additional model parameter to represent the homogeneity of treatment effects across baskets [14]. Neuenschwander
et al. used Bayesian hierarchical modeling and proposed an exchangeability-nonexchangeability approach to improve
robustness for more heterogeneous populations [15]. A common theme among the basket trial designs proposed so far is
the use of a Bayesian framework.

In this article we explore whether we can modify the approach of using independent Simon designs for each basket to
improve the efficiency of the trial overall. Our fundamental premise is that efficiencies are possible by aggregating the
information from separate baskets for which we believe, based on an interim analysis, the drug has similar efficacy.
This potential aggregation allows us, in the second stage of the trial, to employ a much smaller sample size to obtain
the necessary power to demonstrate clinical efficacy overall. However the relative trade-offs are complex, since such
aggregation diminishes the power of the study to distinguish effects in different baskets. Furthermore, the relative
efficiencies and classification accuracies depend on the true configuration of effects, i.e. the actual number of baskets in
which the drug is efficacious. As a result there is no uniformly most powerful design strategy. Nonetheless we endeavor to
demonstrate that our aggregation strategy has a large payoff in efficiency when the drug is effective in all or most baskets,
at the cost of modestly reduced power when the efficacy of the drug is limited to a single or very few baskets.

2. Methods

2.1. Study Design Overview

We evaluate an adaptive study design that makes use of an interim assessment of the heterogeneity of treatment effects
across baskets. We assume that the first stage of the study is similar to a parallel, independent two-stage Simon design,
which is used for our reference design further detailed in Section 2.5. After the first stage when each basket has accrued a
modest number of participants we evaluate the heterogeneity of response rates across baskets. On the basis of this, we make
several key decisions. First, we determine whether the results support the premise that the drug’s effect is similar across
baskets. If the answer to this question is yes, then we either terminate the trial for futility if the overall response rate is low
or continue to the second stage, in which patients are accrued from all baskets and analyzed for a unitary effectiveness at
the end of the trial. If, on the other hand, the evidence suggests heterogeneity of efficacy across baskets, then we continue
the trial only for baskets with interim evidence of efficacy and analyze these continuing baskets separately at the end of
the trial. The decision points are outlined schematically in Figure 1.

2.2. Decision Rules and Design Parameters

We assume that there are K baskets under consideration and that in each basket the true response rate 6y, for k = 1,..., K
is either at a null value 6, or at an effective value 6,. The decision nodes in all admissible designs are created (via a
computational search) to possess an overall false positive rate of «. That is « represents the probability that at least one
basket will be declared effective when in fact the drug possesses no efficacy for all baskets considered, i.e., 8 = 6y Vk.
For our notation, we use an upper case N to refer to the total number of patients across all baskéloshsbxwkhaiBerkelRywlgetronic Press
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Figure 1. Flow chart of proposed design. See Section 2.2 for specific details.

case n to refer to the number of patients in an individual basket. We define V3 to be the total number of patients across
all baskets in stage 1 and we define n to be the stage 1 sample size for basket k, so that N; = E,{;l nig. Similarly, we
define N> to be the total number of patients across all baskets in stage 2 in the homogeneous track and define nqj to be
the stage 2 sample size for basket k in the heterogeneous track.

The first decision node we reach in our design is the interim assessment of heterogeneity, depicted as (a) in Figure 1.
Here, based on our assessment we will select a design path that treats baskets as either homogeneous or heterogeneous.
The design parameter used to select the most appropriate path is the critical value for an exact test of a K x 2 contigency
table. We define the design parameter for decision node (a) as v and explore our design for v on the domain of (0,1).
Here, v essentially functions as a tuning parameter optimized over its domain to achieve desired operating characteristics,
further discussed in the Supplementary Materials. We note that for larger values of + our design is more likely to pursue

the heterogeneous design path.

