
Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Open AccessR E S E A R C H A R T I C L E

© 2010 Kojima et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Research articleAn efficient biological pathway layout algorithm
combining grid-layout and spring embedder for
complicated cellular location information
Kaname Kojima, Masao Nagasaki* and Satoru Miyano

Abstract

Background: Graph drawing is one of the important techniques for understanding biological regulations in a cell or

among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely

used not only for pathway drawing but also for circuit placement and www visualization and so on because of the

harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension.

However, complex shapes need to be taken into account when torus-shaped location information such as nuclear

inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder

algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not

considered explicitly.

Results: We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location

information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid

points that minimizes a cost function is searched. By imposing positional constraints on grid points, location

information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder

cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the

positions and sizes of compartments at each step.

Conclusions: The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to

three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation

model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more

comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the

number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the

spring embedder algorithm due to the positional constraints. For a fair comparison, we also apply our proposed

method without positional constraints. This comparison shows that these results contain less crossings than those of

the spring embedder algorithm. We also compared layouts of the proposed algorithm with and without compartment

update and verified that latter can reach better local optima.

Background
For biological pathways such as signal transduction path-

ways, gene regulatory networks, and metabolic pathways,

one of the crucial techniques for understanding their

characteristics is to use graph visualization. Both publicly

[1] and commercially available pathway databases [2] dis-

play retrieved pathways in the form of graphs to enable

users to understand them easily. Usually, in these data-

bases, a large number of pathways are retrieved with vari-

ous types of criteria according to biologists' purposes.

However, it is laborious to manually draw graphs for each

request, and hence, automatic layout algorithms special-

ized for biological pathways are strongly desired.

Thus far, several types of drawing algorithms have been

designed for biological pathways and they have been inte-

grated in biological modeling and/or simulation software,

e.g., Cell Illustrator [3,4], Pajek [5], PATIKA [6,7], and

CADLIVE [8,9].

* Correspondence: masao@ims.u-tokyo.ac.jp

1 Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-

1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
Full list of author information is available at the end of the article

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20565884

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 2 of 15

Karp and Paley extracted biological topologies such as

linear, cyclic, and branching pathways and used them as

the backbone of the layout [10]. For chemical reaction

networks, Becker and Rojas proposed a method [11] that

uses the longest directed cycle as the backbone of the lay-

out to capture the flow of reactions. On the other hand,

Wegner and Kummer used recursively extracted small

cycles as the backbone of the layout [12], because such

cycles are known to participate in important recycling

processes. Their work has been implemented as an SBML

application [13].

Several biological properties are considered in spring

embedder approaches. The use of edge directions and

simple positional constraints has been proposed for more

general metabolic pathways [14,15]. In GOlorize [16], an

additional attractive force is applied to nodes belonging

to the same Gene Ontology class. An SBML layout exten-

sion, SBWAutoLayout [17], employs the spring embedder

approach as its layout algorithm. Schreiber et al. [18] pro-

posed to a generic layout algorithm where the spring

force cost is optimized independently in horizontal and

vertical directions. Due to the optimization strategy, the

algorithm can handle placement constraints for the bio-

logical comprehension such as horizontal or vertical

aligning of nodes, non-overlapping of nodes, and keeping

the same network motifs to some formation. Spring

embedder approaches are very popular in the field of Bio-

informatics because of the harmonized appearance of

their results. However, Li and Kurata noted that spring

embedder approaches are not suitable for generating

compact layouts of complex pathways [19]. In addition,

such approaches have a difficulty in handling complicated

positional constraints such as arranging some nodes only

on a tours-shaped region, which corresponds to cellular

membranes, e.g., nuclear inner membrane, nuclear outer

membrane, and plasma membrane.

A grid layout algorithm for biological networks was

first proposed by Li and Kurata, in which nodes of the

given graph are mapped to grid points and the locally

optimal mapping of nodes in terms of the defined cost

function is searched over all possible mappings [19]. The

cost function is defined by the weighted sum of several

components: node distances weighted according to the

graph structure and Manhattan distance [19], edge-edge

and node-edge crossings [20], rewarding scores for the

aligned nodes possessing the same biological attributes

[21], and negative inner product between directions of in-

edges and out-edges that induces the traceability of the

flows [22]. Because finding optimal mapping is NP-hard

[23] even when only edge-edge crossings are considered

in the cost function, the basic grid layout algorithm

repeatedly updates the layout by moving nodes one by

one under a greedy search strategy, and a locally optimal

layout is obtained after convergence. For efficient calcula-

tion, the cost differences calculated by checking move-

ments of a node to a grid point at the current step are

cached for calculating the cost differences at the next step

[19]. Swapping the positions of two nodes is additionally

considered at update steps for the better local optimum

without increasing the time complexity [21], whereas

Barsky et al. restricted movements of a node to stochasti-

cally selected grid points at update steps [24]. Further, the

reduction of time complexity is accomplished by using

sweep calculation algorithm [22], which can efficiently

calculate edge-edge and node-edge crossings and the

Manhattan distance. In addition, grid layout algorithms

can deal with complicated positional constraints that are

often assumed in biological networks as sub-cellular

localization information, and thus, they succeed in gener-

ating compact and biologically comprehensible layouts.

We propose a new grid-layout-based spring embedder

algorithm that considers the spring force cost as a com-

ponent of the cost function of a grid-layout algorithm.

Hence, the cost function consists of the spring force cost

and edge-edge and node-edge crossings. As stated above,

the sweep calculation can be used to efficiently count the

number of edge-edge and node-edge crossings and calcu-

late the Manhattan distance. However, the sweep calcula-

tion cannot be used to calculate the spring force.

Therefore, we devise a new caching approach for calcu-

lating the spring force and propose a new layout algo-

rithm having the same time complexity.

The remainder of this paper is organized as follows. In

the Results and Discussion section, we discuss the perfor-

mance of the proposed algorithm by comparing it with

that of the conventional spring embedder approach on

three biological networks. The conclusions of our work

are presented in the Conclusions section. Finally, the

Methods section describes the procedure of the proposed

algorithm and its time complexity.

