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ABSTRACT Biometric identification has developed rapidly in recent years because of its convenience and

reliability. Due to the sensitivity of biometric data, many privacy-preserving biometric identification schemes

have been put forward, exploiting either homomorphic encryption or matrix-transformation. However,

existing schemes based on homomorphic encryption generally suffer from low computational efficiency,

and existing matrix-transformation-based schemes are insufficiently secure. In this paper, we demonstrate

that the matrix-transformation-based privacy-preserving biometric identification scheme recently proposed

by Zhu et al. is vulnerable to a known-plaintext attack (KPA). To remedy this security flaw, we propose a

new privacy-preserving biometric identification scheme, in which the property of the orthogonal matrix and

additional randomness are utilized. Security analysis and comparisons indicate that our scheme can resist

not only the KPA attack but also the more powerful chosen-plaintext attack (CPA), which is a reasonable

attack in practice. Moreover, our scheme enjoys higher computational efficiency than other similar schemes,

which implies our scheme can better support a huge database for practical biometric identification, and it

also enhances privacy security of sensitive biometric data.

INDEX TERMS Biometric identification, privacy-preserving, CPA attack, cloud computing.

I. INTRODUCTION

Biometric identification provides a promising method in

access control to authenticate users by their biometric traits,

i.e. physiological traits (e.g. fingerprints, iris, face) and

behavioral traits (e.g. voice, gait, typing rhythms). Biometric

traits can not be lost, stolen, or forgotten like passwords, since

they are naturally bound up with individuals [1], [2]. Just as

Schneier has said: ‘‘You are your key’’ [3]. Due to such a

strong bond, biometric identification is a much more reliable

and convenient approach than passwords, the most tradi-

tional authentication method. With the boom of smartphones,

the integration of biometric sensors into mobile phones has

boosted the adoption of biometric technologies. For instance,

more online banks seek to incorporate biometric identifica-

tion into their systems [4]. In addition to the online payment,

there are many other access control scenarios, which will
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lead to a growing demand for biometric technologies, such as

industrial IoT deployment [5], telecare medical information

system [6], smart city [7] and other applications [8]–[10].

According to Research and Markets Ltd., the largest mar-

ket research store, the global biometric market will reach

$42.4 billion by 2021 [11].

Despite the positive prospect and trend in biometric iden-

tification, there are still many challenges concerned with the

privacy, security, and efficiency since biometric data is highly

sensitive and impossible to be revoked and replaced once

leaked [2]. For example, if a person’s fingerprint is compro-

mised, he/she can not change it like traditional passwords and

will no longer rely on it as a security mechanism. Moreover,

the biometric datamay also reveal sensitive personal informa-

tion such as genetic information and some information about

users’ diseases [12], [13]. Therefore, appropriate security

and privacy protection scheme should be proposed to resist

the disclosure and misuse of biometric data(i.e. biometric

template).
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A. RELATED WORK

The increasing demand for a reliable and convenient authen-

tication promotes the development of biometric identi-

fication. However, many data breaches raise increasing

concerns on privacy issues recently. Various solutions

on privacy-preserving biometric identification have been

recommended.

Directly encrypting biometric template plaintexts and

matching template ciphertexts bit by bit seem to be the

most robust method to protect sensitive template data from

disclosure [2]. However, since there are inherent noises

in biometric feature extracting process, direct encrypting

method tends to amplify small differences, generally result-

ing in the failure of identification. To improve the fault

tolerance of template ciphertexts matching, Jin et al. [14]

proposed a two-factor authentication scheme based on iter-

ated inner products between the template and tokenized

pseudo-randomnumbers, well-known as BioHashing. But the

scheme’s performance is not as good as claimed when an

attacker steals the tokenized pseudo-random numbers [15].

Later, by resorting to error correcting codes, Juels and

Sudan [16] presented a fuzzy vault scheme, but it is extremely

vulnerable to record-multiplicity attacks, in which an attacker

can recover a particular template from a collection of multiple

enrollment template encodings [17].

Instead of bitwise matching of template ciphertexts, cal-

culating the Euclidean distance between two templates is

another way to determine whether they are from the same

user. However, the computation of distance is usually con-

ducted by the cloud server, who holds only the ciphertexts

of the biometric templates for the sake of privacy protection.

This leads to a challenge in how the cloud server com-

putes the distance of template plaintexts through operations

on the corresponding ciphertexts. Therefore, the promis-

ing homomorphic encryption is introduced to this area.

Barni et al. [18] proposed a privacy-preserving fingerprint

authentication scheme based on an additively homomorphic

encryption called Pallier scheme [19]. However, due to the

low performance, their scheme is limited by the size of

database and number of concurrent requests. Later, Catalano

and Fiore [20] presented a method to boost additively homo-

morphic encryption to a more complicated cryptosystem sup-

porting degree-2 computation on encrypted data. Based on

Dario et al.’s work and Paillier cryptosystem, Im et al. [21]

implemented a palm print authentication. But the efficiency

is not yet satisfactory. Further, Zhu et al. [22] designed amore

efficient system model by utilizing BGN cryptosystem [23],

a somewhat homomorphic encryption which is able to evalu-

ate 2-DNF formulas on ciphertexts. Nevertheless, their exper-

imental results are performed on a small dataset named

FVC2006 which contains only 150 fingers, so it seems that

their scheme can hardly support a huge database for practical

usage.

To achieve higher performance and scalability of bio-

metric identification, privacy-preserving schemes based

on matrix transformation were proposed [24]–[27] as

alternatives to those schemes based on homomorphic

encryption. Yuan and Yu [24] presented the first efficient

privacy-preserving biometric identification scheme based on

matrix transformation. However, Zhu et al. [25] pointed out

that their system can be destroyed by a collusion attack

launched by malicious users and the cloud. To remedy the

deficiency of [24], two improved protocols were put forward,

in which additional randomness is introduced [26], [27].