Within the homogeneous and heterogeneous design paths, there are two more decision nodes. For the heterogeneous
design path, the next decision node we encounter is the basket-specific stopping rule for futility, depicted as (b) in Figure
1. In this design path, we have determined the response rates between baskets are different enough that we should evaluate
baskets independently. For each individual basket, we decide if we should stop the trial for that basket due to lack of
responsiveness to the drug or continue to stage 2. The design parameter necessary for decision node (b) is rg, defining the
number of responses (in a single basket) needed in stage 1 to warrant enrolling additional patients in stage 2. If accrual
rates or null response rates vary by basket, we can consider a separate stopping rule for each basket &, i.e., rgy. Let us
define K* as the subset of baskets continuing to stage 2. For baskets that display encouraging response rates, we enroll
and treat no patients in stage 2, for all £ € K*. At study completion, we have our final decision node to evaluate the
drug’s activity for each remaining basket, depicted as (d) in Figure 1. We evaluate the réiigifhiesdukireess sempopkehiansy/paperst
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separately using Binomial exact tests, with a correction for multiple comparisons. At node (d), our design parameter is
the significance level for each individual test, defined as aig/K™; alternate corrections to control the false positive error
rate could be considered here.

For the homogeneous design path, the decision node following our heterogeneity assessment (a) is again a futility
rule. However, this rule applies to all baskets collectively, depicted as (c) in Figure 1. Our design parameter for decision
node (c) is the critical value for the one-sample Binomial exact test, defined as r¢. We select r¢ based on the stage 1
sample size N1 and the null response rate 6, further detailed in Section 3.1. If we determine that stage 1 results appear
futile, we stop the trial in all baskets and the study is complete. However, if we determine that stage 1 results appear
encouraging, we enroll and treat an additional total of N» patients sampled from all baskets. At study completion, we
have our final decision node to evaluate the drug’s activity overall, depicted as (e) in Figure 1. We evaluate the overall
response rate using a Binomial exact test and all available data. At node (e), our design parameter is the significance level
for the one-sample test for efficacy using all combined baskets, defined as . Note that in this path we either declare that
the drug is active in all baskets or that it is active in none. We provide a glossary of all of the described design parameters

for quick reference in Table 1.

2.3. Performance Measures

In the setting of multiple baskets there is no clear analog of the conventional type 1 and type 2 error rates. We can consider
the null scenario as being the case when the drug does not work in any of the baskets. However, there is a composite of
alternative scenarios that must be considered simultaneously, such as that the drug may only work in 1 basket, or that
it works in 2 baskets, and so on. The following three metrics are used to construct our proposed design and evaluate its
performance under various scenarios: family wise error rate (FWER), marginal power (Py), and expected trial sample
size (EN). The family wise error rate (FWER) is defined as the probability of incorrectly declaring activity in one or
more baskets when in fact the drug does not work in any basket, previously defined as «. The marginal power (Py;) for
basket £ is defined as the probability of correctly declaring activity in basket k£ when in fact the drug works in basket k.
Other metrics we consider for comparing the operating characteristics are the expected trial duration (ET) and average
trial sensitivity and specificity, defined as the sensitivity and specificity of the K decisions made for all baskets in a trial,

averaged over all simulations.

2.4. Optimization

In our proposed design, there are 8 unknown design parameters: Ny, nog, No,y,7s,7c, as, @¢ that must be optimized
to achieve the desired operating characteristics. Due to computational issues and practical limits on design parameters,
we elected to fix four of the design parameters: N1, N3, g, rc, using logical arguments and preliminary simulations. For
example, rg (the number of responders in an individual basket needed in stage 1 to continue to stage 2) must be defined

on the space [0,n;;]. We explore the sensitivity of these design parameters in the Supplementary Materials.