Results and Discussion
Experimental settings and results

We compare our proposed algorithm (Grid Layout) with

a spring embedder layout algorithm [25] (Spring). As the

attraction force Fa(d) and repulsion force Fr(d), d2 and 1/

d2 are used, respectively, where d is the distance between

nodes (here, the Euclidean distance is adopted). We use

three biological networks that were constructed from

curated knowledge in biological literatures:

• Endothelial cell model [26]: 221 nodes and 274

edges.

• Fas-induced apoptosis model [27]: 84 nodes and 93

edges.

• Cell fate simulation model of C. elegans [28]: 53

nodes and 59 edges.

Grid resolutions of 73 × 81, 39 × 29, and 26 × 21 are

used for the endothelial cell model, Fas-induced apopto-

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 3 of 15

sis model, and cell fate simulation model of C. elegans,

respectively. Both algorithms are implemented in Java

and experiments were performed on a Core micro-archi-

tecture-based Xeon 3.0 GHz processor. For each model,

ten random layouts are generated and applied to Grid

Layout and Spring. Since node-edge crossings cause the

difficulty on distinguishing the node connections, we

consider node-edge crossings as more problematic factor

than edge-edge crossings and then set more weight for

node-edge crossings than edge-edge crossings in the cost

function. Specifically, weight for node-edge crossings wn

is two times as much as that for edge-edge crossing we,

i.e., wn = 2 × we. For the three pathway networks, the

numbers of rows and columns of the grid are determined

by setting the grid interval as the size of basic elements

and setting the canvas size as the size used in the manu-

ally created layout. Li and Kurata stated that the desirable

numbers of rows and columns of grid are proportional to

[19].

Since by calculating (the number of row + the number

of columns) for the three pathways we have (73 +

81)/ = 10.76, (39 + 39)/ = 7.42, (26 + 21)/

 = 6.46, our grid resolutions somehow follow the

assumption in [19]. The repulsion force is defined to be

inversely proportional to the square of distance between

nodes, and the force comes from all nodes. As we dis-

cussed, the grid size is proportional to and the

repulsion force does not depend on the grid size if nodes

are evenly distributed in the canvas ((1/)2 × |V| =

1). Thus, we use the same weight for repulsion force (wr =

1) among three networks. Remnant weights to be

adjusted are attraction force wa and edge-edge crossings

we. We empirically select their parameter ranges as wa =

{1, 5, 10, 12} and we = {10, 50}, respectively. Figures 1, 2,

and 3 respectively show the layouts of the Fas-induced

apoptosis model, cell fate simulation model of C. elegans,

and endothelial cell model obtained from Grid Layout

and Spring, which has the minimum cost among the

results from ten random layouts. Note that here only a

resulting layout under one of the above parameter sets is

given for each model (for Fas-induced apoptosis model

wa = 1, wr = 1, we = 10, wn = 20; cell fate simulation model

of C. elegans wa = 1, wr = 1, we = 50, wn = 100; and

endothelial cell model wa = 12, wr = 1, we = 50, wn = 100).

For results under other parameter sets, see Section 1 of

Additional file 1.

The resulting layouts are generated using an XML for-

mat called Cell System Markup Language (CSML), and

these can be directly displayed by using the Cell Illustra-

tor Player in a Web browser. All URL links are listed in

Table 1. In the layouts, the cellular membrane, nucleus,

mitochondria, and Golgi apparatus are depicted by a blue

frame, yellow circle, red oval, and brown crab-shaped

object, respectively. In order to analyze the number of

crossings in the layouts and the running time, ten random

layouts for each model are also applied to Grid Layout

without positional constraints (hereafter called Grid Lay-

out NL). For these random layouts, we compare the num-

bers of edge-edge and node-edge crossings in the

resulting layouts and the running time of Grid Layout and

Spring. These comparisons are summarized in Figures 4,

5, and 6 for the Fas-induced apoptosis model, cell fate

simulation model of C. elegans, and endothelial cell

model, respectively.

As shown in the two left-hand side plots of Figures 4, 5,

and 6, the resulting layouts from Grid Layout tend to con-

tain more edge-edge and node-edge crossings than those

from Spring. This may be because positional constraints

restrict the search space of Grid Layout. This hypothesis

is also reinforced by the results of Grid Layout NL, which

contains a lesser or, occasionally a comparable number of

crossings as compared to those of the spring embedder

algorithm among three cases on both edge-edge and

node-edge crossings.

Although the above comparison appears to suggest that

positional constraints degrade the quality of the resulting

layouts, in the next subsection, we show that how loca-

tion information serves to improve the understandability

of biological networks while surveying the results of Grid

Layout.

Dynamic resizing and repositioning of compartments

Dynamic resizing and repositioning of compartments are

considered in our proposed algorithm. Li and Kurata [19]

stated that as an empirical rule, setting vertical and hori-

zontal sizes of canvas proportional to the square root of

the number of nodes is suitable for most networks. This

rule can also be applied to size the compartment accord-

ing to the nodes localized in it. However, if nodes in a

compartment are densely connected, they tend to create

cluster, and thus they do not fill out the space optimally.

By making the size of the compartment smaller, better

quality layout will be obtained. On the other hand, if

nodes are distributed uniformly enough in the compart-

ment, its enlargement might be required for the better

quality of the layout. Also, if the center of the compart-

ment is away from the nodes' center of gravity, it might

spoil the quality of the resulting layout. Thus, we consider

dynamic update of sizes and positions of compartments

iteratively at each step. Hereafter, we call Grid Layout

with dynamic compartment update as GDC. Figures 7, 8,

and 9 show the minimum cost resulting layouts obtained

from GDC for Fas-induced apoptosis model, cell fate sim-

| |V

| |V

221 84

53

| |V

| |V

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 4 of 15

ulation model of C. elegans, and endothelial cell model,

respectively. Weights for the cost functions are the same

as those of the experiments in the previous section. Initial

sizes and positions of the compartments are the same as

in layouts for Grid Layout. In this study, we keep the size

and position of the extracellular or cellular membrane,

and then update the sizes and positions of other compo-

nents inside of the cellular membrane such as nucleus,

mitochondria, and Golgi apparatus. The detailed proce-

dures of dynamic compartment update are in the follow-

ing method section. As a common property in the layouts

of the three models, nodes of the layouts of GDC are cen-

tered on each compartment, whereas nodes of the layouts

Grid Layout tend to be positioned only on a part of each

compartment. In addition, the compartments are well

resized and then are filled out with the nodes enough,

e.g., nodes on nucleus in Figure 9, comparing to nodes on

nucleus in the layout image of Figure 3(a). We also com-

pare the total cost, the number of edge-edge crossings,

the number of node-edge crossings, and computational

time of the resulting layouts of Grid Layout and GDC.