Nevertheless, the computational efficiency of Hu et al.’s

scheme [27] is not suitable for deployment in practical sce-

narios, which is even lower than [24]. Moreover, we find that

both Zhu et al.’s scheme [26] and Hu et al.’s scheme [27] are

still insufficiently secure as they are vulnerable to known-

plaintext attack (KPA) under their security assumption.

B. OUR CONTRIBUTIONS

To further exploit the high performance of matrix

transformation [28] and remedy the security flaws in previous

schemes, we propose an efficient biometric identification

with enhanced privacy security to resist not only the KPA

attack but also the chosen-plaintext attack(CPA), which is

reasonable in practice. Specifically, our main contributions

can be summarized as follows:

• Based on the typical security assumption mentioned in

Zhu et al.’s work [26], we demonstrate their scheme is

not KPA-secure as they claimed, in which an attacker

can recover any template by the collusion of cloud server

with malicious users.

• We consider a more adversarial setting — CPA attack,

which has been used as a de facto standard for check-

ing the security of cryptographic schemes in classical

cryptology [29]. Besides the typical security assumption

of biometric identification [26], we find the CPA attack

is also very reasonable in practice. We formally present

a more powerful threat model by extending the typical

security model with the reasonable CPA attack.

• We propose a new biometric identification scheme with

enhanced privacy security. The security analysis shows

our scheme achieves a higher level of privacy protection,

in the sense that our proposed scheme can defend against

not only attacks mentioned in [26] but also the CPA

attack.

• We present a detailed implementation of the proposed

protocol built with Python. Performance comparisons

show that our proposed scheme provides higher compu-

tational efficiency than existing biometric identification

protocols.

The rest of this paper is organized as follows. In Section II,

we introduce preliminary knowledge of privacy-preserving

biometric identification. We review Zhu et al.’s scheme in

Section III and demonstrate its insecurity under a KPA attack

in Section IV. In Section V, we propose our efficient biometric

identification scheme, followed by security analysis and per-

formance analysis in SectionVI andVII. Finally, we conclude

this paper in Section VIII.
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FIGURE 1. System model for biometric identification.

TABLE 1. Definitions and notations in this paper.

II. PRELIMINARIES

In this section, we first introduce the system model and

how to represent biometric templates. Then, we present the

formalized threat model and security definition for biometric

identification. In the description of threat model, we also

analyze rationality of the CPA attack in practice. For the sake

of clarity, we list main notations used throughout the paper

in Table 1.

A. SYSTEM MODEL

The model in this paper follows the typical model introduced

by Zhu et al’s scheme [26]. As shown in Fig. 1, there exist

three entities: data owner, cloud server and users. The data

owner holds a database containing numerous biometric data

〈bi〉
m
i=1 (i.e. reference template) which has been enrolled

by users in the system. Based on this model, a biometric

identification scheme generally includes three stages: prepa-

ration stage, request stage and identification stage. In the

preparation stage, the data owner encrypts reference tem-

plates bi and outsources ciphertexts Ci ← Enc(sk, bi) to

the cloud server for storage. In the request stage, when a

user requests for identification and sends his/her biometric

trait bc (i.e. sample template) to the data owner, the data

owner encrypts the sample template plaintext bc and sends

the ciphertext Cc ← Enc(sk, bc) to the cloud server. In the

identification stage, upon receipt of the request from the data

owner, the cloud server performs operations on ciphertexts

to figure out whether there is a matched reference template.

Finally, the identification result will be sent to the data owner

and user successively.

From the description of the system model, we can find

the security of biometric templates depends on the operation

Enc(sk, ·). Additionally without loss of generality, we adopt

FingerCode [30] to represent biometric templates similar to

the existing work [24], [26], [27].

B. BIOMETRIC TEMPLATE REPRESENTATION

We apply FingerCode which is got by a filter-based

algorithm [30] to represent biometric templates. Given a fin-

gerprint image, the filter-based algorithm uses a bank of

Gabor filters to extract features in the fingerprint and then

outputs a compact fixed length (generally set as 640) vector,

i.e. FingerCode.

The sample template bc = [bc1, bc2, · · · , bcn] and refer-

ence template bi = [bi1, bi2, · · · , bin] are considered from the

same individual if and only if the Euclidean distance between

them is below the presupposed threshold τ , i.e.

||bi − bc|| =

√√√√
n∑

j=1

(bij − bcj)
2 < τ.

C. THREAT MODEL

According to the typical threat model [26], the cloud server

is assumed ‘‘honest-but-curious’’ or ‘‘semi-honest’’, which

means the cloud server strictly executes the designed pro-

tocol, but tries to analyze the received messages to learn

additional information about the honest users’ biometric tem-

plates or the data owner’s secret key. The semi-honest cloud

server may even collude with malicious users further to attack

the biometric identification system. On the basis of attack

abilities, attackers are classified into three levels [26], with

respect to ciphertext-only attack, known-candidate attack and

known-plaintext attack respectively.

In addition, we further introduce a new level through con-

sidering the more powerful CPA attack, which is reasonable

in practice.

Remark : As indicated in the survey of security and pri-

vacy issues for biometric-based remote authentication in

cloud [31], malicious users have the ability to forge biomet-

ric templates during enrollment, which means the attacker

can get any plaintext of fake reference template. Then in

the preparation step, the reference template plaintext will

be encrypted by the data owner and the ciphertext will be

sent to the semi-honest cloud server. For the reason that the

semi-honest cloud server can collude with malicious users,

the attacker will get arbitrary plaintext and corresponding
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ciphertext of fake reference templates. Therefore, CPA attack

for biometric identification is reasonable in practice.