We chose a modest value for i, the total number of patients in stage 1, to best reflect common practice. We fix
N3, the total number of stage 2 patients for the homogeneous design track, to be smaller than ), .. no; for K*
containing more than 1 basket, since the homogeneous design track uses a pooled analysis and thus can achieve higher
power using fewer patients per basket. We further reduce the dimensionality of the design parameters by fixing the
heterogeneous and homogeneous design tracks’ stopping rules. These stopping rules satisfy clinical investigators’ desire
to both avoid erroneously missing an active basket while at the same time, minimizing patients exposure to an ineffective
drug. In the heterogeneous design track we opted for a rule in which a basket should continue to stage 2 if there is any
evidence of response (s > 1) in the first ny;, patients for each basket k = 1, ..., K. We thus declare futility for individual
baskets with no responders in stage 1. Similarly, we fix the homogeneous design path’s stoppid@sedeidhsderkeley Higctronic Press
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which equivalently requires around 1 responder per basket in order to continue all baskets to stage 2. After fixing these
four design parameters, we determine the remaining four design parameters that optimize the operating characteristics
in terms of power and sample size and declare the corresponding design as optimal. This optimization is restricted to
designs that are calibrated to achieve the same FWER as the reference design (see Section 2.5 below) and the same
power when the drug is active specifically in A = 2 baskets, while ensuring that the power achieves a minimum target
when the drug is active in only a single basket (A = 1), where A is the number of baskets in which the drug truly works.
These restrictions are suitable when there are K = 5 baskets. Other calibration strategies are more suitable for trials with
larger numbers of baskets. Further details describing the optimization of the remaining four design parameters can be
found in the Supplementary Materials. We can potentially increase the number of optimal parameters, while reducing the
computational time by considering simulated annealing with a well-constructed objective function. This is of interest for
future work.

We calculate the expected trial sample size (EN) using techniques similar to Simon et al. [16], except that for our
design we need to account for the two possible design paths. To account for different accrual rates across baskets in
practice, we assume patients from basket k enter the trial according to a Poisson distribution with rate parameter \j, so
that the inter-patient arrival times in basket k follow an exponential distribution with rate parameter 1/\x. Define T to be

the trial duration (in months) for a single trial, calculated as:
T = mazeck {stage 1 trial time for basket k} + maxyc i {stage 2 trial time for basket &}

The expected trial duration ET is then the average trial duration over all simulated trials.

2.5. Reference Design

For our reference design, we assume parallel, independent optimal Simon two-stage designs are planned and carried out
for each basket [16]. For each individual basket, we assume a type 1 error rate of /K, so that the FWER is controlled at
« for K baskets; we assume a type 2 error rate of 3, so that the desired (marginal) power per basket is 1 — 5. With these
specifications, each basket will enroll and treat n; p patients in stage 1 and if 1, responders are observed, enroll and treat
ngp patients in stage 2. We declare the drug works in basket k if there are at least r;, responders in the k" basket. Specific
details can be found in Section 3.1. We use the function ph2simon from the R package clinfun to calculate the appropriate

design parameters [17].

3. Operating Characteristics

In the following, we compare the operating characteristics of the proposed design with the reference design, based on the

setting in which there are K = 5 baskets.

3.1. Simulation Details

We assume that in each basket the true response rate 6 for £k =1,..., K is either at a null value 6y = 0.15 or at an
effective value 6, = 0.45 and we focus on the setting where K = 5. We adapt our specific example to resemble the Hyman
et al. basket trial, discussed in Section 1. Consequently, we set the total stage 1 sample size to be N; = 35 patients, so
that with equal accrual rates each basket should accrue on average ni;, = 7 patients in the first stage, for k =1,..., K.
Furthermore, we set the total stage 2 sample size for the homogeneous design path to be No = 20 patients, so that with
equal accrual rates each basket should accrue on average 4 patients in the second stage. With these specifications, the
required number of responders in stage 1 for the homogeneous design path, in order t&&HbifitietsA1tPbrIskers/ RyKeeRiRst R/ Paper31
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is set to be rc = K (= 5) patients. For the heterogeneous design path, the required number of responders in stage 1 in
order to continue an individual basket to stage 2 is set to be rg = 1 responders in the first ny; = 7 patients. In simulation
studies, we explored using ni; = 6,7, 8,9 patients per basket (or N7 = 30, 35,40, 45) and N, = 20, 25, 30 but we elected
to use 1, = 7 and No = 20. We note that increases in V2 display larger increases in the expected trial sample size (EN)
with negligible gains in marginal power (P},), where P}, is the power to detect activity in the k" basket, and where lower
numbered baskets are the active ones. Thus when A = 1, basket &k = 1 is active and baskets & = 2,...,5 are inactive;
when A = 2, baskets & = 1, 2 are active and baskets k = 3, 4, 5 are inactive; etc.

