
An Efficient CDH-based Signature Scheme With
a Tight Security Reduction?

Benôıt Chevallier-Mames1,2

1 Gemplus, Card Security Group
La Vigie, Avenue du Jujubier, ZI Athélia IV,

F-13705 La Ciotat Cedex, France

2 École Normale Supérieure
Département d’Informatique

45 rue d’Ulm, F-75230 Paris 05, France
benoit.chevallier-mames@gemplus.com

Abstract. At Eurocrypt ’03, Goh and Jarecki showed that, contrary
to other signature schemes in the discrete-log setting, the EDL signa-
ture scheme has a tight security reduction, namely to the Computational
Diffie-Hellman (CDH) problem, in the Random Oracle (RO) model. They
also remarked that EDL can be turned into an off-line/on-line signature
scheme using the technique of Shamir and Tauman, based on chameleon
hash functions.

In this paper, we propose a new signature scheme that also has a tight
security reduction to CDH but whose resulting signatures are smaller
than EDL signatures. Further, similarly to the Schnorr signature scheme
(but contrary to EDL), our signature is naturally efficient on-line: no ad-
ditional trick is needed for the off-line phase and the verification process
is unchanged.

For example, in elliptic curve groups, our scheme results in a 25% im-
provement on the state-of-the-art discrete-log based schemes, with the
same security level. This represents to date the most efficient scheme of
any signature scheme with a tight security reduction in the discrete-log
setting.

Keywords: Public-key cryptography, signature schemes, discrete loga-
rithm problem, Diffie-Hellman problem, EDL.

1 Introduction

In a signature scheme, a party, called signer, generates a signature using his own
private key so that any other party, called verifier, can check the validity of the
signature using the corresponding signer’s public-key. Following the IEEE P1363
standard [P1363], there are two main settings commonly used to build signature
schemes: the integer factorization setting and the discrete logarithm setting.
? This is the full version of [Che05].



2 Benôıt Chevallier-Mames

A signature scheme should protect against impersonation of parties and al-
teration of messages. Informally, the security is assessed by showing that if an
adversary can violate one of the two previous properties then the same adver-
sary can also break the underlying cryptographic problem — for example, the
integer factorization problem, the RSA problem [RSA78], the discrete logarithm
problem or the Diffie-Hellman problem [DH76]. As the cryptographic problem
is supposed to be intractable, no such adversary exists. This methodology for
assessing the security is called security reduction. The “quality” of the reduction
is given by the success probability of the adversary against a signature scheme to
break the underlying intractable problem. A security reduction is said tight when
this success probability is close to 1; otherwise it is said close or loose [MR02].
This notion of tightness is very important, and allows to distinguish between
asymptotic security and exact security, the first one meaning that a scheme is
secure for sufficiently large parameters, while the second one means that the
underlying cryptographic problem is almost as hard to solve as the scheme to
break.

The first efficient signature scheme tightly related to the RSA problem is
due to Bellare and Rogaway [BR96]. The security stands in the Random Ora-
cle (RO) model [BR93] where hash functions are idealized as random oracles.
Their scheme, called RSA-PSS, appears in most recent cryptographic standards.
Other RSA-based signature schemes shown to be secure in the standard model
include [GHR99] and [CS00].

Amongst the signature schemes based on the discrete logarithm problem
(or on the Diffie-Hellman problem), we quote the ElGamal scheme [ElG85], the
Schnorr scheme [Sch91], and the Girault-Poupard-Stern scheme [Gir91,PS98].
The security of these schemes is assessed (in the RO model) thanks to the forking
lemma by Pointcheval and Stern [PS96]. Basically, the idea consists in running
the adversary twice with different hash oracles so that it eventually gets two
distinct valid forgeries on the same message. The disadvantage of the forking
lemma technique is that the so-obtained security reductions are loose.

Even if the security reductions are loose, those signature schemes present
the nice feature that there are very efficient on-line [FS87] compared to RSA-
based signature schemes. In the off-line phase, the signer precomputes a quantity
(independent of the message) called a coupon that will be used in the on-line
phase to produce very quickly a signature on an arbitrary message.

To date, the only signature scheme whose security is tightly related to the
discrete logarithm problem or to the Diffie-Hellman problem (in the RO model)
is EDL, a scheme independently considered in [CP92] and [JS99]. Indeed, at
Eurocrypt ’03, Goh and Jarecki [GJ03] showed that the security of EDL can
be reduced in a tight way to the Computational Diffie-Hellman (CDH) problem.
Its on-line version as suggested in [GJ03] requires the recent technique by Shamir
and Tauman [ST01] based on chameleon hash functions [KR00] and so is not as
efficient as the aforementioned signature schemes: the resulting signatures are
longer and the verification is slower.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 3

It is to note that EDL was recently modified by Katz and Wang [KW03]
into a scheme with shorter signatures and a tight security reduction but on a
stronger assumption, namely the Decisional Diffie-Hellman (DDH) assumption.
In the same paper, Katz and Wang also proposed an improvement to EDL, that
uses a single bit instead of a long random, and which has a tight reduction to
the CDH problem. The cost of this nice improvement is simply a decrease of the
security parameter of one bit.

To finalize the related work part, we stress that the shortest signature scheme
that is known today is a scheme of Boneh, Lynn and Shacham [BLS04]. This
scheme is loosely related to the CDH problem, but gives very short signatures,
as it consists in only one single group element. However, this scheme is limited
to certain elliptic and hyper-elliptic curve groups, and so less general than EDL.
Furthermore, the on-line version of the Boneh-Lynn-Shacham signature scheme
requires the technique by Shamir and Tauman, which doubles the size of the
signature, and hence is less interesting.

Our contribution. In this paper, we firstly review the definition of EDL, its
proof by Goh and Jarecki, and the scheme of Katz and Wang. Secondly, we
propose a new signature scheme which, similarly to EDL, features a tight security
reduction relatively to the CDH problem but whose resulting signatures are
smaller than EDL signatures. Furthermore, contrary to EDL, no additional trick
is needed to turn our signature scheme in an off-line/on-line version.

Notably, in elliptic curve settings, our scheme supersedes other discrete loga-
rithm based schemes with same security level, as it uses signatures that are 25%
smaller.

Organization of the paper. The rest of this paper is organized as follows.
In the next section, we give some background on signature schemes and provide
a brief introduction to “provable” security. Then, in Section 3, we review the
EDL signature scheme and its proof by Goh and Jarecki. Section 4 is the core of
our paper. We describe our signature scheme, prove that its security is tightly
related to CDH in the RO model and show how it outperforms EDL. Finally,
we conclude in Section 5.