The box plots of total cost, the number of edge-edge

crossings, the number of node-edge crossings, and com-

putational time are summarized in Figures 10, 11, and 12.

Although GDC requires slightly more computational

time than Grid Layout, GDC provides better or competi-

tive results in other indicators. Since the repositioning of

compartments is allowed in GDC, the positions of com-

partments are moved to more desirable positions, which

contributes to the better cost, the number of edge-edge

crossings, and the number of node-edge crossings. On

the other hand, since the consideration of the dynamic

compartment update spreads out the search space of the

layouts, the more steps are required to reach local

optima.

Discussion
The first model shown in Figure 1 is a famous signal

transduction pathway, apoptosis, which is known to par-

ticipate in various biological processes such as develop-

ment, maintenance of tissue homeostasis, and

elimination of cancer cells. Malfunctions of apoptosis

have been implicated in many forms of human diseases

such as neurodegenerative diseases, AIDS, and ischemic

stroke. Apoptosis is reportedly caused by various induc-

ers such as chemical compounds, proteins, or removal of

Figure 1 Resulting layouts of Fas-induced apoptosis model obtained from Grid Layout (a) and Spring (b). Because the spring embedder algo-

rithm does not consider location information, this location information is not shown in its resulting layout.

(a) (b)

Figure 1

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 5 of 15

NGF. The biochemical pathways of apoptosis are com-

plex and depend on both the cells and the inducers. In

particular Fas-induced apoptosis has been studied in

detail and its simulation model has been proposed [27].

Fas ligands, which usually exist as trimmers in the extra-

cellular region, bind and activate their receptors by

inducing receptor trimerization in the cytoplasm mem-

brane region. Activated receptors recruit adaptor mole-

cules such as Fas-associating protein with death domain

(FADD), which recruit procaspase-8 to the receptor com-

plex, where it undergoes autocatalytic activation in the

cytoplasm. Activated caspase-8 activates caspase-3

through two pathways. In the complex pathway, caspase-

8 cleaves the Bcl-2 interacting protein and its COOH-ter-

minal part translocates to the mitochondria where it trig-

gers the release of cytochrome c. The cytochrome c

released from the mitochondria binds to apoptotic pro-

tease activating factor-1 (Apaf-1) together with dATP and

procaspase-9 and activates caspase-9 in the cytoplasm.

Caspase-9 cleaves procaspase-3 and activates caspase-3.

In other pathway, caspase-8 cleaves procaspase-3 directly

and activates it. In the nucleus, caspase-3 cleaves DNA

fragmentation factor (DFF) 45 in a heterodimeric factor

of DFF40 and DFF45. The cleaved DFF45 dissociates

from DFF40, inducing the oligomerization of DFF40 that

has DNase activity. The active DFF40 oligomer causes

internucleosomal DNA fragmentation, which is an apop-

totic hallmark indicative of chromatin condensation. As

stated above, these reaction events are strictly regulated

in specific cellular locations, and therefore, the corre-

sponding location information cannot be ignored in the

resulting layout. Figure 1(a) clearly shows the regulation

of these events in each cellular location, i.e., plasma mem-

brane, cytoplasm, mitochondria, and nucleus. In con-

trast, Figure 1(b) shows the two different flows by Fas-

induced apoptosis; however, it is difficult to capture the

location information of each event.

Figure 2 shows the cell fate determination model of two

gustatory neurons of C. elegans - ASE left (ASEL) and

ASE right (ASER) [28]. These neurons are morphologi-

cally bilaterally symmetric but physically asymmetric in

function, and their fates are strictly regulated by the dou-

ble negative feedback loop (DNFL), the main path of

which consists of four steps: (i) activation of DIE-1 pro-

tein leads to the activation of lsy-6 miRNA in the nucleus;

(ii) lsy-6 miRNA is transported from the nucleus and

inhibits the translation of cog-1 mRNA into COG-1 pro-

tein; (iii) if the COG-1 protein is not suppressed, then it is

translocated into the nucleus and activates the transcrip-

tion of mir-273 miRNA in the nucleus; and (iv) mir-273

miRNA is transported from the nucleus and inhibits the

translation of die-1 mRNA; this completes the loop to (i).

Figure 2 Resulting layouts of cell fate simulation model of C. elegans obtained from Grid Layout (a) and Spring (b). Because the spring em-

bedder algorithm does not consider location information, this location information is not shown in its resulting layout.

(a) (b)

Figure 2

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 6 of 15

Figure 3 Resulting layouts of endothelial cell model obtained from Grid Layout (a) and Spring (b). Because the spring embedder algorithm

does not consider location information, this location information is not shown in its resulting layout.

(a)

GTP

GDP

AP-1

Golgi

(b)

GTP

GDP

Figure 3

K
o

ji
m

a
 e

t
a

l.
B

M
C

 B
io

in
fo

rm
a

ti
cs

 2
0

1
0

, 1
1

:3
3

5

h
tt

p
:/

/w
w

w
.b

io
m

e
d

ce
n

tr
a

l.c
o

m
/1

4
7

1
-2

1
0

5
/1

1
/3

3
5

P
a

g
e

 7
 o

f
1

5

Table 1: Summary of layout results.