As described above, the CPA attack is also reasonable in

practice. Sowe extend the typical threat model [26] by adding

the CPA attack as level-4. To better formalize the strength of

attackers, we classify attackers as follows:

• Level 1: Attackers can only observe the encrypted

template in the cloud. This follows the well-known

ciphertext-only attack model [29].

• Level 2: In addition to the encrypted templates in the

cloud, attackers can access to some template plain-

texts but do not know the corresponding ciphertexts in

the encrypted database, similar to the known-candidate

attack model [32].

• Level 3: Besides all the abilities in level-2, attackers

are able to get a set of template plaintexts and know

the corresponding ciphertexts. This level follows the

known-plaintext attack (KPA) model [29].

• Level 4: With enhanced ability, malicious users can

forge templates during biometric database enrollment

and collude with the semi-honest cloud server [31]. So,

attackers can get any template plaintext and the corre-

sponding ciphertext, which follows the chosen-plaintext

attack (CPA) model [29].

D. SECURITY DEFINITION

For the threat model, a higher-level attack is more powerful

than a lower-level one. If a scheme can defend against a

higher-level attack, it can resist a lower-level one as well.

So we define security resisting above threat model based on

level-4 attack, i.e. CPA attack.

We first define the CPA indistinguishability(IND-CPA)

experiment for the biometric identification in Experiment 1.

Experiment 1 IND-CPA Experiment CPAA(λ)

1: Given the security parameter λ, the data owner, i.e.

challenger C, generates a secret key sk .

2: The attacker A is given oracle access to Enc(sk, ·) and

outputs a pair of biometric template plaintexts b0 and b1
of the same length to the data owner.

3: A random bit i← {0, 1} is chosen uniformly by the data

owner, and then a ciphertext Enc(sk, bi) is computed

and given to the attacker.

4: The attacker continues to have oracle access to

Enc(sk, ·), and outputs a bit i′.

5: If i = i′, the output of the experiment is 1.

Otherwise, it is 0.

On the basis of the IND-CPA experiment CPAA(λ),

we define the CPA security for biometric identification pro-

tocols as Definition 1.

Definition 1: We say that a biometric identification pro-

tocol is CPA-secure, if there exists a negligible function negl

such that, for all polynomial-time attackersA, the probability
∣∣∣∣Pr(CPAA(λ) = 1)−

1

2

∣∣∣∣ ≤ negl(λ)

III. REVIEW OF ZHU ET AL.’S SCHEME

In this section, we will review Zhu et al.’s scheme [26] in

detail.

In addition to the three stages presented in system

model, [26] also includes a retrieval stage because the cloud

server only gets an index of the most probably matched

template in the identification stage. In the retrieval stage,

after receiving this index from cloud server, the data owner

retrieves the most probably matched template plaintext

according to the index, calculates the Euclidean distance

between it and the sample template plaintext to decide

whether the user is legitimate. The detailed protocol is

described as follows.

A. PREPARATION STAGE

The data owner holds a database containing numerous ref-

erence templates < bi >m
i=1, where bi represents the i-

th reference template vector derived from fingerprint image

using FingerCodes algorithm [30]. In more detail, bi is a n-

dimensional vector i.e. bi = [bi1, bi2, · · · , bin], with l bits of

each element where generally n = 640 and l = 8. Data owner

first extends bi as Bi = [bi1, bi2, · · · , bi(n+1)] by adding a

(n+1)-th element, where bi(n+1) = −0.5(b
2
i1+b

2
i2+· · ·+b

2
in).

Then, the data owner randomly generates (n+ 1)× (n+ 1)

matrices M1, M2 and a (n + 1) vector H as secret key,

where M1 and M2 are invertible. And the data owner further

performs the following encryption operations:

Ci = Bi ×M1

Ch = M−12 × H
T

Subsequently, the data owner uploads encrypted database

(Ci,Ch, Ii) to cloud, in which Ii is an index associated with

each biometric template Bi.

B. REQUEST STAGE

When a user wishing to access the system inputs a sample

template bc = [bc1, bc2, · · · , bcn], the data owner extends bc
to Bc by adding a (n+ 1)-th element equaling to 1.

The data owner then generates a (n + 1) × (n + 1)-

dimensional matrix E , where the i-th row vector is repre-

sented as Ei = [Ei1,Ei2, · · · ,Ei(n+1)]. Additionally, the first

n elements of Ei are random and the (n+ 1)-th element is set

as Ei(n+1) = (1 −
∑n

j=1 Eij ∗ Hj)/Hn+1. After that, the data

owner performs following operation to hide Bc:

Fc = [ET1 × bc1,E
T
2 × bc2, · · · ,E

T
(n+1) × bc(n+1)]

T

For security of Fc during transmission to cloud, the data

owner further encrypts Fc with the secret key and a random

integer r(r > 0) as follows:

Cf = M−11 × r × Fc ×M2

Note that the value of r is fixed for this request.
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Then, Cf is sent from data owner to cloud server for

identification.

C. IDENTIFICATION STAGE

After receiving Cf , the cloud searches the encrypted database

to find the template having the minimum Euclidean distance

with Bc, and responds with its index to data owner.