2 Definitions

In this section, we remind some background on signature schemes and on their
security. We also define the Diffie-Hellman and the discrete logarithm problems.
We then provide a brief introduction to provable security. Finally, we review the
concept of on-the-fly signatures.

2.1 Signature Schemes

A signature scheme Sig = (GenKey,Sign,Verify) is defined by the three
following algorithms:



4 Benôıt Chevallier-Mames

– The key generation algorithm GenKey. On input 1k, algorithm GenKey
produces a pair (pk, sk) of matching public (verification) and private (signing)
keys.

– The signing algorithm Sign. Given a message m in a set of messages M
and a pair of matching public and private keys (pk, sk), Sign produces a
signature σ. The signing algorithm can be probabilistic.

– The verification algorithm Verify. Given a signature σ, a message m ∈M
and a public key pk, Verify tests whether σ is a valid signature of m with
respect to pk.

Several security notions have been defined about signature schemes, mainly
based on the seminal work of Goldwasser, Micali and Rivest [GMR84,GMR88].
It is now customary to ask for the impossibility of existential forgeries, even
against adaptive chosen-message adversaries:

– An existential forgery is a new message-signature pair, valid and generated
by the adversary. The corresponding security notion is called existential un-
forgeability (EUF).

– The verification key is public, including to the adversary. But more infor-
mation may also be available. The strongest kind of information is definitely
formalized by the adaptive chosen-message attacks (CMA), where the at-
tacker can ask the signer to sign any message of its choice, in an adaptive
way.

As a consequence, we say that a signature scheme is secure if it prevents existen-
tial forgeries, even under adaptive chosen-message attacks (EUF-CMA). This is
measured by the following success probability, which should be negligibly small,
for any adversary A which outputs a valid signature σ on a message m that
was never submitted to the signature oracle,3 within a “reasonable” bounded
running-time and with at most qs signature queries to the signature oracle:

Succeuf−cma
Sig (A, qs) = Pr

[
(pk, sk)← GenKey(1k), (m,σ)← ASign(sk;·)(pk) :

Verify(pk;m,σ) = True

]
.

In the random oracle model [BR93], adversary A has also access to a hash
oracle: A is allowed to make at most qh queries to the hash oracle.

2.2 The Diffie-Hellman and the Discrete Logarithm Problems

The security of signature schemes relies on problems that are supposed in-
tractable, such as the Diffie-Hellman problem [DH76] or the discrete logarithm
problem.
3 When the signature generation is not deterministic, several signatures may corre-

spond to the same message. In this case, we do not consider the attacker successful
when it outputs a second signature on a message already submitted to the signature
oracle. Being given a message-signature pair (m, σ), providing a second signature σ′

on the same message m is captured by the adversarial goal of malleability [SPM+02].



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 5

Let G be a (multiplicatively written) abelian group. Given an element g ∈ G
of prime order q, we let Gg,q ⊆ G denote the cyclic group generated by g, i.e.,
Gg,q = {gi, i ∈ Zq}.

Let x be a random number in Zq. Define y = gx. Being given (g, y), the
discrete logarithm problem in Gg,q is defined as finding the value of x. In this
paper, the discrete logarithm of y w.r.t. g will be denoted as DLg(y) = x. On
the other hand, being given (g, y, ga), for an unknown random number a in Zq,
the (computational) Diffie-Hellman problem is defined as returning gax = ya.

For cryptographic applications, group Gg,q is chosen so that the problems are
(supposed) hard. A classical example is to choose Gg,q ⊆ Fp

∗, where q divides
(p− 1). Another widely used group family is the one of elliptic curves over finite
fields [Mil85,Kob87,BSS99].

There are plenty of such signature schemes, including the schemes by ElGa-
mal [ElG85], Girault-Poupard-Stern [Gir91,PS98], Schnorr [Sch91], and particu-
lary the one we are interested in this paper, the EDL scheme [CP92,JS99,GJ03].

2.3 Security Reduction and Provable Security

Today, schemes are “proved” secure, using what is called a reduction. For this rea-
son, some authors prefer to use the term of reductionist security (e.g., [KM04])
instead of provable security.

Basically, the idea is to prove that a scheme is secure by exhibiting a machine
(the so-called reduction) that uses a chosen-message attacker on a given signature
scheme, in order to solve a hard cryptographic problem. In the standard model,
the attacker is used by simulating signature queries on qs chosen-messages. In
addition, in the random oracle mode, the simulator also simulates hash queries
on qh chosen data.

Two classes of provably secure signature schemes can be distinguished. The
first class of provable signature schemes proposes reductions that are said loose,
as they can turn an attacker into a machine to solve the cryptographic problem
asymptotically. The second class of provable signature schemes features so-called
tight reductions, using the attacker to solve the problem with almost the same
probability.

Of course, tightly secure schemes are the preferred ones, but there are just
few of them. Notably, RSA-PSS and its derivatives are tightly related to the
RSA problem [RSA78,BR96,Cor02], and Rabin-PSS is equivalent to the factori-
sation problem [Rab79]. For a long time, no tightly secure schemes were known,
based on the Diffie-Hellman or discrete logarithm problems, but only loosely
secure schemes, as their security was shown thanks to the forking lemma tech-
nique by Pointcheval and Stern [PS96]. Proved recently at Eurocrypt ’03, the
EDL scheme is the first tight secure scheme, based on the computational Diffie-
Hellman problem.



6 Benôıt Chevallier-Mames

2.4 Signature with Coupons

Some signature schemes have the nice feature that one can precompute (off-line)
some quantities, independent from the messages, called coupons, and use them
in a very fast way to generate signatures once the message is received [FS87].
Such signature schemes are also known as on-the-fly signature schemes.

This coupon technique is very useful, especially in constrained environments
such as smart cards and finds numerous applications. Most signature schemes
based on discrete logarithm or Diffie-Hellman problems allow the use of coupons.
However, as previously explained, they do not offer a tight security reduction. To
our knowledge, the only exception is the EDL signature scheme using a technique
proposed by Shamir and Tauman, based on chameleon hashes by Krawczyk and
Rabin [ST01,KR00]. However, this use of chameleon hashes is at the price of a
slower verification, as the verifier must compute chameleon hashes (which are
multi-exponentiations) before verifying the signature.

3 The EDL Signature

3.1 The Scheme

The EDL signature scheme, independently proposed in [CP92,JS99], is defined
as follows.

Global set-up: Let `p, `q, and `r denote security parameters.4 Let also a cyclic
group Gg,q of order q, generated by g, where q is a `q-bit prime and the
representation of the elements of Gg,q is included in {0, 1}`p . Finally, let two
hash functions, H :M×{0, 1}`r → Gg,q and G : (Gg,q)6 → Zq.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx.