For the reference design, these specifications correspond to requiring r1; = 3 responders in the first n;p = 9 patients to
continue to stage 2; and requiring 7 = 9 responders over all 27 patients, to declare the drug works in the k*" basket at
study completion. We calibrate our proposed design against the reference design such that & = 5% in both when there are
A = 0 baskets in which the drug is truly active and the power is 1 — § = 80% in both the reference and proposed design
when there are A = 2 baskets in which the drug is truly active.

We explored calibrating our design for other values of A, such as A =1 or 3 truly active baskets, but found that
calibrating under the A = 2 active setting produced desirable and robust operating characteristics for the other alternative
scenarios. Due to the pooling in our proposed design, the marginal power is an increasing function of the number of
baskets in which the drug is truly active, with the maximum power achieved when A = 5. Since we calibrate to achieve
1 — B power for the setting of A = 2, the marginal power is less than 1 — 8 when the drug is active in only one basket
(A =1). To address this issue we use the concept of minimum acceptable (marginal) power: (1 — 3).,:, and restrict
candidate designs to those for which the marginal power is > (1 — )., for the case when the drug only works in a
single basket (A = 1). We have assumed that (1 — 3),,;, = 70% marginal power is acceptable when A = 1. To construct
and calibrate our design, we assume equal accrual rates for all baskets, i.e., \y = 2 for k =1, ..., K, corresponding to an
average enrollment of 2 patients per month for each basket.

Often times investigators can expect unequal accrual rates across baskets. This is especially important to consider
in our design at the interim assessment of heterogeneity. Stopping and waiting for all baskets to accrue an equal number
of patients in stage 1 is not ideal and can be impractical if the mutation is rare in some diseases. Therefore, we propose
guidelines to avoid such pitfalls. We assumed that the heterogeneity assessment is completed after N7 patients have been
treated with a minimum of 3 patients per basket. With the small sample sizes in stage 1, the heterogeneity assessment
can be sensitive to the response rates of baskets with larger sample sizes. Therefore, we suggest a maximum sample size
per basket as well. For K = 5 baskets with N; = 35 patients over all baskets, we assume a maximum of 10 patients in
any individual basket in stage 1. Similarly, for the homogeneous design track, we suggest the one-sample test for efficacy
should be performed after N, = 20 patients have been treated and a minimum of 1 patient per basket; we assumed a
maximum of 6 patients per basket to avoid a single basket dominating the overall response rate. These minimum and
maximum patient requirements can be tailored in consideration of the numbers of patients in stage 1 and 2 and expected

accrual rates.

We use 1000 simulated trials both to construct our design and also to evaluate and compare the optimal and reference
designs’ operating characteristics. With the preceding requirements and using the approach detailed in the Supplementary
Materials, we found the optimal design in the setting of 5 baskets with null and active response rates of 15% and 45%,
respectively, leads to ng, = 15 patients, v = 0.52, ag = 0.07, and a.c = 0.05. Thus, the optimal design sets the following
parameters: N1 = 35, 7 = 0.52, nop, = 15, rg = 1, ag = 0.07, rc = 5, No = 20, and a¢ = 0.05, that lead to the smallest
expected sample size while ensuring that the FWER < o = 5% and the marginal power > 8 = 80% when A > 2. In the
next section, we compare the operating characteristics of the reference and proposed designs.
Hosted by The Berkeley Electronic Press
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We acknowledge the first stage of the reference design is larger than the first stage of our proposed design, however,
this is because we calibrate the two designs to have comparable FWER when A = 0 and power when A = 2 in order to

evaluate the efficiencies gained in the total sample size.