The cloud computes a relative distance Pi between a refer-

ence template bi and the sample template bc:

Pi = Ci × Cf × Ch

= Bi ×M1 ×M
−1
1 × r × Fc ×M2 ×M

−1
2 × H

T

= Bi × r × Fc × H
T

= r × Bi × [bc1 × H × E
T
1 , · · · , bc(n+1) × H × E

T
n+1]

T

= r × Bi × B
T
c

=

n+1∑

j

r × bij × bcj

To compare the Euclidean distance between sample tem-

plate bc and any other two reference templates bx , by where

1 ≤ x, y ≤ m, x 6= y, the cloud should also perform following

operation:

Px − Py =

n+1∑

j=1

r × bxj × bcj −

n+1∑

j=1

r × byj × bcj

= (

n∑

j=1

r × bxj × bcj − 0.5

n∑

j=1

r × b2xj)

−(

n∑

j=1

r × byj × bcj − 0.5

n∑

j=1

r × b2yj)

= 0.5r(dist2yc − dist
2
xc)

where distxc (resp. distyc) is the Euclidean distance between

bx and bc (resp. by and bc). If Px − Py > 0, bx matches bc
better. Otherwise by does.

After iteration of comparisons, the ciphertext of template

bi will be found which has the minimum Euclidean distance

with bc. The corresponding index Ii will be transmitted from

cloud to data owner.

D. RETRIEVAL STAGE

On receipt of the index Ii, the data owner searches the corre-

sponding reference template bi and calculates the Euclidean

distance distic between bi with bc. Finally, the data owner

compares distic with the presupposed threshold τ . If distic <

τ , the user is authenticated to access the system. Otherwise,

the identification fails.

IV. KPA ATTACK ON ZHU ET AL.’S SCHEME

In this section, based on the typical security assumption

of Zhu et al.’s scheme [26], we present a KPA attack

against [26] to recover the secret keyM1 (i.e., achieve a total

break) and obtain arbitrary honest user’s biometric template,

which implies [26] doesn’t guarantee the privacy-preserving

requirement as they claimed.

A. RECOVER THE SAMPLE TEMPLATE

According to the KPA attack for biometric identification,

the attacker can get a set of plaintexts b∗i enrolled in the data

owner and corresponding ciphertexts C∗i .

In the preparation stage, these leaked templates b∗i =

[b∗i1, b
∗
i2, · · · , b

∗
n1] are extended to B∗i = [b∗i1, b

∗
i2,

· · · , b∗in, b
∗
i(n+1)], where b

∗
i(n+1) = −0.5(b

∗2
i1 +b

∗2
i2 +· · ·+b

∗2
in ).

And then, the data owner encrypts these templates and out-

sources the ciphertexts C∗i , Ch to the cloud server. Assuming

(n + 1) plaintext-ciphertext pairs of leaked templates are

known to the attacker.

In the request stage, an honest user wants to be identified

and submits his/her template plaintext bc = [bc1, bc2,

· · · , bcn] to the data owner. At first, this sample template bc
will be extended to Bc = [bc1, bc2, · · · , bcn, bc(n+1)] where

bc(n+1) = 1. Then, the data owner will encrypt the sample

template and send the ciphertext Cf = M−11 × r × Fc ×M2

to the cloud server. Recall that value of the random number r

is fixed for this request.

In the identification stage, when the request arrives,

the cloud server calculates the relative distance P∗i = C∗i ×

Cf × Ch =
n+1∑
j

r × b∗ij × bcj. Due to the collusion of the

malicious users with the cloud server, values of b∗i and P∗i
are known by the attacker. And then, the attacker can get

equations as follows:





P∗1 = r × (
n∑
j=1

b∗1jbcj − 0.5
n∑
j=1

b∗21j )

P∗2 = r × (
n∑
j=1

b∗2jbcj − 0.5
n∑
j=1

b∗22j )

...

P∗n+1 = r × (
n∑
j=1

b∗(n+1)jbcj − 0.5
n∑
j=1

b∗2(n+1)j)

The first equation can be transformed as r =
P∗1

(
n∑
j=1

b∗1jbcj−0.5
n∑
j=1

b∗21j )

. After substituting the r into the other n

equations, the attacker will get:





n∑
j=1

(P∗2b
∗
1j − P

∗
1b
∗
2j)bcj = 0.5

n∑
j=1

(P∗2b
∗2
1j − P

∗
1b
∗2
2j )

n∑
j=1

(P∗3b
∗
1j − P

∗
1b
∗
3j)bcj = 0.5

n∑
j=1

(P∗3b
∗2
1j − P

∗
1b
∗2
3j )

...
n∑
j=1

(P∗(n+1)b
∗
1j − P

∗
1b
∗
(n+1)j)bcj

= 0.5
n∑
j=1

(P∗(n+1)b
∗2
1j − P

∗
1b
∗2
(n+1)j)
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As there are n unknowns and n linear equations,

the attacker can work out these equations and recover the

sample template bc.

Remark: With respect to Hu et al.’s scheme [27], it is

easy to note that their relative distance Ti =
n∑
j=1

rcbijbcj −

0.5
n∑
j=1

rcb
2
ij+r

′
c has a similar drawback to the definition of Pi

presented above. Therefore, one can demonstrate that a KPA

attacker could recover any sample template similar to the

above attack, thus damage the security of Hu et al.’s scheme.

B. TOTAL BREAK BY KPA ATTACK

As described above, the attacker is able to get (n + 1)

pairs of B∗i and C∗i . The ciphertext C∗i = B∗i × M1 =

[c∗i1, c
∗
i2, · · · , c

∗
i(n+1)], where M1 can be represented as

M1 =




m11 m12 · · · m1(n+1)

m21 m22 · · · m2(n+1)

...
...

. . .
...

m(n+1)1 m(n+1)2 · · · m(n+1)(n+1)




Take the 1-st column of M1 as an example. Given B∗i and

C∗i , the attacker can get equations as follows:





n+1∑
j=1

b∗1jmj1 = c∗11

n+1∑
j=1

b∗2jmj1 = c∗21

...
n+1∑
j=1

b∗(n+1)jmj1 = c∗(n+1)1

As there are (n+1) unknowns and (n+1) linear equations,

the attacker can work out the 1-st column vector of M1,

i.e. [m11,m21, · · · ,m(n+1)1]
T . Other column vectors of M1

can be worked out similarly. Therefore, the secret key M1 is

recovered.