Signature: To sign a message m ∈M, one first randomly chooses r ∈ {0, 1}`r ,
and computes h = H(m, r) and z = hx. Follows a proof of logarithm equality
that DLh(z) = DLg(y): for a random number k ∈ Zq, one computes u = gk,
v = hk, c = G(g, h, y, z, u, v) and s = k + cx mod q. The signature on m is
σ = (z, r, s, c).

Verification: To verify a signature σ = (z, r, s, c) ∈ Gg,q×{0, 1}`r × (Zq)2 on a
message m ∈ M, one computes h′ = H(m, r), u′ = gs y−c and v′ = h′

s
z−c.

The signature σ is accepted iff c = G(g, h′, y, z, u′, v′).

In EDL, the only quantity that can be precomputed in off-line signature
phase is u. The on-line part is so two hash function evaluations plus two modular
exponentiations.

4 For normal use-cases, `r ≤ `q.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 7

3.2 Security of EDL

In this section, we reduce the security of EDL to the security of the computational
Diffie-Hellman problem. The proof basically follows the one originally presented
in [GJ03] by showing that the EDL scheme is a proof that DLh(z) = DLg(y) =
x.

Theorem 1 ([GJ03]). Let A be an adversary which can produce, with
success probability ε, an existential forgery under a chosen-message attack
within time τ , after qh queries to the hash oracles and qs queries to the
signing oracle, in the random oracle model. Then the computational Diffie-
Hellman problem can be solved with success probability ε′ within time τ ′,
with

ε′ ≥ ε− qs

(
qs + qh

q2
+

qs + qh

2`r

)
−qh

q

and
τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use
an attacker A against the EDL signature scheme to solve this challenge, i.e., to
find gax. Our attacker A, after qH (resp. qG) hash queries to H (resp. G) oracle
and qs signature queries, is able to produce a signature forgery with probability
ε within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters
(g, q, Gg,q).

Answering new G(g, h, y, z, u, v) query: The simulator returns a random
number in Zq.

Answering new H(m, r) query: The simulator generates a random number
d ∈ Zq, and returns (ga) gd.

Answering signature query on m ∈ M: The simulator generates a random
number r ∈ {0, 1}`r . If H(m, r) is already set, the simulator fails and stops
(Event 1). Else, the simulator generates a random number κ ∈ Zq, sets
h = H(m, r) = gκ and computes z = (gx)κ — remark that DLh(z) =
DLg(y) (= x). Then, the simulator randomly picks (s, c) ∈ Zq×Zq and com-
putes u = gs y−c and v = hs z−c. If G(g, h, y, z, u, v) is already set, the simu-
lator fails and stops (Event 2). Else, the simulator sets G(g, h, y, z, u, v) = c
and returns the valid signature (z, r, s, c).

As we can see, the simulation is valid and indistinguishable from an actual
signer, except for some events:



8 Benôıt Chevallier-Mames

– Event 1: As r is a random number in {0, 1}`r , the probability that the
H(m, r) is already set is less than qH+qs

2`r
, for one signature query. For qs

signature queries, the failure probability is thus upper bounded by qs·(qH+qs)
2`r

.
– Event 2: From the simulation, the input tuples to the G oracle are of the

form (g, h, y, z, u, v) = (g, gκ, y, yκ, gk, gκk) with (k, κ) ∈ Zq × Zq. Further-
more, as h = gκ = H(m, r) is not known by the attacker (else, Event 1 would
have happened), κ is absolutely random for the attacker. Hence, the proba-
bility that G(g, h, y, z, u, v) is already set is less than qG+qs

q2 . For qs signature

queries, the failure probability is thus upper bounded by qs·(qG+qs)
q2 .

Solving the CDH challenge (g, gx, ga): Except when these two rare events
occur, attacker A returns, with probability ε, a valid signature forgery σ =
(z, r, s, c) on a message m that was not submitted to the signature oracle,
with h = H(m, r) = (ga) gd for some d known to the simulator. Provided
that DLh(z) = DLg(y) = x, the solution to the CDH challenge is z (gx)−d.

Now, we calculate the probability that the attacker outputs a valid forgery
but with DLh(z) 6= DLg(y) = x. Letting u = gk, v = hk′ and z = hx′ (⇔
x′ = DLh(z) 6= x), it follows, as the forgery is valid, that k = s − cx mod q

and k′ = s − cx′ mod q. Hence, we get c = G(g, h, y, hx′ , gk, hk′) = k−k′

x′−x mod q.
As G(g, h, y, hx′ , gk, hk′) is not defined (else, Event 2 would have happened),
it follows that the relation c = G(g, h, y, hx′ , gk, hk′) = k−k′

x′−x mod q is never
satisfied, except with probability qG

q .
Putting all together, we can conclude that the EDL signature scheme is

tightly as secure as the Diffie-Hellman problem: the success probability ε′ of our
reduction satisfies

ε′ ≥ ε− qs

(
qs + qh

q2
+

qs + qh

2`r

)
−qh

q

and the running time τ ′ satisfies

τ ′ . τ + (6qs + qh)τ0

where τ0 is the time required for an exponentiation. ut

3.3 Features of the EDL Signature

The EDL signature scheme is proven secure relatively to the computational
Diffie-Hellman problem, with a tight reduction. Hence, its security is a strong
point.

The scheme yields signatures of (`p+2`q+`r) bits. This may appear somewhat
long but actually it is not, given such a strong security.5

5 In [GJ03], the authors estimate that if the discrete logarithm problem is supposed
to be infeasible for 1000-bit primes, the forking lemma’s technique tells that Schnorr
signatures are secure in a field modulo a 8000-bit prime.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 9

In its classical use, the scheme cannot be used with coupons, but, as noted by
Goh and Jarecki, one can use the technique of [ST01] based on chameleon hash
functions [KR00] to transform this signature into a signature with coupons, what
we will call EDL-CH in the sequel. Producing a EDL-CH signature forgery is
equivalent to produce a signature forgery in the regular EDL signature scheme, or
to find a collision in the chameleon hash function. Hence, the natural way to get a
signature with coupons and with a tight security reduction to the computational
Diffie-Hellman problem is to use a chameleon hash function whose collision-
resistance is also based on discrete logarithm or Diffie-Hellman problem (e.g.,
H(m, r) = H0(gm yr), where H0 : Gg,q → Gg,q is a hash function). But the
cost of this way to create coupons is a slower verification. Further, using the
chameleon hash H(m, r) = H0(gm yr) implies that one needs to define random
number r ∈ Zq (and not in {0, 1}`r ). This makes the EDL-CH signatures slightly
longer: (`p + 3`q) bits.

3.4 Katz-Wang Signature Scheme

In [KW03], Katz and Wang proposed two modifications of EDL, one which
consists in a scheme with short signatures tightly based on the DDH assumption,
and one another that uses signature shorter than EDL but keeps tightly related
to the CDH problem. In this section, we briefly remind the second scheme.