3.2. Results

We present 6 scenarios: the null scenario, i.e., “0 Active”, and five alternative scenarios, i.e., “1 Active”, ..., “5 Active”,
where without loss of generality Basket 1 is the active basket when A = 1, Baskets 1 and 2 are the active baskets when
A = 2, and so forth. Our proposed design controls the FWER weakly. That is, FWER < « (= 5%) under the null scenario,
i.e., no active baskets (A = 0).

3.2.1. Equal Accrual Rates Initially, we assume equal accrual rates, i.e., A\, = 2, for k =1, ..., K. This specification of
A corresponds to an average accrual of 2 patients per month for each basket. The corresponding results for the proposed
and reference designs are displayed in Table 2. In Table 2, under the null scenario when the drug does not work in any
of the baskets, we see our empirical family wise error rate is controlled at the nominal level, & = 5%. In this scenario,
our proposed design requires an average of 58 patients and 7.0 months to complete (last two columns). Alternatively,
for the reference design under the null scenario in Table 2, we see its empirical family wise error rate is also controlled
at the nominal level, & = 5%. Under the null scenario, the reference design requires an average of 58 patients and 10.4
months to complete. We see the reference design’s false positive rates in each basket are controlled at 1% (the nominal
a/K = 1% level). For our proposed design, the false positive rates in each basket are slightly higher (2%) when the drug
is inactive (A = 0).

For the setting in which the drug works in only one basket, i.e., A = 1, we see our empirical marginal power in Basket 1
(P1 =70%) achieves the nominal minimum power level 70%. In this scenario, our proposed design requires an average
74 patients and 9.5 months to complete. Alternatively, for the reference design, we see its empirical marginal power for
Basket 1 is 80% and the design would require an average 69 patients and 13.3 months to complete. This is a difficult
scenario for any design that considers aggregating baskets, since a majority of the baskets display homogeneous futile
results. Our ideal design path for this scenario is to use separate analyses. Next in Table 2, we see our proposed design is
properly calibrated under the A = 2 active scenario, displaying 80% marginal power for Baskets 1 and 2. In this scenario,
our proposed design requires an average of 83 patients and 10.4 months to complete. The reference design displays
81-82% marginal power for Baskets 1 and 2 and requires an average of 83 patients and 14.8 months to complete. When
the drug truly works in 3 baskets, i.e., A = 3, we see a 3-4% increase in marginal power (across all active baskets: Baskets
1, 2, and 3) using 10% fewer patients in our proposed design compared to the reference design. When A = 4, we see a
1-6% increase in marginal power (across all active baskets) using 19% fewer patients in our proposed design compared to
the reference design. Lastly, when the drug truly works in all 5 baskets, we see a 6-9% increase in marginal power (across
all baskets) using 36% fewer patients in our proposed design compared to the reference design. While the reference

design’s marginal power is set to be 80%, we note the empirical power varies between 79-84% due to simulated variability.

Table 3 displays the sensitivities and specificities characterizing the accuracies of classifying active versus inactive
baskets in a trial. The reference design maintains 99% specificity and around 80% sensitivity over all scenarios. For our
proposed design, we see comparable specificity under the null (98%). However, our specificity decreases as the number
of active baskets increases, due to pooling. Conversely, we see the sensitivity of our proposed design increases as the
number of baskets increases.