C. RECOVER THE REFERENCE TEMPLATE

After working outM1, all the reference templates bi of honest

users can be recovered from the corresponding ciphertext Ci.

In summary, Zhu et al.’s scheme [26] will be broken by the

KPA attack for biometric identification(i.e. level-3 attack),

revealing the secret key M1, all reference templates bi and

sample templates bc.

Remark : Since that the CPA attack is more powerful than

KPA attack, Zhu et al.’s scheme [26] is also vulnerable to CPA

attack (i.e. level-4 attack).

V. OUR PROPOSED SCHEME

In this section, we present the detailed description of our

biometric identification scheme.

Our proposed scheme, as an enhancement of Zhu

et al.’s scheme [26], follows a similar designing paradigm

as [26]. Nevertheless, there are two main differences. Firstly,

we adopt a novel method to extend vectors of reference and

sample template plaintexts by introducing additional ran-

domness, which makes our scheme able to resist not only

the KPA attack but also the CPA attack. Secondly, we use

random orthogonal matrices instead of general randommatri-

ces. Owing to the property of orthogonal matrices, the com-

putational efficiency of identification stage is increased by

98.95% (see details in Section VII). In addition, the identifi-

cation result will be obtained directly by cloud server without

the redundant retrieval stage, which makes our scheme suit-

able for more application scenarios.

A. PREPARATION STAGE

In this stage, the i-th reference template vector bi is extracted

from users using FingerCode [30] and enrolled in the data

owner. It is extended to a (n + 5)-dimensional vector

as b′i= [αibi1,αibi2, · · · , αibin,−
1
2αi

n∑
j=1

b2ij,αi,
1
2αiτ

2, ri, 0],

where αi is a random positive real number, ri is a random

real number named security factor, and τ is the presupposed

threshold.

Then, the data owner generates a random (n+5)× (n+5)-

dimensional orthogonal matrixM as a secret key and encrypts

the reference templates by computing Ci = b′iM .

Finally, the data owner outsources allCi to the cloud server.

B. REQUEST STAGE

On receiving an identification request bc from a user, data

owner extends it as b′c = [βcbc1, βcbc2, · · · , βcbcn, βc,

− 1
2βc

n∑
j=1

b2cj, βc, 0, rc], in which βc is a random positive real

number and rc is another security factor.

Then the data owner encrypts b′c with the secret keyM and

gets Cc = b′cM .

Finally, the Cc is transmitted to the cloud server.

C. IDENTIFICATION STAGE

When identification request arrives at cloud server, the cloud

server performs inner product of Ci and Cc, i.e. relative

distance Ri = Ci · Cc.

If Ri > 0, the user is identified and the result will be sent

to the data owner, permitting his/her access to the system.

Otherwise, the request is denied.

D. CORRECTNESS ANALYSIS

The transformation b 7→ bM is called an orthogonal trans-

formation in linear algebra, sinceM is an orthogonal matrix.

Based on the property of this transformation, the inner prod-

uct of two vectors is maintained.

In other words, there are two vectors a and b, the inner

product of them can be represented as a · b = a× bT . Given

an orthogonal matrix M , there exists following property:

aM · bM = aM × (bM )T

= aMMT bT
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= a× bT

= a · b

Therefore, the relative distance Ri can be figured out as

follows:

Ri = Ci · Cc

= b′iM · b
′
cM

= b′i · b
′
c

= αiβc(

n∑

j=1

bijbcj −
1

2

n∑

j=1

b2ij −
1

2

n∑

j=1

b2cj +
1

2
τ 2)

=
1

2
αiβc[τ

2 −

n∑

j=1

(bij − bcj)
2]

If Ri > 0,
n∑
j=1

(bij − bcj)
2 < τ 2, i.e. the relative distance Ri

meets the identification conditions.

VI. SECURITY ANALYSIS

As indicated in Section II, a CPA-secure protocol is capa-

ble of resisting the proposed threat model. In this section,

we will analyze the CPA attack indistinguishability of our

biometric identification scheme by considering the advan-

tage of attackers. However, indistinguishability of cipher-

texts is not enough to resist CPA attacks in the real situ-

ation, where the goal of attackers is to recover the secret

key (i.e., achieve a total break) and obtain honest users’

templates. Therefore, we further analyze two real situations:

(1) CPA attackers try to recover the secret key M to get

honest users’ templates, and (2) CPA attackers try to recover

honest users’ templates by exploiting relative distances Ri.

The analysis shows that a CPA attacker might recover hon-

est users’ templates with a negligible probability. Moreover,

we analyze some other security features considered inmatrix-

transformation-based biometric identification [33], [34], i.e.

signature linking attack (SLA) andmodified signature linking

attack (MSLA).

A. IND-CPA SECURITY

It is sufficient to prove our protocol is CPA-secure under the

situation where the attacker A submits one pair of templates

b0 and b1 to the data owner (i.e. challenger C), because it has

been proven in [35] that any CPA-secure private-key encryp-

tion scheme is also CPA-secure for multiple encryptions.

Therefore, we are supposed to prove that given oracle access

to Enc(sk, ·), the attackerA can’t distinguish Enc(sk, b0) and

Enc(sk, b1).

Consider the attacker A that outputs a pair of tem-

plate plaintexts (b0, b1) and then receives ciphertext Ci ←

Enc(sk, bi) from the data owner C. SinceA has oracle access

to Enc(sk, ·),A can request this oracle to encrypt the template

plaintexts b0 and b1, therebyA can obtain C0← Enc(sk, b0)

and C1← Enc(sk, b1).