The idea of Katz and Wang is to remove the randomness of r, and to replace
it by unpredictability. Namely, r is replaced by a bit b that can only be computed
by the signer (e.g., b is the result of a PRF, under a secret key included in the
signing key):6 the signatures are then (z, s, c, b), and so are shorter than EDL
signatures by 110 bits. The proof of EDL is then slightly modified for Katz-Wang
scheme. For H(m, b) queries, the simulator computes the bit value corresponding
to m, then:

– if this value is b, the returned value is of the form gκ, which allows to compute
corresponding z very simply: z = (gx)κ;

– if this value is not b, the returned value is of the form (ga) gd.

Consequently, it is simple for the simulator to reply to signature queries, as
it knows the right value b for each message m. On the contrary, as b cannot be
guessed by the forger better than randomly for any new message m, its forge will
be with the wrong b with a probability 1

2 , and with this probability, the CDH
problem will be solved by the simulator.

Hence, this modification gives a signature scheme with a signature length of
(`p + 2`q + 1) bits, and which is just one bit less secure than EDL when taking
same parameters. Unfortunately, in this scheme, only u can be computed off-line,
and so the on-line part of the signature is two modular exponentiations in Gg,q.

6 In other words, in EDL, signing few times the same message would result in different
random numbers r, while doing the same with Katz-Wang scheme would give always
the same bit b.



10 Benôıt Chevallier-Mames

4 Our Signature Scheme

Looking at the description of EDL, we can see that basically two random values
are used: k is used to generate a proof of knowledge of the discrete logarithm
while r is used to ensure that the attacker cannot predict the value of h, that
will be used during simulations.

More precisely, in EDL, h is taken equal to H(m, r), with a sufficiently large
random number r. As RSA-PSS does in a certain sense, the goal is to avoid,
with overwhelming probability, that the attacker requests the value of H(m, r)
with a random number r that will afterwards appear during signature queries
on m. Indeed, we want to build the H(m, r)’s involved in signature simulations
in a certain form and the H(m, r)’s returned to direct queries (and susceptible
to be used in the final forgery) in another form (see Section 3.2 for more detail).

Our first idea is the following: Why not trying to put the randomness of k
inside H(m, ·) instead of using another random number r that increases the size
of the signature? Clearly, one cannot use H(m, k) directly, but H(m,u) looks
promising (and appears to be secure, as proven in Appendix C). As a result, the
size of the so-constructed signature is reduced.

Our second idea is the following: Would it be possible to put m inside G(·)
rather than in H(·), as done in [Sch91] or in [KW03]? The goal here is to allow
as many precomputations as possible. This trick does not apply to EDL, but
when combined with the previously suggested technique, the answer appears to
be positive.

Intuitively, using z = H(r)x and putting m in G(·) in EDL is insecure because
an attacker could easily reuse a z returned by the signer, and so a simulator
would not solve a CDH problem. On the contrary, in our construction, we will
show that using z = H(u)x remains secure, as an attacker could not reuse an
H(u)x returned by the signer, unless the discrete logarithm is revealed: indeed,
u satisfies a certain relation (u = gs y−c) that cannot be given for two different
c’s for the same u without revealing the discrete logarithm.

In this section, we describe more formally our scheme and prove strictly the
intuition that we have just given.

4.1 Description

Our scheme goes as follows:

Global set-up: Let `p and `q denote security parameters. Let also a cyclic
group Gg,q of order q, generated by g, where q is a `q-bit prime and the
representation of the elements of Gg,q is included in {0, 1}`p . Finally, let two
hash functions, H : Gg,q → Gg,q and G :M× (Gg,q)6 → Zq.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx.

Signature: To sign a message m ∈M, one first randomly chooses k ∈ Zq, and
computes u = gk, h = H(u), z = hx and v = hk. Next, one computes c =
G(m, g, h, y, z, u, v) and s = k+cx mod q. The signature on m is σ = (z, s, c).



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 11

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message
m ∈ M, one computes u′ = gs y−c, h′ = H(u′), and v′ = h′

s
z−c. The

signature σ is accepted iff c = G(m, g, h′, y, z, u′, v′).

As an advantage, our signatures are smaller than the EDL’s ones: they are
only (`p +2`q)-bit long. We still have to prove that the scheme is tightly related
to the computational Diffie-Hellman problem, which is done in the next section
— but assuming this for the moment, we can see that, using the numerical values
of [GJ03], our scheme leads to a gain of `r = 111 bits per signature.

4.2 Security of the Proposed Scheme

In this section, we reduce the security of the proposed scheme to the security of
the computational Diffie-Hellman problem. The proof consists in showing that
the proposed scheme is a proof that DLh(z) = DLg(y) = x.

Theorem 2. Let A be an adversary which can produce, with success prob-
ability ε, an existential forgery under a chosen-message attack within time
τ , after qh queries to the hash oracles and qs queries to the signing ora-
cle, in the random oracle model. Then the computational Diffie-Hellman
problem can be solved with success probability ε′ within time τ ′, with

ε′ ≥ ε− 2qs

(
qs + qh

q

)
and

τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use
an attacker A against our signature scheme to solve this challenge, i.e., to find
gax. Our attacker A, after qH (resp. qG) hash queries to H (resp. G) oracle and
qs signature queries, is able to produce a signature forgery with probability ε
within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters
(g, q,Gg,q).

Answering new G(m, g, h, y, z, u, v) query: The simulator returns a ran-
dom number in Zq.

Answering new H(u) query: The simulator generates a random number d ∈
Zq, and returns (ga) gd. All queries u are stored in a list called U-List.

Answering signatures query on m ∈ M: The simulator randomly gener-
ates (κ, s, c) ∈ (Zq)3. Then, it computes u = gs y−c. IfH(u) is already set, the



12 Benôıt Chevallier-Mames

simulator stops (Event 1). Else, the simulator sets h = H(u) = gκ and com-
putes z = (gx)κ — remark that DLh(z) = DLg(y)(= x). Finally, the simula-
tor computes v = hs z−c. If G(m, g, h, y, z, u, v) is already set, the simulator
stops and fails (Event 2). Else, the simulator sets G(m, g, h, y, z, u, v) = c,
and returns the valid signature (z, s, c). All u’s computed during signature
queries are stored in a list called Υ -List

As we can see, this simulator is valid and indistinguishable from an actual
signer, except for some events:

– Event 1: As u is a random number in Gg,q, the probability that the H(u)
is already set is less than qs+qH

q , for one signature query. For qs signature

queries, the failure probability is thus upper bounded by qs·(qs+qH)
q .