Due to the pooling in our proposed design, as the number of baskets in which thdtir{giopsaterearesieasvemiskesbinsy/paperst




Statistics
Cunanan, lasonos, Shen, Begg, Gonen lIl M@dlClne

we see an increase in our ability to correctly identify these baskets at reduced sample sizes. Conversely, we see an increase
in the number of false positives occurring in the few baskets where the drug does not work. We believe that these false
positives would be identifiable in a secondary analysis. Furthermore, we believe this is concordant with our perception
that the primary objective of investigators is to avoid missing active baskets. We note that an additional input parameter
could be incorporated that defines the maximum false positive rate, i.e., ay,q,. Then, our design would be controlled
strongly at a4, Here, we would control the number of false positives at o, When A = 4, since this is the scenario we

are most likely to make false positive errors due to pooling.

On a final note, while the proposed and reference designs were not calibrated to have comparable expected trial
durations since they were calibrated for FWER and power, we notice the dramatically reduced expected trial durations
for the proposed design. This is due in large part to the reduced sample sizes that result from pooling in stage 2 following
an interim decision that the baskets are homogeneous.

3.2.2. Different Accrual Rates A challenge to our proposed design is the adverse consequences of unequal accrual rates
to baskets. To address this concern, we vary the accrual rates across baskets. We considered two extremes: (i) the setting
when the inactive basket(s) have the fastest accrual rate(s), and conversely, (ii) the setting when the active basket(s) have
the fastest accrual rate(s). For (i) we assume the following accrual rates: A\; =1, Ao =1, A3 =1, Ay =2, A5 = 3, for
basket k = 1,2, 3,4, 5, respectively. Alternatively, for (ii) we assume: \; = 3, Ay = 2, A3 = 1, Ay = 1, A5 = 1, for basket
k=1,2,3,4,5, respectively. Results are displayed in Tables 4 and 5.

The most noticeable effect of variable accrual rates is a substantial increase in the trial duration. This occurs for
both the proposed and reference design. However, the other trends are largely preserved. The proposed design continues
to deliver increased power with a reduced trial duration when A > 3 at the expense of reduced power when A = 1. These
trends are somewhat stronger when the fast accruing baskets are the ones in which the drug is active, i.e., setting (i) versus
setting (ii).

4. Software

We have developed and are making available R code to facilitate the calculation of optimal design parameters
(currently available at https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/basket-trials). The
input specifications are the number of baskets (K), the specified response rates representing absence of activity (6y) and
presence of activity (6,), the accrual rate(s) (we suggest using the minimum or average accrual rate across baskets), the
family wise error rate («), the target power (1 — ), and the minimum acceptable power (1 — 3).,i. The code allows
users to change the fixed design parameters: the stage 1 sample size for each basket (n1), the combined stage 2 sample
size for the homogeneous track (/V3), and the futility stopping rules (rg, r¢); but will use the default arguments if not
otherwise specified.

On the basis of these inputs the program will calculate the remaining parameters that define the optimal study
design, namely the stage 2 sample size for the heterogeneous baskets that survive futility testing (nog), the tuning
parameter for the heterogeneity assessment (vy), and the critical values for the decision regarding efficacy for the single
baskets (ag) and the combined baskets (a¢). It will also provide projections of false positive and false negative error
rates per basket and the expected sample size. Hosted by The Berkeley Electronic Press
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4.1. Calibrating Trials for Larger K

In our simulations, we focused on the case of K = 5 baskets. In this setting, we believe that calibrating the design
parameters such that the power is specified for the case where the drug is active in 2 baskets will lead to a strategy
that overall has much better properties than the reference design. If on the other hand one wishes to design a trial with,
say, K = 10 baskets, our preliminary simulations (data not shown) indicated that calibration of the design for the setting
in which the drug is active in 3 baskets is best suited. In short, the calibration strategy needs to be tuned to the total number
of baskets in the trial. In the software this is controlled by a simple indicator variable, which will calibrate the design to

achieve target power when either A =2 or A = 3.