Model/Algorithm URL

Fas-induced apoptosis model/Grid Layout https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/apoptosisgrid.csml

Fas-induced apoptosis model/Spring https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/apoptosisspring.csml

Fas-induced apoptosis model/GDC https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/apoptosisgdc.csml

cell fate simulation model of C. elegans/Grid Layout https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/elegansgrid.csml

cell fate simulation model of C. elegans/Spring https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/elegansspring.csml

cell fate simulation model of C. elegans/GDC https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/elegansgdc.csml

endothelial cell model/Grid Layout https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/endothelialgrid.csml

endothelial cell model/Spring https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/endothelialspring.csml

endothelial cell model/GDC https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/

csml30/gl/endothelialgdc.csml

The resulting layouts of Grid Layout and Spring for the Fas-induced apoptosis model, cell fate simulation model of C. elegans, and endothelial cell model are available at the following links.

https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/apoptosisgrid.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/apoptosisspring.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/apoptosisgdc.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/elegansgrid.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/elegansspring.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/elegansgdc.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/endothelialgrid.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/endothelialspring.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/endothelialgdc.csml

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 8 of 15

In a manner similar to apoptosis, these DNFL reaction

events are strictly regulated in specific cellular locations,

and therefore, the corresponding location information

cannot be ignored in the resulting layout. Although Fig-

ure 2(b) shows these steps, it is difficult to capture the

location information of each step. For instance, most of

the proteins and miRNAs in this model, e.g., COG-1 pro-

tein, LIM-6 protein, DIE-1 protein, mir-273 miRNA, and

lsy-6 miRNA, translocate between the nucleus and the

cytoplasm. However, such information cannot be

inferred from this figure. In contrast, Figure 2(a) shows

the regulations of these steps while keeping the cellular

location of each step, i.e., cytoplasm and nucleus.

These differences can be observed more clearly in

larger models. Figure 3 shows the responses of endothe-

lial cells to the tumor necrosis factor, with an emphasis on

the induction of endothelial leukocyte adhesion mole-

cules with more elements than in the other two models

[26]. Since adhesion molecules are usually localized on

the plasma membrane, many molecules should be on the

plasma membrane domain. Usually, external signals are

received by these adhesion molecules and transferred

into the molecules located in the cytoplasm. Finally, these

signals trigger the translation of mRNAs in the nucleus.

From the viewpoint of the density of nodes, Figure 3(b)

appears to suitably keep a uniform density of nodes.

Unfortunately, in terms of the understanding of cascading

events, Figure 3(b) does not provide completely useful

information because, due to the lack of location informa-

tion, it is difficult to interpret the network as the response

model by the tumor necrosis factor from the external

region to the nucleus via the cytoplasm. On the other

hand, as shown in Figure 3(a), our layout requires no dif-

ficulty in tracing the flow of biological cascading events

in our layout, i.e., a reader can easily interpret the net-

work as the response model of a cell from the external

region to the nucleus via the cytoplasm as a signal flow.

Conclusions
We propose a grid-layout-based spring embedder algo-

rithm that exploits the advantages on both methods, i.e.,

consideration of location information and harmonized

layouts. Not only the harmonized appearance of resulting

layouts, spring force also contributes the reduction of

crossings, which is verified by comparing two cases of

grid layout algorithms: (i) without considering distance

cost and (ii) considering only spring force. (Section 2 of

Additional file 1). Although only spring force is consid-

ered as the distance cost in this study, we can incorporate

other distance cost such as the Manhattan distance cost

in the cost function simultaneously.

Figure 4 Comparisons of number of edge-edge crossings (left), number of node-edge crossings (middle), and running time (right) for Fas-

induced apoptosis model. Numbers of edge-edge intersections and node-edge intersections and running time for Grid Layout, Spring, and Grid

Layout NL (Grid Layout considering no location information) are compared using box plots. These indicators are obtained by applying these three

algorithms to ten randomly obtained layouts of the Fas-induced apoptosis model.

5
1
0

1
5

2
0

Edge−Edge Crossing

N
o
.
o
f
C

ro
s
s
in

g
s

Grid Layout Spring Grid Layout NL

0
1

2
3

4
5

Node−Edge Crossing

N
o
.
o
f
C

ro
s
s
in

g
s

Grid Layout Spring Grid Layout NL

0
1

2
3

4
5

Running Time

S
e
c
o
n
d

Grid Layout Spring Grid Layout NL

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 9 of 15

In addition, to explicitly consider the reduction of

crossings, edge-edge and node-edge crossing costs are

included in the cost function. To calculate spring forces

among nodes, we proposed an efficient calculation

method for spring force cost with O(|V|2·h·w), and to cal-

culate other costs, we employ the sweep calculation [22],

which can count the crossings for all the possible move-

ments of a node at once. By applying the proposed algo-

rithm and spring embedder algorithm to three biological

networks, we verified that the consideration of location

information significantly improves the understandability

of a network from a biological viewpoint.

In order to realize better biological pathway layouts,

under the framework of grid layout, several useful cost

functions were proposed, e.g., (i) rewarding score for

aligned nodes in one line with the same attribute and (ii)

negative inner product of directions of in-edge and out-

edges. Feature (i) is very important for biologists because

the nodes in a biological pathway usually have biological

attributes, e.g., a node is mRNA, protein, modified pro-

tein, or complex of proteins, and they explicitly distin-

guish these components. Feature (ii) is also very

important for biochemists because it helps in under-

standing the reaction flows of the biological pathway.

These cost functions can be easily plugged in to our grid

layout algorithm without increasing the time complexity.

Furthermore, to obtain a better resulting layout, we can

also introduce the swapping operation of nodes at each

step of moving a node to a vacant grid point to increase

the search space while keeping the time order.

Our proposed algorithm succeeded in realizing the

required features for biological pathway layouts; however,

several enhancements are still required. For example,

usually, the combination and order of some biological

reactions can be grouped, and thus, this set of reactions,

e.g., phosphorylation and dephosphorylation, and related

biological elements, e.g., protein and modified protein,

can be considered as subgraphs that consume several grid

points. Although in our search strategy the final result

might fall into bad local optima, for the better local opti-

mum, we can use simulated annealing or other tech-

niques which enables escape from the bad local optima

although more computational time is required for the

final result. If we could extend the current grid layout

algorithm to allow the movement of multiple fixed struc-

tured nodes at once, then the required feature would be

realized. Our layout framework assumes that compart-

ments representing sub-cellular localizations are allo-

cated by users in advance and then the layout algorithm is

applied, but we also considered dynamic adjustment of

sizes and positions of these compartments. In this work,

the initial state of compartments are given in advance.