– Event 2: From the simulation, the input tuples to the G oracle are of the
form (m, g, h, y, z, u, v) = (m, g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which
is determined by the relation h = H(gk) = gκ; but as Event 1 did not
happened, h is absolutely unknown for the attacker, and so κ is a random
integer of Zq. Then, the probability that G(m, g, h, y, z, u, v) is already set
is less than qs+qG

q2 . For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qG)
q2 ≤ qs·(qs+qG)

q .

As a conclusion, except with a probability smaller than δsim = qs

(
qh+2qs

q

)
,

the simulation is successful.
In other words, with a probability εsim ≥ ε − δsim, the attacker A is able

to return a valid signature forgery (ẑ, ŝ, ĉ) on a message m̂ ∈M that was never
submitted to the signature oracle. The simulator deduces from this forgery the
corresponding tuple (û, v̂, ĥ), by the following computations: û = gŝ y−ĉ, ĥ =
H(û), and v̂ = ĥŝ ẑ−ĉ. Notably, if H(û) has not been queried to the H oracle
by the attacker or set by the signature oracle, the simulator queries it to the H
oracle itself. Hence, û is a member of U-List or a member of Υ -List.

Solving the CDH challenge (g, gx, ga). At this step, once the forgery is
returned by the attacker, there are two cases, contrary to the proof of EDL.

In the first case, û is a member of U-List. This is the case that corresponds
to the only case of the proof of EDL. As in EDL, we write û = gk, v̂ = ĥk′

and ẑ = ĥx′ , and we get, as the signature is valid, k = ŝ − ĉx mod q and
k′ = ŝ − ĉx′ mod q. Then, if x 6= x′, we have ĉ = G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) =
k−k′

x′−x mod q. As the message m̂ is new, G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) was not set during
a signature query, and so we know that DLĥ(ẑ) = DLg(y)(= x), except with
a probability qG

q . Apart this error, the simulator receives from the attacker a

signature with ẑ = ĥx, and it knows d such that ĥ = H(û) = (ga) gd. Then the
simulator can return the solution to the CDH challenge, which is ẑ (gx)−d. In
this first case, the forgery is successfully used to solve the CDH challenge, except
with a probability smaller than δ1 = qh

q .



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 13

In the second case, û is not a member of U-List, and so is a member of Υ -List.
This case can happen, contrary to the EDL signature scheme, as there is no
message in the input of H, and so we can imagine that the attacker reuse a
u that corresponds to a u of a signature given by the signature oracle. Then,
the simulator can recover from its log files all quantities that correspond to this
u = û, i.e., h, v, z, s, c and m.

At this moment, we can see that we have u = gs y−c = û = gŝ y−ĉ. It
is exactly the kind of hypothesis that is used by the forking lemma to prove a
(loose) security. But here, this equality is not obtained by restarting the attacker
(as it is done in the forking lemma), but just by construction. More precisely,
we can recover easily the private key x, as far as ĉ 6= c mod q.

As the message m̂ is new, c 6= ĉ or a collision on G function happened,
between a G returned the signature simulation and a G returned by a direct G
query, which occurs with a probability smaller than qs·qG

q . Hence, except an error
with a probability smaller than δ2 = qs·qG

q , we have ĉ 6= c, and so we can recover
the private key x: equation s− xc = ŝ− xĉ mod q gives x = s−ŝ

c−ĉ mod q. We can
see that this second case gives not only the solution to the CDH challenge, but
also the solution to the discrete logarithm.

As a conclusion, we can see that in both cases, our simulator can transform
the forgery given by the attacker into the solution to the CDH challenge.

Putting all together, the success probability ε′ of our reduction satisfies ε′ ≥
ε− δsim −max(δ1, δ2), which gives, using qH + qG = qh,

ε′ ≥ ε− 2qs

(
qs + qh

q

)
and the running time τ ′ satisfies

τ ′ . τ + (6qs + qh)τ0 .

As we can see, our scheme is tight, as far as qs·qh

q ≤ ε
4 . ut

4.3 Our Proposed Scheme with Coupons

Interestingly, our scheme allows what we call a cost-free use of coupons. By this,
we mean that the signer is free to choose to use coupons or not: this choice of
the signer does not affect the verifier as the verification step remains unchanged.

This is done in a very natural way: the signature step (cf. Section 4.1) is
simply split into two steps.

Off-line signature: To create a new coupon, one randomly chooses k ∈ Zq and
computes u = gk, h = H(u), z = hx and v = hk. The coupon is the tuple
(u, v, h, z, k).

On-line signature: To sign a message m ∈ M, one uses a fresh coupon (u, v,
h, z, k) and just computes c = G(m, g, h, y, z, u, v) and s = k + cx mod q.
The signature on m is σ = (z, s, c).



14 Benôıt Chevallier-Mames

The verification step remains the same. This property is very useful as it al-
lows the signer to precompute coupons and to sign on-line very quickly, namely,
by just performing one hash function evaluation followed by one modular mul-
tiplication.7

As previously described, our scheme features a coupon size of (4`p + `q) bits.
This size can be reduced to (3`p + `q) bits by not storing the value of h, i.e., a
coupon is defined as (u, v, z, k). Then, h = H(u) is evaluated in the on-line step.
This option turns out useful for memory constrained devices like smart cards.

An even more sophisticated solution that minimizes the size of the coupon
is described in Appendix A.

4.4 Size of Parameters

In this section, we show how to set the values of `q and `p to attain a security
level of 2κ. Our analysis basically follows Goh and Jarecki’s for EDL. Assuming
we take the best (qh, qs, τ, ε)-attacker against our scheme, he can find a forgery
in an average time of τ

ε . Letting τ = 2n and ε = 2−e, we get log2(
τ
ε ) = n+e = κ,

by definition of the security level of our scheme.
Furthermore, we can use this attacker, as shown in the proof of Section 4.2,

to solve the CDH problem in a time of τ ′

ε′ . We let 2κ′ denote the security level
of the CDH in the subgroup Gg,q. By definition, we have κ′ ≤ log2(

τ ′

ε′ ). Because
of the O(

√
q) security for the discrete logarithm in Gg,q, we have `q ≥ 2κ′.

We use the cost of the evaluation of a hash function as the unit of time.
Hence, qh ≤ 2n. We suppose that τ0 (the time for an exponentiation in Gg,q) is
100 times the time of a hash function evaluation. So, using qs ≤ qh, we obtain
that τ ′ ' 2n+7 and ε′ & ε − 4qs·qh

q . As long as qs ≤ 2`q−e−3−n = 2`q−κ−3

(e.g., κ = 80, qs ≤ 280, qh ≤ 280 and `q ≥ 176), we have ε′ & 2−e−1. Then,
log2(

τ ′

ε′ ) . n + 7 + e + 1 = κ + 8. We finally obtain κ ≥ κ′ − 8.
For example, if the targeted security level is κ = 80, it is sufficient to use

κ′ = 88 (and hence `q ≥ 176). It proves that our scheme is very efficient in terms
of signature size, as we can use the same subgroup Gg,q as the one used by
Goh and Jarecki for EDL and have the same security. One can remark that our
scheme remains secure even if we limit qs to 280, while in EDL, qs was limited
to 230, or the random number r was made appropriately longer.