As described in the IND-CPA experiment, the data owner

C chooses uniformly a random bit i ← {0, 1} and sends

the ‘‘challenge ciphertext’’ Ci to the attacker A. And then

A decides which one of b0 and b1 is the corresponding

plaintext of Ci. The attacker A might compare C0 and C1 to

the challenge ciphertext Ci; if C0 = Ci,A outputs i′ = 0, and

if C0 = Ci, A outputs i′ = 1. However, this method doesn’t

work, because the encryption of our scheme is probabilistic,

not deterministic [35].

We take the challenge ciphertext Ci into consideration.

Its corresponding plaintext bi = [bi1, bi2, · · · , bin] is first

extended to a (n+ 5)-dimensional vector

b′i = [αibi1, αibi2, · · · , αibin,−
1

2
αi

n∑

j=1

b2ij, αi,
1

2
αiτ

2, ri, 0]

where αi and ri are one-time random numbers. And then,

we get the ciphertext C0 = b′0M , of which the element can

be represented as

cij = αi

n∑

k=1

bikmkj −
1

2
αim(n+1)j

n∑

k=1

b2ik + αim(n+2)j

+
1

2
αiτ

2m(n+3)j + rim(n+4)j

Similarly, we can represent the element of C0← Enc(sk, b0)

and C1← Enc(sk, b1) as follows:

c0j = α0

n∑

k=1

b0kmkj −
1

2
α0m(n+1)j

n∑

k=1

b20k + α0m(n+2)j

+
1

2
α0τ

2m(n+3)j + r0m(n+4)j

c1j = α1

n∑

k=1

b1kmkj −
1

2
α1m(n+1)j

n∑

k=1

b21k + α1m(n+2)j

+
1

2
α1τ

2m(n+3)j + r1m(n+4)j

Note that αi and ri are one-time random numbers. They

might be equal to α0, r0 or α1, r1 with probability 2 ×

(2−λ)2 = 2−2λ+1, in which the security parameter λ repre-

sents the length of the secret key’s element. This probability

is also the advantage Adv of the attacker A, due to A could

distinguish the challenge ciphertext Ci only if (αi, ri) equals

to (α0, r0) or (α1, r1). The Adv is negligible if the security

parameter λ is large enough, e.g. in our scheme, λ = 128,

the advantage Adv = 2−255. Therefore we get∣∣∣∣Pr(CPAA(λ) = 1)−
1

2

∣∣∣∣ ≤ negl(λ)

which implies our scheme is CPA-secure. Further, we can

enhance the security by extending template with more secu-

rity factors ri, whose overhead is tolerable as described in

Section VII.

B. SECURITY AGAINST TOTAL BREAK

To intuitively prove that the secret keyM won’t be recovered

by an attacker, we first introduce the degree of freedom,

represented as Ddof . To generate a random matrix, Ddof is

the number of parameters that may vary independently in this

matrix.
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1) Ddof OF ORTHOGONAL MATRIX

A square matrix can represent any linear vector transfor-

mation. Sometimes we want to constrain elements of the

matrix so that it represents a pure rotation, i.e. orthogonal

transformation. Therefore, the matrix representation of an

orthogonal transformation contains redundant information.

For example, a 3× 3 orthogonal matrix contains 9 elements,

while the Ddof of it only equals 3.

For a n × n orthogonal matrix with column vectors

v1, v2, · · · , vn, there are following constraint conditions:
{
vi · vj = 0, (1 ≤ i, j ≤ n, i 6= j)

vi · vi = 1, (1 ≤ i ≤ n)

The first condition has n(n−1)
2 unique equations, and the sec-

ond has n constraints.

The matrix has n2 elements, so the Ddof = n2 −
n(n−1)

2 −

n =
n(n−1)

2 , i.e. there are n(n−1)
2 independent variables of (n×

n)-dimensional orthogonal matrix.

2) BRUTE-FORCE ATTACK

For the (n + 5) × (n + 5) orthogonal matrix M , the Ddof =
(n+5)(n+4)

2 . By brute-force attack, the probability to work out

the secret key M is 2−
λ(n+5)(n+4)

2 , where λ is the security

parameter whichmeans the length of the secret key’s element.

Due to λ > 1 and n = 640 generally, the success probability

is 2−207690λ, which implys the attacker might work out the

secret key M by brute-force attack with a negligible proba-

bility.

3) SECURITY AGAINST TOTAL BREAK BY CPA ATTACK

The CPA attack is another possible way to attack the secret

key M . As malicious users have the ability to produce

fake biometrics during enrollment and collude with the

semi-honest cloud server, the attacker can get any fake tem-

plate’s plaintext b̃i and corresponding ciphertext C̃i. In the C̃i,

there are (n+ 5) elements which can be represented as

c̃ij = αi

n∑

k=1

b̃ikmkj −
1

2
αim(n+1)j

n∑

k=1

b̃ik
2
+ αim(n+2)j

+
1

2
αiτ

2m(n+3)j + rim(n+4)j

Each ciphertext C̃i can provide (n + 5) constraints. So in

general, the attacker needs at least (n+4)
2 fake templates to

work out theM . However, with one more fake template used

to get (n+ 5) more constraints, there are 2 more independent

randomness αi and ri introduced to prevent the attacker get

simultaneous equations with any other fake template, unless

the attacker gets values of all randomness. All the randomness

αi and ri are known only to the data owner, so the attacker

can only guess the randomness by brute-force attack. The

probability of geting correct values of all randomness is

(2−2λ)
n+4
2 = 2−λ(n+4). Due to λ > 1 and n = 640 generally,

this probability is 2−644λ, which implies the attacker might

get values of all randomness with a negligible probability.