Figure 5 Comparisons of number of edge-edge crossings (left), number of node-edge crossings (middle), and running time (right) for cell

fate simulation model of C. elegans. Numbers of edge-edge intersections and node-edge intersections and running time for Grid Layout, Spring,

and Grid Layout NL (Grid Layout considering no location information) are compared using box plots. These indicators are obtained by applying these

three algorithms to ten randomly obtained layouts of the cell fate simulation model C. elegans.

0
5

1
0

1
5

Edge−Edge Crossing

N
o
.
o
f
C

ro
s
s
in

g
s

Grid Layout Spring Grid Layout NL

0
1

2
3

4
5

Node−Edge Crossing

N
o
.
o
f
C

ro
s
s
in

g
s

Grid Layout Spring Grid Layout NL

0
1

2
3

4
5

Running Time

S
e
c
o
n
d

Grid Layout Spring Grid Layout NL

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 10 of 15

For automatically providing their initial state, the follow-

ing approach can be considered as an example. The size

of compartment can be determined by the square root of

the number of nodes that localize in the same compart-

ment. For the positions of the compartments, we put pair

of compartments in close positions if many edges are

bridging them.

In addition, the bending of edges that enables bypassing

edge-edge and node-edge crossings has not been consid-

ered in the current grid layout algorithms. This could be

achieved by considering bends as virtual nodes and han-

dling them in a manner similar to normal nodes in search

steps.

Methods
Given a graph G = (V, E) and a grid of h rows and w col-

umns, we define a cost function for mappings of nodes to

grid points and show an algorithm that finds the mapping

of nodes, minimizing the cost function in a greedy man-

ner. The cost function is defined by the weighted sum of

four components:

(a) Attraction force Fa(d(P (v), P (u))) between pairs of

adjacent nodes v and u in the graph G, where P (v) and P

(u) are grid points to which v and u are mapped, respec-

tively, and d(P (v), P (u)) is the distance between two grid

points P (v) and P (u).

(b) Repulsion force Fr(d(P (v), P (u))) between any pairs

of nodes v and u.

(c) Number of edge-edge crossings e.f EIe(e, f), where Ie(e,

f) is a binary function that returns 1 if e and f cross with

each other and 0 otherwise.

(d) Number of node-edge crossings u V,e EIn(v, e) where

In(v, e) is a binary function that returns 1 if v and e cross

with each other and 0 otherwise.

Formally, the cost function is given by

where (v) is the set of adjacent nodes of v, and wa,

wr, we, and wn R+ are weights for the components.

Search algorithm

In grid layout, nodes are mapped to different grid points,

i.e., no grid point is occupied by more than one node. Our

algorithm optimizes the cost function by moving a node

to an empty grid point at each step in a greedy manner.

Note that, given positional constraints, nodes are allowed

w F d P v P u w F d P v

w I

a a

v V u v

r r

v u V

e e

(((), ())) (((),

, () ,∈ ∈ ∈

∑ ∑+

+

N

((,) (,),

, ,

e f w I v e

e f E

n n

v V e E∈ ∈ ∈

∑ ∑+

N

Figure 6 Comparisons of number of edge-edge crossings (left), number of node-edge crossings (middle), and running time (right) for en-

dothelial cell model. Numbers of edge-edge intersections and node-edge intersections and running time for Grid Layout, Spring, and Grid Layout

NL (Grid Layout considering no location information) are compared using box plots. These indicators are obtained by applying these three algorithms

to ten randomly obtained layouts of the endothelial cell model.

1
0
0

1
5
0

2
0
0

2
5
0

Edge−Edge Crossing

N
o
.
o
f
C

ro
s
s
in

g
s

Grid Layout Spring Grid Layout NL

5
1
0

1
5

2
0

Node−Edge Crossing

N
o
.
o
f
C

ro
s
s
in

g
s

Grid Layout Spring Grid Layout NL

2
0

4
0

6
0

8
0

Running Time

S
e
c
o
n
d

Grid Layout Spring Grid Layout NL

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 11 of 15

to be moved only to empty grid points satisfying the posi-

tional constraints, e.g., if a node is localized only in the

cellular membrane, it can be mapped only to those grid

points corresponding to cellular membrane. The above

operation can be performed by calculating delta cost,

which is the cost difference by the movement of a node to

a grid point, for all nodes and for all vacant grid points.

Although a naïve algorithm requires O(|V|2·h·w) time to

find the movement that reduces the cost most at each

step, we devise an efficient method that requires

O(|E|2·min(h, w) + h·w) time for finding the movement,

which is described below.

Efficient calculation of spring force

Repulsion force for a node v is given by

c v F d P v P ur r

u V v

() (((), ())),

\{ }

=

∈

∑

Figure 7 Resulting layouts of Fas-induced apoptosis model ob-

tained from GDC (Grid Layout with dynamic compartment up-

date). Iterative update of the sizes and positions of nucleus and

mitochondria is considered at each step.

Figure 8 Resulting layouts of cell fate simulation model of C. ele-

gans obtained from GDC (Grid Layout with dynamic compart-

ment update). Iterative update of the size and position of nucleus is

considered at each step.

Figure 9 Resulting layouts of endothelial cell model obtained

from GDC (Grid Layout with dynamic compartment update). Iter-

ative update of the sizes and positions of nucleus, mitochondria, and

Gologi apparatus are considered at each step.

GTP

GDP

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 12 of 15

Figure 10 Comparisons of total cost (left), number of edge-edge crossings (middle left), number of node-edge crossings (middle right), and

running time (right) for Fas-induced apoptosis model. Total costs, Numbers of edge-edge intersections and node-edge intersections and running

time for Grid Layout and GDC (Grid Layout with dynamic compartment update) are compared using box plots. These indicators are obtained by ap-

plying these two algorithms to ten randomly obtained layouts of the Fas-induced apoptosis model.

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Total Cost

C
o

st

Grid Layout GDC

5
1

0
1

5
2

0

Edge−Edge Crossing

N
o

. o
f

C
ro

ss
in

g
s

Grid Layout GDC
0

1
2

3
4

5

Node−Edge Crossing

N
o

. o
f

C
ro

ss
in

g
s

Grid Layout GDC

0
1

2
3

4
5

Running Time

S
e

co
n

d

Grid Layout GDC

Figure 12 Comparisons of total cost (left), number of edge-edge crossings (middle left), number of node-edge crossings (middle right), and

running time (right) for endothelial cell model. Total costs, Numbers of edge-edge intersections and node-edge intersections and running time

for Grid Layout and GDC (Grid Layout with dynamic compartment update) are compared using box plots. These indicators are obtained by applying

these two algorithms to ten randomly obtained layouts of the endothelial cell model.