4.5 Detailed Comparison with EDL, the Katz-Wang Scheme and
Other Schemes

In this paragraph, we sum up the advantages of our scheme. Compared to EDL,
our scheme features
7 This is comparable to the fastest off-line/on-line signature schemes of Schnorr,

Girault-Poupard-Stern or Poupard-Stern [Sch91,Gir91,PS98,PS99]. One would re-
mark that Girault-Poupard-Stern scheme does not require a reduction modulo the
group order, but yields longer signatures: this elegant technique can also be used
in our scheme, to get an even faster on-line signature scheme at the price of longer
signatures.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 15

1. faster signatures with a cost-free use of coupons: the on-line part only re-
quires one hash function evaluation followed by one modular multiplication
in Zq, while in EDL, this phase consists of two hash function evaluations
and two modular exponentiations in Gg,q;

2. same verification step efficiency;
3. shorter signatures of `r ≥ 111 bits: in a subgroup of Fp

∗, taking `p = 1024
and `q = 176, this represents an improvement of 7%. In the elliptic curve
setting, the gain is even more sensible, as z can be represented with a length
around `q = 176, resulting in an improvement of 17%.

Compared to the Katz-Wang scheme, our scheme features

1. faster signatures with a cost-free use of coupons: the on-line part only re-
quires one hash function evaluation followed by one modular multiplication
in Zq, while in Katz-Wang signature scheme, this phase consists of two hash
function evaluations and two modular exponentiations in Gg,q;

2. same verification step efficiency;
3. less significantly, shorter signatures of 1 bit and a security parameter greater

of 1 bit;
4. smaller key size, as computing b by a PRF or in another way require an

additional key, that should better not be related to the private key x.

Furthermore, as noticed in [KW03], the computation of an hash H : Gg,q →
Gg,q can be very long, namely it costs an exponentiation of (`p− `q) bits, which
is much longer than the two exponentiations in Gg,q. In our scheme, this hash
computation is done off-line, contrary to EDL and Katz-Wang schemes.

Compared to the off-line/on-line version of EDL, EDL-CH, the off-line/on-
line version of our scheme presents

1. faster and unchanged verification step (remember that EDL-CH relies on
chameleon hashes, which requires additional exponentiations);

2. shorter signatures, i.e., `q ≥ 176 bits less than EDL-CH ; again, in a subgroup
of Fp

∗, taking `p = 1024 and `q = 176, this represents an improvement of
11% and of 25% in the elliptic curve setting.

Finally, owing to its security tightness, our scheme fulfills or even improves
most of the advantages of EDL that were presented by Goh and Jarecki, by
comparison with other discrete-logarithm schemes, such as Schnorr signature,
with same security level.

On the one hand, using our scheme in Gg,q ⊆ Fp
∗, we can use a field 8 times

smaller and a subgroup of order twice smaller than in other discrete-logarithm
schemes (as in EDL). Notably, it means that public keys are smaller by a factor
of 8, private keys are smaller by a factor of 2. In this case, our signatures are
about twice as long as other discrete-logarithm schemes.

On the other hand, in the elliptic curve setting, our public and private keys
are smaller by a factor of 2 and our signatures are 25% smaller than in previously
known schemes.

This clearly shows the advantages of the proposed scheme.



16 Benôıt Chevallier-Mames

5 Conclusion

At Eurocrypt ’03, Goh and Jarecki gave a proof that the security of EDL is
tightly related to the CDH problem, in the random oracle model. They also
proposed to use the technique of Shamir and Tauman, based on chameleon hash
functions, to get a version of EDL scheme with coupons: EDL-CH.

In this paper, we have proposed a new signature scheme which, similarly
to EDL, features a tight security reduction relatively to the CDH problem but
whose resulting signatures are smaller: if coupons are not used, we gain `r bits
compared to EDL signatures; in the off-line/on-line version, we gain `q bits
compared to EDL-CH signatures. Furthermore, contrary to EDL, no additional
trick is needed to turn our signature scheme in an off-line/on-line version.

Our scheme represents to date the most efficient scheme of any signature
scheme with a tight security reduction in the discrete-log setting.

Acknowledgements

The author would like to thank his careful PhD advisor, David Pointcheval, for
teaching him so much about provable security. Many thanks also go to Marc Joye
for his attention and fruitful support in our research. The author thanks Jean-
François Dhem, Philippe Proust and David Naccache, as well as Dan Boneh and
Jonathan Katz for their comments. Finally, anonymous referees of Crypto ’05
are also thanked for their precious remarks, and notably for corrections on our
previous proofs.

References

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and
Communications Security, pages 62–73. ACM Press, 1993.

[BR96] M. Bellare and P. Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In U. Maurer, editor, Advances in Cryptology
– EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 399–416. Springer-Verlag, 1996.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pair-
ing. Journal of Cryptology, 17(4):297–319, 2004.

[BSS99] I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography.
Cambridge University Press, 1999.

[Che05] B. Chevallier-Mames. An Efficient CDH-based Signature Scheme With a
Tight Security Reduction. In V. Shoup, editor, Advances in Cryptology –
CRYPTO 2005, to appear in Lecture Notes in Computer Science, Springer-
Verlag, 2005.

[Cor02] J.-S. Coron. Optimal security proofs for PSS and other signature schemes.
In L.R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 272–287.
Springer-Verlag, 2002.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 17

[CP92] D. Chaum and T.P. Pedersen. Wallet databases with observers. In E. Brick-
ell, editor, Advances in Cryptology – CRYPTO ’92, volume 740 of Lecture
Notes in Computer Science, pages 89–105. Springer-Verlag, 1992.

[CS00] R. Cramer and V. Shoup. Signature scheme based on the strong RSA
assumption. ACM Transactions on Information and System Security,
3(3):161–185, 2000.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, 1976.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31(4):469–472, 1985.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In A.M. Odlyzko, editor, Advances in
Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in Computer Sci-
ence, pages 186–194. Springer-Verlag, 1987.

[GHR99] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures
without the random oracle. In M. Bellare, editor, Advances in Cryptology
– EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 123–139. Springer-Verlag, 1999.