This is also the case with encryption of fake sample template.

Therefore, the total break by CPA attack is infeasible, and

all honest users’ templates can not be recovered from their

ciphertexts.

C. SECURITY OF THE RELATIVE DISTANCE

As for relative distance result Ri = Ci · Cc =
1
2αiβc[τ

2 −
n∑
j=1

(bij − bcj)
2], if the attacker forge a fake refernce template

b̃i, the result R̃i =
1
2αiβc[τ

2 −
n∑
j=1

(b̃ij − bcj)
2
]. Without

considering the randomness αi, there are (n+1) unknowns bcj
andβc, whichmeans the attacker has to produce at least (n+1)

fake templates to get enough equations to recover the sample

template bc. However, with one more fake template used to

establish an equation, there is onemore new unknown random

element αi introduced. The attacker might work out the sam-

ple template bc only by getting values of these randomness

αi, whereas this probability is (2−λ)n+1 = 2−λ(n+1). Due to

λ > 1 and n = 640 generally, this probability is 2−641λ,

which implies the attacker might get values of these random-

ness αi with a negligible probability. This is also the case

when the attacker wishes to figure out reference templates

by producing fake sample templates b̃c. So, the attacker can’t

recover any reference template bi or sample template bc from

the relative distance Ri.

D. SECURITY AGAINST SLA AND MSLA ATTACK

According to [33], an attacker might ‘‘upgrade’’ level-

2 knowledge to level-3 using signature linking attack (SLA).

Later, a more flexible SLA attack called modified-SLA

(MSLA) is presented in [34].While our proposed scheme can

resist this ‘‘upgrade’’.

Prior to describing SLA/MSLA attack, we first introduce

the definition of distance-recoverable encryption (DRE) into

biometric identification.

Definition 2: Given an encryption function Enc and a

secret key sk , let Ci = Enc(bi, sk) be the encrypted value

of a template bi in the biometric database 〈bi〉
m
i=1. Enc is

distance-recoverable if and only if there exists a computa-

tional procedure f such that ∀bi, bj, sk, f (Ci,Cj) = d(i, j),

where d(i, j) is the Euclidean distance between bi and bj.

1) SLA ATTACK

For a DRE scheme, a level-2 attacker holds an ordered

set of template plaintexts B = {b1, b2, · · · , b|B|} and

constructs a signature sig(B) of B by pairwise dis-

tances between every two templates in B, i.e. sig(B) =

{d(1, 2), d(1, 3), · · · , d(1, |B|), d(2, 3), · · · , d(|B|−1, |B|)}.

As malicious users have the ability to collude with the cloud

server, the attacker can get the encrypted biometric database

〈Ci〉
m
i=1. Then, the attacker tries to find an ordered subset C

in 〈Ci〉
m
i=1, such that |C| = |B| and C has the same signature

as B. Let C = {C1,C2, · · · ,C|B|}, the signature sig(C) =

{f (C1,C2), f (C1,C3), · · · , f (C1,C|B|), f (C2,C3), · · · ,
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TABLE 2. Security comparison between our proposed scheme and [26], [27].

f (C|B|−1,C|B|)}. Due to the signature collision is generally

very small [33], if there is only one set C with a matching

signature, the attacker can conclude that Ci in the C is the

corresponding ciphertext of bi in the B. However our scheme

doesn’t belong to DRE schemes, so our proposed scheme can

resist the SLA attack.

2) MSLA ATTACK

The MSLA attack is a more flexible SLA attack, in which

the signature doesn’t only depend on the Euclidean distance,

any recoverable value got by performing computation on

ciphertexts can be used to represent the signature. In our

scheme, values got by performing computation on ciphertexts

are as follows:

Ri = Ci · Cc =
1

2
αiβc[τ

2 −

n∑

j=1

(bij − bcj)
2]

R′ij = Ci · Cj = b′iM · b
′
jM = b′i · b

′
j

= αiαj(

n∑

k=1

bikbjk +
1

4

n∑

k=1

b2ik

n∑

k=1

b2jk +
1

4
τ 4 + 1)+ rirj

R′c = Cc · Cc′ = b′cM · b
′
c′M = b′c · b

′
c′

= βcβc′ (

n∑

k=1

bckbc′k +
1

4

n∑

k=1

b2ck

n∑

k=1

b2c′k + 2)+ rcrc′

which represent the relative distance, inner product of

reference template ciphertexts and inner product of sam-

ple template ciphertexts respectively. For the relative dis-

tance Ri, the attacker can only get the value of τ 2 −
n∑
j=1

(bij − bcj)
2, but randomness αi and βc are unknown to the

attacker. This is similar to R′ij and R
′
c, the attacker can get

n∑
k=1

bikbjk +
1
4

n∑
k=1

b2ik

n∑
k=1

b2jk +
1
4τ

4 + 1 and
n∑

k=1

bckbc′k +

1
4

n∑
k=1

b2ck

n∑
k=1

b2
c′k
+2, but can’t get values of the randomness.

Therefore, values got by performing computation on cipher-

texts are unrecoverable and our proposed scheme can resist

the MSLA attack.

Moreover, we compare security features of our scheme

with the schemes proposed in [26] and [27]. According to

the Table 2, other schemes have some weaknesses, while our

scheme is secure under the reasonable threat model presented

in Section II.

VII. PERFORMANCE ANALYSIS

To evaluate the performance of our scheme, we compare both

computational and communication complexity with existing

works, and then we fully implemented them to evaluate

the practicality numerically. The analysis shows our scheme

may downgrade the efficiency in the preparation stage, but

achieves a significant improvement of performance in the

identification stage. Due to database outsourcing is only a

one-off process and identification is the most frequent oper-

ation, our scheme is more suitable for practical applications.