5. Discussion

The advent of targeted therapies in response to rapid developments of knowledge about the genomics of tumors has led to
reconsideration of the design of early stage clinical trials. The merits of the old paradigm of testing new drugs separately
in different tumor sites has been replaced by an impetus to test targeted agents in patients whose tumors possess the
genomic target. Since typically the target is present in relatively small proportions of patients across multiple tumor sites,
interest in using clinical trials that encompass patients with tumors in different sites has emerged, where the goal is both
to test the efficacy of the drug and at the same time garner evidence about whether it works across the board or only in
specific types of tumors. Early basket trials of this nature have striven to test the effect of the drug by testing efficacy in
separate baskets, with the underlying assumption that proven efficacy in at least one basket is sufficient to demonstrate
success. Our research was motivated by the premise that it is possible to answer the overall question “does the drug
work?” more efficiently, using a design where an interim analysis informs us whether the drug effect is sufficiently
homogeneous across baskets. If so, we continue the trial if we determine there is encouraging evidence that a subsequent
aggregate analysis will demonstrate efficacy convincingly with a much smaller overall sample size. We believe that our
simulations demonstrate that the power to address this question can be increased while at the same time the duration of
the trial can be shortened considerably when the drug is either uniformly ineffective or effective in all or most of the
baskets.

There are, of course, trade-offs. Our design is less accurate in answering the inevitably important secondary questions
regarding the effectiveness of the drug in separate baskets. Essentially this is because the algorithm has the possibility
of aggregating effective baskets with ineffective baskets. Despite this, we believe that the large potential gains in power
for answering the primary question with substantially fewer patients makes this still an attractive design strategy in this

complex clinical setting.

We recognize that the design strategy we have advocated may not even be the most optimal one, in that we did
not optimize across all design parameters. Because of the challenging computational problems of optimizing 8 decision
criteria while simultaneously calibrating both power and family-wise error rates with the reference design we opted to fix
a number of key design parameters and optimize the design over the remaining ones. For example, we arbitrarily selected
both futility decision rules, largely based on our sense of what would be logically acceptable to investigators conducting
these trials. It is entirely possible that a more expansive optimization might lead to even greater efficiencies. Also, our
overall strategy is a strict frequentist one in which the parameter values in each basket are assumed to be either at the
specified null value or at the pre-specified alternative, with corresponding statistical tests, false positive and false negative
rates. In practice one could approach the problem in a more flexible random effects framework to make inferences about
the individual effects in each basket. The trade-offs of such an approach are topics for further research. Nonetheless
we believe that the current proposed design and analysis strategy represents a practical'&h¢/tleatatsdaricie dmpldsbingsel/ paperst
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immediately, and it is for this reason that we have made the software available.

In summary, we believe that considerable efficiencies are possible in the design of clinical trials in this new era of

precision medicine. Our proposed design offers the possibility of faster drug evaluation and approval.
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Table 1. Glossary of Terms

Notation  Definition
fo Null response rate
0, Alternative response rate
K Total number of baskets
A Number of truly active baskets
Q@ Target family wise error rate when A = 0
(1-75) Target marginal power when A = 2 (or 3 depending on K)
(1 — B)min Minimum acceptable power when A = 1
N1k Stage 1 sample size for basket &k
Ny Total stage 1 sample size
Nog Stage 2 sample size for basket k, given heterogeneous design path
Ny Total stage 2 sample size, given homogeneous design path
5 Assessment of heterogeneity tuning parameter
rs Minimum required number of responses in stage 1 for an individual basket to continue to stage 2,
given heterogeneous design path
ro Minimum required number of responses in stage 1 across all baskets to continue all baskets to stage 2,
given homogeneous design path
ag Significance level for final separate analyses (before correction for multiple comparisons),
given heterogeneous design path
ac Significance level for final combined analysis, given homogeneous design path
FWER Empirical family wise error rate
P Empirical marginal power (%) for basket k = 1,..., K
EN Expected trial sample size
ET Expected trial duration (months)