[Gir91] M. Girault. An identity-based identification scheme based on discrete loga-
rithms modulo a composite number. In I.B. Damg̊ard, editor, Advances in
Cryptology – EUROCRYPT ’90, volume 473 of Lecture Notes in Computer
Science, pages 481–486. Springer-Verlag, 1991.

[GJ03] E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-
Hellman problem. In E. Biham, editor, Advances in Cryptology – EU-
ROCRYPT 2003, Lecture Notes in Computer Science, pages 401–415.
Springer-Verlag, 2003.

[GMR84] S. Goldwasser, S. Micali, and R. Rivest. A “paradoxical” solution to the
signature problem. In Proceedings of the 25th FOCS, pages 441–448. IEEE,
1984.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure
against adaptive chosen message attacks. SIAM Journal of Computing,
17(2):281–308, 1988.

[JS99] M. Jakobsson and C.P. Schnorr. Efficient oblivious proofs of correct expo-
nentiation. In B. Preneel, editor, Communications and Multimedia Security
– CMS ’99, volume 152 of IFIP Conference Proceedings, pages 71–86. Klu-
ver, 1999.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
vol. 48, pp. 203-209, 1987.

[KM04] N. Koblitz and A. Menezes. Another look at “provable security”. Cryptol-
ogy ePrint Archive, Report 2004/152, 2004. http://eprint.iacr.org/.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In Symposium on
Network and Distributed System Security – NDSS 2000, pages 143–154.
Internet Society, 2000.

[KW03] J. Katz and N. Wang. Efficiency improvements for signature schemes with
tight security reductions. In ACM Conference on Computer and Commu-
nications Security, pages 155–164. ACM Press, 2003.

[MR02] S. Micali and L. Reyzin. Improving the exact security of digital signatre
schemes. Journal of Cryptology, 15(1):1–18, 2002.



18 Benôıt Chevallier-Mames

[Mil85] V. Miller. Use of elliptic curves in cryptography. In H. C. Williams, ed-
itor, Advances in Cryptology – CRYPTO ’85, Lecture Notes in Computer
Science, pages 417–426. Springer-Verlag, 1986.

[P1363] IEEE P1363. IEEE Standard Specifications for Public-Key Cryptography.
IEEE Computer Society, August 2000.

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
U. Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, volume
1070 of Lecture Notes in Computer Science, pages 387–398. Springer-
Verlag, 1996.

[PS98] G. Poupard and J. Stern. Security analysis of a practical “on the fly”
authentication and signature generation. In K. Nyberg, editor, Advances in
Cryptology – EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science, pages 422–436. Springer-Verlag, 1998.

[PS99] G. Poupard and J. Stern. On the fly signatures based on factoring. In
ACM Conference on Computer and Communications Security, pages 37–
45. ACM Press, 1999.

[Rab79] M.O. Rabin. Digital signatures and public-key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for
Computer Science, January 1979.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[Sch91] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

[SPM+02] J. Stern, D. Pointcheval, J. Malone-Lee, and N. Smart. Flaws in applying
proof methodologies to signature schemes. In Moti Yung, editor, Advances
in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 93–110. Springer-Verlag, 2002.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, Lecture Notes
in Computer Science, pages 355–367. Springer-Verlag, 2001.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 19

A An Efficient CDH-based Signature Scheme with
Smaller Coupons

In this appendix, we propose some modifications to the proposed scheme (Sec-
tion 4) in order to obtain smaller coupons with the same security.

A.1 An Efficient Coupon-based Variant

We modify our scheme in the following way:

Global set-up: Let `p, `q and `t denote security parameters. Let also a cyclic
group Gg,q of order q, generated by g, where q is a `q-bit prime and the
representation of the elements of Gg,q is included in {0, 1}`p . Finally, let
three hash functions, H : Gg,q → Gg,q, G : M × {0, 1}`t → Zq and I :
(Gg,q)6 → {0, 1}`t .

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx.

Off-line signature: To create a new coupon, one randomly chooses k ∈ Zq

and computes u = gk, h = H(u), z = hx and v = hk. Finally, one computes
t = I(g, h, y, z, u, v). The coupon is the tuple (k, z, t).

On-line signature: To sign a message m ∈M, one uses a fresh coupon (k, z, t)
and just computes c = G(m, t) and s = k + cx mod q. The signature on m is
σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message
m ∈ M, one computes u′ = gs y−c, h′ = H(u′), v′ = h′

s
z−c, and t′ =

I(g, h′, y, z, u′, v′). The signature σ is accepted iff c = G(m, t′).

This version of our scheme allows small coupons (i.e., `p + `q + `t bits
instead of 3`p + `q), which allows, even in a constrained device like a smart card,
to precompute and store a large number of coupons beforehand.

Remarkably, this version keeps the efficiency in the on-line phase. Moreover,
this coupon technique has no cost for the verifier: contrary to EDL-CH, the
verifier needs not to compute any chameleon hashes. Last but not least, the
resulting signatures are still smaller than the EDL or EDL-CH ’s ones: only
(`p + 2`q)-bit long.

We show that our variant is still tightly related to the computational Diffie-
Hellman problem in the next section.

A.2 Security of this Variant of our Scheme

About the security of our variant with small coupons, the following theorem
stands:



20 Benôıt Chevallier-Mames

Theorem 3. Let A be an adversary which can produce, with success prob-
ability ε, an existential forgery under a chosen-message attack within time
τ , after qh queries to the hash oracles and qs queries to the signing ora-
cle, in the random oracle model. Then the computational Diffie-Hellman
problem can be solved with success probability ε′ within time τ ′, with

ε′ ≥ ε− qs

(
2qs + 2qh

q
+

qs + qh

2`t

)
and

τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use
an attacker A against this variant of our signature scheme to solve this challenge,
i.e., to find gax. Our attacker A, after qH (resp. qG , qI) hash queries to the H
(resp. G, I) oracle and qs signature queries, is able to produce a signature forgery
with probability ε within time τ . We let qh = qH + qG + qI .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters
(g, q,Gg,q).

Answering new G(m, t) query: The simulator returns a random number in
Zq.

Answering new H(u) query: The simulator generates a random number d ∈
Zq, and returns (ga) gd. All queries u are stored in a list called U-List.

Answering new I(g, h, y, z, u, v) query: The simulator returns a random
number of `t bits.