A. COMPLEXITY ANALYSIS

As described in Section V, our scheme can be decomposed

into three stages. In the 1st preparation stage, to outsource the

whole database, the owner should encrypt every record in the

database by performing vector-matrix multiplication, whose

computational complexity is O(n2). Therefore, the total com-

plexity of this stage is O(mn2), where m is the total number

of the FingerCode records in the database. In the 2nd request

stage, a sample template is sent to data owner for identifi-

cation. Then the data owner will encrypt it similar to what

has been done in the 1st stage. So, the encryption also costs

O(n2). In the 3rd identification stage, the encrypted sample

template is submitted to the cloud server. All the ciphertexts

are vectors. Thus, the total time complexity of the inner

product isO(mn). For communication complexity, besides the

one-off outsource cost of O(mn) for the 1st stage, the request

costs O(n) and the cost of identification response is O(1).

To compare our protocol with previous schemes [26], [27]

intuitively, we illustrate the complexities in Table 3. As shown

in Table 3, for computation complexity, in the preparation

stage, our scheme has similar cost O(mn2) as Zhu et al.’s

scheme [26] does, lower than the cost O(mn3) of Hu et al.’s

scheme [27]. In the identification stage, the data owner of our

scheme need only to encrypt the sample template with over-

headO(n2). Besides higher costO(n3) in template encryption,

the data owner of the other two works still has to com-

pute the Euclidean distance between the sample template

and the reference template corresponding to the retrieved

index. The cloud server of our protocol will spend only

O(mn) working out whether the identification is successful.
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TABLE 3. Comparison of complexity between our proposed scheme, [26] and [27]. m denotes the number of templates in database and n denotes the
dimension of the template.

FIGURE 2. Comparison of time cost in different stages between our proposed scheme, [26] and [27].

TABLE 4. Comparison of communication cost in different stages between our proposed scheme and [26], [27].

While the cloud server of [26] and [27] will afford heavier

cost O(mn2) and O(mn3) respectively to calculate the rel-

ative distance Pi and find the most closely matched tem-

plate’s index. So the identification efficiency of our scheme

is much better than the other two works. For communication

cost, on the data owner side, in the preparation stage, our

scheme and [26] transmit encrypted vectors to the cloud,

so the complexity is O(mn). While [27] transfers matrix

ciphertexts with cost O(mn2). In the identification stage,

our scheme costs O(n) to send a request containing a vec-

tor to the cloud. However, [26] and [27] transmit request

consisting of matrices with complexity O(n2). At last, all

schemes cost O(1) to return the identification result to user.

On the cloud server side, all schemes will send the cloud

computing result (identification result or the most closely

matched index) to the data owner with communication

overhead O(1).

B. EXPERIMENTAL EVALUATION

1) EXPERIMENT SETUP

To evaluate the improvement of our scheme, compared

with the existing schemes [26], [27], we implement these

systems using Python as the programming language. All

experiments are conducted on a Windows 10 machine with
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FIGURE 3. Time cost for lager databases in different stages of our proposed scheme.

FIGURE 4. Time cost for higher security in different stages of our proposed scheme.

8-core 3.40GHz Intel i7 CPU and 24GB RAM, to simulate

the process on data owner, cloud server and users. In addition,

we use a synthetic datasets consisting of randomly gener-

ated 640-dimensional vectors to represent the FingerCodes,

as [26] and [27] does.

2) RESULTS OVER SYNTHETIC DATA

For a better performance evaluation, we first compare all

schemes with the size of database m varying from 1000

records to 5000 records. And then we test the performance of

our proposed scheme with larger databases. Further, we will

show the impact of extending templates for higher security

with more security factors.

From Fig. 2, we can see the efficiency of our scheme

and Zhu et al.’s scheme [26] is much better than Hu et al.’s

scheme [27]. When the database has 5000 records, Fig. 2(b)

shows the time cost of preparation stage for [27] is 2.28 hours,

much slower than our scheme’s 2.94s and 2.43s of [26] shown

in Fig. 2(a). Because template encryption of our scheme is

more complicated than [26], our scheme has a tiny delay.

Note that this stage is an one-off process, it also proves that

our scheme has a comparable performance in this stage. Refer

to Fig. 2(c) and Fig. 2(d), our scheme costs only 0.008s, much

more efficient than 18.01 minutes of [27]. And compared to

0.76s of [26], our scheme saves 98.95% time. The identifi-

cation is the most process executed, so our scheme has the

best performance and can be applied to a much larger size of

biometric database.

The communication cost is described in Table 4, where m

is the number of database records.

Moreover, we test our scheme using larger databases,

with the size varying from 20000 to 100000. The result is

described in Fig. 3(a) and Fig. 3(b). It shows the performance

of our scheme is practical.

Further, we test the impact of extending templates with

more security factors for higher security, with the size of

the database set 1000. The result is given in Fig. 4(a) and

Fig. 4(b). It is revealed that more security factors will affect

the preparation stage but have less influence on the identi-

fication. So, the increasing overhead for higher security is

tolerable.

VIII. CONCLUSION

In this paper, we proposed an efficient privacy-preserving

biometric identification scheme based on matrix transforma-

tion. Compared to the existing matrix-transformation-based

scheme put forward by Zhu et al. recently, we improve

the security of biometric identification by introducing addi-

tional randomness. Further, we reduce the computational

complexity by exploiting orthogonal matrix, which means

our scheme makes the biometric identification more prac-

tical for a large-scale database of templates in an actual
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situation. Our scheme may also benefit other areas, such as

privacy-preserving cloud computing.
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