3
e

+
0

5
4

e
+

0
5

5
e

+
0

5
6

e
+

0
5

7
e

+
0

5
8

e
+

0
5

Total Cost

C
o

st

Grid Layout GDC

1
0

0
1

5
0

2
0

0
2

5
0

Edge−Edge Crossing

N
o

. o
f

C
ro

ss
in

g
s

Grid Layout GDC

5
1

0
1

5

Node−Edge Crossing

N
o

. o
f

C
ro

ss
in

g
s

Grid Layout GDC

5
0

6
0

7
0

8
0

9
0

Running Time

S
e

co
n

d

Grid Layout GDC

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 13 of 15

where the function P (i) returns the grid point to which

i is mapped. Checking the movement of a node to all

the vacant grid points requires |V|·h·w calculations, and

hence, O(|V|2·h·w) time is required in total at each step.

Although the above naïve calculation has a higher time

complexity than existing grid layout algorithms, we pro-

pose an efficient calculation. When v is moved from P (v)

to q, the repulsion force for v is given by:

Because the term u VFr(d(q, P(u))) in the above equa-

tion depends on q, but not on v, by calculating u VFr(d(q,

P(u))) for all the vacant points q initially, the calculation

of cr(v) requires a constant time. The term u VFr(d(q,

P(u))) for all the vacant points requires O(|V|·h·w) time,

and |V|·h·w movements are considered at each step.

Therefore, in total, O(|V|·h·w) time is required at each

step to calculate the repulsion force.

For the attraction force, the delta cost Δv, p induced by

the movement of a node v to grid point p can be calcu-

lated by considering the attraction force between v and its

adjacent nodes. In addition, the movement of a node v

influences the delta costs only for v and its adjacent

nodes, i.e., the delta costs for its non-adjacent nodes at

the previous and current steps are the same. Thus, by

using the cached delta costs obtained at the previous step,

we can calculate the delta costs efficiently. If v is moved

from p to q at the previous step, the delta cost for the

movement of v to r can be updated by

and for a node u in (v) to r,

Efficient counting of edge-edge and node-edge crossings

The delta cost caching technique is used for counting

crossings as well. When v is moved at the previous

step, the following cases need to be considered for cal-

culating the delta costs induced by the movement of

node u.

(i) edge-edge crossing between eu Eu and ev Ev, where

Ev and Eu are the sets of edges connected to v and u,

respectively.

(ii) node-edge crossing between eu Eu and v.

(iii) node-edge crossing between ev Ev and u.

(iv) edge-edge crossing between edge e(u, v) and E\(Eu

Ev) if edge e(v, u) exists.

(v) node-edge crossing between edge e(u, v) and V\{v,

u} if edge e(v, u) exists.

In a naïve way, the crossings of the above cases are

counted in each movement of a node to a grid point.

Thus, the above cases (i), (ii), (iii), (iv), and (v) may

respectively require O(|Eu||Ev|), O(|Eu|), (|Ev|), O(E), and

O(|V|) time. Thus, each movement of a node u requires

O(|Eu||Ev|) time if u (v) and O(|Eu||Ev| + |E|) time

otherwise. Hence, in total, O(h·w·deg(v)|E|) time is

required at each step, where deg(v) is the degree of v.

These time complexities can be reduced by using more

sophisticated crossing counting algorithms [29-31]. In

this study, we employ the sweep calculation algorithm

[22], which is known to require less time complexity than

even sophisticated crossing counting algorithms under

the assumption that h and w are proportional to

and the average degree is bounded by O(|V1/4). The grid

resolution in the former assumption is commonly

employed in existing grid layout algorithms [19-22]. In

addition, because the biological networks we are moti-

vated to tackle can be modeled as scale-free networks

whose average degree is bounded by a constant value

[32], the latter assumption is reasonable.

Given an edge e, a node v connected with e, and a set of

edges F E on the grid, we consider the counting of

crossings between e and edges in F for the movement of v

to each grid point. Unlike conventional crossing counting

algorithms, the sweep calculation can simultaneously

count the crossings for all the movements of v in

O(|F|·min(h, w) + h·w) time [22]. Because node-edge

crossings can be counted in a manner similar to the case

of edge-edge crossings, by replacing the number of edges

with the number of nodes, the time complexity for count-

ing node-edge crossings is obtained. Therefore, for the

five cases mentioned above, the sweep calculation simul-

taneously counts crossings for mappings of u to q for all

grid points q in O(|Eu||Ev|·min(h, w) + h·w), O(|Eu|·min(h,

w) + h·w), O(|Eu|·min(h, w) + h·w), O(|E|·min(h, w) + h·w),

and for (v) O(|V|·min(h, w) + h·w) time, respectively.

Thus, the algorithm using sweep calculation requires

O(deg(v)|E|·min(h, w) + h·w·|V|) time at each step.

Time complexity at the initial step

The calculation of delta costs at the initial step requires

more computational time than those at latter steps

because no cached delta costs are available. Here, the

time complexity for the first step is analyzed for each

component.

c v F d q P u

F d q P u F d q P v

r r

u V v

r r

u V

() ((, ()))

((, ())) ((, ()))

\{ }

=

= −

∈

∈

∑

∑∑ .

′ = −∆ ∆ ∆v r v r v q, , , ,

N

′ = + ⋅ −

− ⋅ +

∆ ∆u r u r a a

a a

F d r q F d P u q

F d r p F d

, , (((,)) (((),)))

(((,)) (

2

2 (((),))).P u p

N

| |V

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 14 of 15

(a) Repulsion force: The computation of repulsion

forces does not rely on the cached delta costs. Thus,

O(|V|·h·w) time is required.

(b) Attraction force: Because attraction forces

between a node v and its adjacent nodes (v) are calcu-

lated, O(deg(v)) time is required for each movement of v.

Thus, O(|E|·h·w) time is required in total.