Table 2. Power and Expected Sample Size: Equal Accrual

Design Scenario | FWER Marginal Power* EN ET
(A) P, P, P; Py Py
Proposed 0 Active 5 2 2 2 2 2158 170
1 Active 70 7 7 7 7 74 9.5
2 Active 80 80 11 11 11| 83 104
3 Active 84 8 85 17 17| 8 10.5
4 Active 86 85 86 86 23| 88 10.2
5 Active 88 90 88 88 88| 78 8.3
Reference 0 Active 5 1 1 1 1 1 58 104
1 Active 79 1 2 1 2 69 133
2 Active 81 82 1 1 1 83 14.8
3 Active 80 82 81 1 1 9% 154
4 Active 82 84 80 80 1 | 108 159
5 Active 82 81 80 80 82| 121 163

* Marginal error rates for inactive baskets

http://biostats.bepress.com/mskccbiostat/paper31
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Table 3. Active/Inactive Basket Accuracy: Equal Accrual

Design Scenario (4) | TP FP FN TN Specificity Sensitivity | EN  ET
Proposed 0 Active 2 98 98 58 7.0
1 Active 14 6 6 74 93 70 74 95
2 Active 32 7 8 53 89 80 83 104
3 Active 51 7 33 83 84 86 105
4 Active 69 5 15 77 86 88 10.2
5 Active 88 12 88 78 8.3
Reference 0 Active 1 99 99 58 104
1 Active 16 1 4 79 99 79 69 133
2 Active 33 1 7 59 99 82 83 148
3 Active 48 0 12 40 99 81 9% 154
4 Active 65 0 15 20 99 81 108 15.9
5 Active 81 19 81 121 163

TP: true positive rate; FP: false positive rate; FN: false negative rate; TN: true negative rate

Table 4. Power and Expected Sample Size: Varying Accrual

Accrual Rates Scenario | FWER Marginal Power* EN ET | ENger ETges
(A) P, P, P; P, Py

@) (1,1,1,2,3) 0 Active 6 1 2 2 2 2|60 122 58 17.7
1 Active 68 6 6 6 6|75 165 69 25.6
2 Active 76 78 9 8 9 | 84 185 83 29.1
3 Active 80 81 79 13 13| 90 19.1 96 30.4
4 Active 83 83 81 88 20| 90 18.1 108 30.6
5 Active 87 87 87 90 91| 76 13.6 121 30.7

(i) (3,2,1,1,1) 0 Active 5 32 2 2 2160 11.7 58 17.7
1 Active 79 8 8 8 8 |75 162 69 17.5
2 Active 86 85 16 15 16| 79 16.6 83 18.5
3 Active 88 87 82 19 18| 84 175 96 25.9
4 Active 87 89 84 83 27| 84 167 108 28.8
5 Active 90 90 85 88 87| 75 133 121 30.6

* Marginal error rates for inactive baskets

Table 5. Active/Inactive Basket Accuracy: Varying Accrual

Accrual Rates  Scenario (A) | TP FP FN TN Specificity Sensitivity | EN  ET

@ (1,1,1,2,3) 0 Active 2 98 8 60 122
1 Active 4 5 6 75 94 68 75 16.5
2 Active 31 5 9 55 91 77 84 185
3 Active 48 5 12 35 87 80 90 19.1
4 Active 67 4 13 16 80 84 90 18.1
5 Active 89 11 89 76 13.6
(i) 3,2,1,1,1) 0 Active 2 98 98 60 11.7
1 Active 6 7 4 73 92 79 75 162
2 Active 34 9 6 5l 85 86 79  16.6
3 Active 51 8 32 81 86 84 175
4 Active 6 5 11 15 73 86 84 16.7
5 Active 88 12 88 75 13.3

TP: true positive rate; FP: false positive rate; FN: false negative rate; TN: true negative rate
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