(c) Edge-edge crossing: Because crossings between

edges in Ev and other edges are checked for the move-

ment of a node v, O(|E|2·min(h, w) + h·w) time is required

by sweep calculation.

(d) Node-edge crossing: When a node v is moved, we

need to consider two cases: (i) crossings between edges in

Ev and all nodes other than v, and (ii) crossings between v,

and all the edges other than edges in Ev. Thus,

O(|E||V|·min(h, w) + h·w) time is required by sweep cal-

culation.

From the above analysis, the proposed algorithm

requires O(|E|2·min(h, w) + h·w) time at the initial step.

Procedures for resizing and repositioning of compartments

The resizing and repositioning of compartments are

mainly comprised of the following procedures:

(i) The size of each compartment is updated according

to the distribution range of nodes localized in the com-

partment.

(ii) The position of the compartment is updated in such

a way that the center of the compartment is close to the

center of gravity of nodes localized to it.

For the resizing of each compartment in step (i), we fist

calculate and

 where vc is a node localized to

the compartment c, bc is the center of gravity of vc (d the

nodes localized to c, and dv(·,·) and dh(·,·) return vertical

and horizontal distance of vc and bc, respectively. Then, if

sv < 0.4 × the width of the compartment and sh < 0.4 ×

the height of the compartment, the compartment is

shrunk to one level smaller size (0.95 times as large as the

current size, in our setting). On the other hand, sv < 0.9 ×

the width of the compartment and 2 value sh < 0.9 × the

height of the compartment, the compartment is enlarged

to one level larger size (1/0.95 time as large as the current

size). For the limitation of the scaling, the compartment

cannot be shrunk if its current size is smaller than 0.6

times of its original size, while it cannot be enlarged if its

size is larger than 1.5 times of its original size.

For step (ii), the position of the compartment that min-

imizes the distance of the center of compartment and the

center of gravity of nodes are searched. For an easier

implementation, we discredited the center of compart-

ment and the center of gravity of nodes to some grid

points and employed the Manhattan distance for the dis-

tance measure. Positioning is searched in the limited dis-

tance from the center of gravity, which is set to 10 in our

setting. if the compartment is resized. Also, for the search

procedure, the following two conditions must be satis-

fied:

• Every node satisfies its localization information.

• No compartments are allow to overlap.

For the efficiency and simplicity of checking the second

condition, we only consider overlapping of the rectangles

that surround the compartments. Overlapping of these

rectangles can be detected by checking if at one of four

corners are in the other rectangle. If no valid position can

be found in the above procedure, the size of the compart-

ment is turned back to its previous size of step (i) and

then step (ii) is applied again. If no valid position is still

not found, then its current size and position are used for

the next step. When several nodes are located close to the

surface of a compartment, its size and position cannot be

updated to a better condition as resizing and reposition-

ing of the compartment violate the localization of these

nodes. In order to avoid the case, we introduce the fol-

lowing cost function to nodes located within one grid dis-

tance from the surface of the compartments defined as

α·exp(-βl), where α and β are respectively set to 20·(w + r)

and 0.002 from an empirical rule and l is the number of

updated steps. Due to the above cost function, the place-

ment of nodes close to the surface of the compartments is

avoided and then the compartments can be updated to a

better size and position with higher probability. In addi-

tion, since the above cost function converges to zero with

increasing update steps l, the convergence of the search is

guaranteed.

Next, we consider the time complexity of the dynamic

compartment update. For step (i), the calculation of sh

and sc require O(|Vc|) time for a compartment c, where Vc

is the set of nodes localized to c. Resizing the compart-

ment c requires O(wc·hc) time, where wc and hc are width

and height of the compartment c. Thus, in total, O(|V| +

w·h) = O(w·h) time is required for step (i). For step (ii),

checking the violation of localization information of

every node requires O(|V) time for each movement of a

compartment even in a naïve way. In addition, at worst,

each compartment is moved to all the grid points in the

limited distance from the center of gravity and the num-

ber of them are obviously less than the number of grid

points. Checking the overlapping of a pair of compart-

ment requires constant time. Since the number of com-

partments are limited (in our setting, at most three),

which can be considered as a constant, the time complex-

ity of step (ii) requires O(w·h·|V|) time at worst case.

N

s d v bv v c cv c

= ∑ ((,))2

s d v bh h c cv c

= ∑ ((,))2

Kojima et al. BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/1471-2105/11/335

Page 15 of 15

Actually, since the number of grid points searched for the

repositioning of compartments are limited, the time com-

plexity for the dynamic compartment update is not heavy

in practice, which is supported by the comparison of run-

ning time of the proposed algorithm with and without the

dynamic compartment update in Figure 10, 11, and 12.

Additional material

Authors' contributions

KK and MN discussed the main direction of this work. SM gave idea to this work

for the further improvement. The main engine of search algorithm was imple-

mented by KK and the visualization engine was implemented by MN as a Cell

Illustrator plug-in. The final manuscript was read and approved by all authors.

Acknowledgements

Computational resources were provided by Human Genome Center, Institute

of Medical Science, University of Tokyo.

Author Details

Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1

Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

References

1. Kanehisa M: The KEGG database. Novartis Found Symposium 2002,

247:91-101.

2. Schacherer F, Choi C, Götze U, Krull M, Pistor S, Wingender E: The

TRANSPATH signal transduction database: a knowledge base on signal

transduction networks. Bioinformatics 2001, 17(11):1053-1057.

3. Doi A, Nagasaki M, Fujita S, Matsuno H, Miyano S: Genomic Object Net: II.

Modelling biopathways by hybrid functional Petri net with extension.

Applied Bioinformatics 2003, 2(3):185-188.

4. Nagasaki M, Doi A, Matsuno H, Miyano S: Genomic Object Net: I. A

platform for modelling and simulating biopathways. Applied

Bioinformatics 2003, 2(3):181-184.

5. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,

Schwikowski B, Ideker T: Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome

Research 2003, 13(11):2498-2504.

6. Demir E, Babur O, Dogrusoz U, Gursoy A, Nisanci G, Atalay RC, Ozturk M:

PATIKA: an integrated visual environment for collaborative

construction and analysis of cellular pathways. Bioinformatics 2002,

18(7):996-1003.

7. Dogrusoz U, Erson EZ, Giral E, Demir E, Babur O, Cetintas A, Colak R:

PATIKAweb: a Web interface for analyzing biological pathways through

advanced querying and visualization. Bioinformatics 2006,

22(3):374-375.

8. Kurata H, Matoba N, Shimizu N: CADLIVE for constructing a large-scale

biochemical network based on a simulation-directed notation and its

application to yeast cell cycle. Nucleic Acids Research 2003,

31(14):4071-4084.

9. Kurata H, Masaki K, Sumida Y, Iwasaki R: CADLIVE dynamic simulator:

direct link of biochemical networks to dynamic models. Genome

Research 2005, 15(4):590-600.

10. Karp PD, Paley SM: Automated drawing of metabolic pathways.

Proceedings of the 3rd International Conference on Bioinformatics and

Genome Research 1994:225-238.

11. Becker MY, Rojas I: A graph layout algorithm for drawing metabolic

pathways. Bioinformatics 2001, 17(5):461-467.

12. Wegner K, Kummer U: A new dynamical layout algorithm for complex

biochemical reaction networks. BMC Bioinformatics 2005, 6(212):.

13. Gauges R, Rost U, Sahle S, Wegner K: A model diagram layout extension

for SBML. Bioinformatics 2006, 22(15):1879-1885.

14. Genc B, Dogrusoz U: A constrained, force-directed layout algorithm for

biological pathways. Graph Drawing 2003:314-319.

15. Dogrusoz U, Gral E, Cetintas A, Civril A, Demir E: A compound graph

layout algorithm for biological pathways. Graph Drawing 2004:442-447.

16. Garcia O, Saveanu C, Cline M, Fromont-Racine M, Jacquier A, Schwikowski

B, Aittokallio T: GOlorize: a Cytoscape plug-in for network visualization

with Gene Ontology-based layout and coloring. Bioinformatics 2007,

23(3):394-396.

17. Deckard A, Bergmann FT, Sauro HM: Supporting the SBML layout

extension. Bioinformatics 2006, 22(23):2966-2967.

18. Schreiber F, Dwyer T, Marriott K, Wybrow M: A generic algorithm for

layout of biological networks. BMC Bioinformatics 2009, 10(375):.

19. Li W, Kurata H: A grid layout algorithm for automatic drawing of

biochemical networks. Bioinformatics 2005, 21(9):2036-2042.

20. Kato K, Nagasaki M, Doi A, Miyano S: Automatic drawing of biological

networks using cross cost and subcomponent data. Genome

Informatics 2005, 16(2):22-31.

21. Kojima K, Nagasaki M, Jeong E, Kato M, Miyano S: An efficient grid layout

algorithm for biological networks utilizing various biological

attributes. BMC Bioinformatics 2007, 8(76):.

22. Kojima K, Nagasaki M, Miyano S: Fast grid layout algorithm with sweep

calculation. Bioinformatics 2008, 24(12):1433-1441.

23. Gary MR, Johnson DS: Crossing number is NP-complete. SIAM Journal on

Algebraic and Discrete Methods 1983, 4:312-316.

24. Barsky A, Gardy JL, Hancock REW, Munzner T: Cerebral: a Cytoscape

plugin for layout of and interaction with biological networks using

subcellular localization annotation. Bioinformatics 2007, 23:1040-1042.

25. Tunkelang D: JIGGLE: Java interactive graph layout environment. Graph

Drawing 1998:412-422.

26. Pober JS: Endothelial activation: Intracellular signaling pathways.

Arthritis Research 2002, 4(Suppl 3):S109-116.

27. Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S: Biopathways

representation and simulation on hybrid functional Petri net. In Silico

Biology 2003, 3(3):389-404.

28. Saito A, Nagasaki M, Doi A, Ueno K, Miyano S: Cell fate simulation model

of gustatory neurons with microRNAs double-negative feedback loop

by hybrid functional Petri net with extension. Genome Informatics 2006,

17:100-111.

29. Chazelle B: Reporting and counting segment intersections. Journal of

Computer and System Sciences 1986, 32:156-182.

30. Palazzi L, Snoeyink J: Counting and reporting red/blue segment

intersections. CVGIP: Graphical Models and Image Processing 1993,

56:304-310.

31. Cheng SW, Janardan R: Space-efficient ray-shooting and intersection

searching: Algorithms, dynamization, and applications. 2nd annual

ACM-SIAM symposium on Discrete algorithms 1991:7-16.

32. Jeong L, Mason S, Barabási AL, Oltvai NZ: Lethality and centrality in

protein networks. Nature 2001, 411:41-42.

doi: 10.1186/1471-2105-11-335

Cite this article as: Kojima et al., An efficient biological pathway layout algo-

rithm combining grid-layout and spring embedder for complicated cellular

location information BMC Bioinformatics 2010, 11:335

Additional file 1 Comparison of the resulting layouts under several

parameter sets (Section 1) and among three cost functions (Section

2). Layouts of Fas-induced apoptosis model, cell fate simulation model of C.

elegans, and endothelial cell model obtained by the proposed algorithm

under several parameter sets are compared in Section 1. From the compari-

son, the influence of parameters to positions of nodes and the number of

crossings are discussed. In Section 2, resulting layouts of Grid Layout, Grid

Layout without considering spring force cost, and Grid Layout considering

spring force cost are compared on the three models. By using box plots for

the numbers of edge-edge and node-edge crossings on layouts from these

algorithms, the effectiveness of spring force cost is discussed.

Received: 1 December 2009 Accepted: 18 June 2010

Published: 18 June 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/335© 2010 Kojima et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:335

http://www.biomedcentral.com/content/supplementary/1471-2105-11-335-S1.PDF
http://www.biomedcentral.com/1471-2105/11/335
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15805500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16124872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16709586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17127678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17038346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15677705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17338825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18424458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12954096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17503360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11333967

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Experimental settings and results
	Dynamic resizing and repositioning of compartments

	Discussion
	Conclusions
	Methods
	Search algorithm
	Efficient calculation of spring force
	Efficient counting of edge-edge and node-edge crossings
	Time complexity at the initial step
	Procedures for resizing and repositioning of compartments

	Additional material
	Authors' contributions
	Acknowledgements
	Author Details
	References