Answering signatures query on m ∈ M: The simulator randomly gener-
ates (κ, s, c) ∈ (Zq)3. Then, it computes u = gs y−c. If H(u) is already set,
the simulator stops (Event 1). Else, the simulator sets h = H(u) = gκ and
computes z = (ga)κ — remark that DLh(z) = DLg(y)(= x). Finally, the
simulator computes v = hs z−c. If I(g, h, y, z, u, v) is already set, the sim-
ulator stops (Event 2). Else, the simulator takes a random number t of `t

bits, and sets I(g, h, y, z, u, v) = t. If G(m, t) is already set, the simulator
stops and fails (Event 3). Else, the simulator sets G(m, t) = c, and returns
the valid signature (z, s, c). All u’s computed during signature queries are
stored in a list called Υ -List

As we can see, this simulator is valid and indistinguishable from an actual
signer, except for some events:

– Event 1: As u is a random number in Gg,q, the probability that the H(u)
is already set is less than qH+qs

q , for one signature query. For qs signature

queries, the failure probability is thus upper bounded by qs·(qs+qH)
q .



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 21

– Event 2: From the simulation, the input tuples to the I oracle are of the form
(g, h, y, z, u, v) = (g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which is determined
by relationH(gk) = gκ. Then, the probability that I(g, h, y, z, u, v) is already
set is less than qs+qI

q . For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qI)
q .

– Event 3: As t is a random number, the probability that G(m, t) is already
set is less than qs+qG

2`t
. For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qG)
2`t

.

As a conclusion, except with a probability of δsim ≤ qs

(
qH+qI+2qs

q + qs+qG
2`t

)
,

the simulation is successful.
In other words, with a probability εsim ≥ ε− δsim, the attacker A is able to

return a valid signature (ẑ, ŝ, ĉ) on a message m̂ ∈M that was never submitted to
the signature oracle. The simulator deduces from this forgery the corresponding
tuple (û, v̂, ĥ, t̂), by the following computations: û = gŝ y−ĉ, ĥ = H(û), v̂ =
ĥŝ ẑ−ĉ and t̂ = I(g, ĥ, y, ẑ, û, v̂). Notably, if H(û) has not been queried to the H
oracle by the attacker or set by the signature oracle, the simulator queries it to
the H oracle itself. Hence, û is a member of U-List or a member of Υ -List.

Solving the CDH challenge (g, gx, ga). At this step, once the forgery is
returned by the attacker, there are two cases, contrary to the proof of EDL.

In the first case, û is member of U-List. This is the case that corresponds
to the only case of the proof of the EDL scheme. As in EDL, we write û = gk,
v̂ = ĥk′ and ẑ = ĥx′ , and we get, as the signature is valid, k = ŝ − ĉx mod q
and k′ = ŝ − ĉx′ mod q. Then, if x 6= x′, we have t̂ = I(g, ĥ, y, ĥx′ , gk, ĥk′),
and ĉ = G(m̂, t̂) = k−k′

x′−x mod q. As the forgery is a forgery on a new message,
which means that G(m̂, t̂) was not set during a signature query, this shows that
DLĥ(ẑ) = DLg(y)(= x), except with a probability qG

q .
Apart this error, the simulator receives from the attacker a signature with

ẑ = ĥx, and it knows d such that ĥ = H(û) = (ga) gd. Then, the simulator
can return the solution to the CDH challenge, which is ẑ (gx)−d. In this first
case, the forgery is successfully used to solve the CDH challenge, except with a
probability smaller than δ1 = qh

q .

In the second case, û is not a member of U-List, and so is a member of Υ -List.
This case can happen, contrary to the EDL signature scheme, as there is no
message in the input of H, and so we can imagine that the attacker reuse a
u that corresponds to a u of a signature given by the signature oracle. Then,
the simulator can recover from its log files all quantities that correspond to this
u = û, and notably s, t, c and m.

At this moment, we can see that we have u = gs y−c = û = gŝ y−ĉ. It
is exactly the kind of hypothesis that is used by the forking lemma to prove a
(loose) security. But here, this equality is not obtained by restarting the attacker
(as it is done in the forking lemma), but just by construction. More precisely,
we can recover easily the private key x, as far as ĉ 6= c.



22 Benôıt Chevallier-Mames

As m 6= m̂ (the forgery is a forgery on a new message), c 6= ĉ, or a collision
collision on G function happened, between a G returned the signature simulation
and a G returned by a direct G query, which occurs with a probability smaller
than qs·qG

q . Hence, except an error with a probability smaller than δ2 = qs·qG
q , we

have ĉ 6= c, and so we can recover the private key x: equation s−xc = ŝ−xĉ mod q
gives x = s−ŝ

c−ĉ mod q. One can see that this second case gives not only the
solution to CDH challenge, but also the solution to the discrete logarithm.

As a conclusion, we can see that in both cases, our simulator can transform
a forgery given by the attacker into the solution to the CDH challenge.

Putting all together, the success probability ε′ of our reduction satisfies ε′ ≥
ε− δsim −max(δ1, δ2), which gives, using qH + qG + qI = qh,

ε′ ≥ ε− qs

(
2qs + qh

q
+

qs + qh

2`t

)
−qs · qh

q

i.e., supposing that `t � `q,

ε′ & ε− qs · qh

2`t
− 2qs · qh

q

Furthermore, the running time τ ′ of this simulation is such that

τ ′ . τ + (6qs + qh)τ0.

As we can see, our scheme is tight, as far as 2qs·qh

2`t
+ qs·qh

q ≤ ε
2 ut

B First Step of Our Idea: Smaller Signatures Tightly
Based on CDH

In a pedagogical purpose, we propose hereafter the first improvement that
we thought about, in order to reduce the size of EDL’s signature. Anyway, we
remind that there is no objective reason to prefer this version to our scheme that
we described in Section 4.1.

B.1 Our Construction

The resulting scheme proceeds as follows (the global set-up and key generation
are unchanged; cf. Section 3.1):

Signature: To sign a message m ∈M, one first randomly chooses k ∈ Zq, and
computes u = gk, h = H(m,u), z = hx, v = hk, c = G(g, h, y, z, u, v) and
s = k + cx mod q. The signature on m is σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message
m ∈ M, one computes u′ = gs y−c, h′ = H(m,u′) and v′ = h′

s
z−c. The

signature is accepted iff c = G(g, h′, y, z, u′, v′).

This modification to EDL gives a better bandwidth (signatures are `r bits
smaller than regular EDL signatures). The security reduction is similar to the
one of Section 3.2 and is given in the following.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 23

B.2 Security of This Construction

About the security of this scheme, the following theorem stands:

Theorem 4. Let A be an adversary which can produce, with success prob-
ability ε, an existential forgery under a chosen-message attack within time
τ , after qh queries to the hash oracles and qs queries to the signing ora-
cle, in the random oracle model. Then the computational Diffie-Hellman
problem can be solved with success probability ε′ within time τ ′, with

ε′ ≥ ε− qs

(
2qs + qh

q

)
−qh

q

and
τ ′ . τ + (6qs + qh)τ0

where τ0 the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use
an attacker A against our variant of the EDL signature scheme to solve this
challenge, i.e., to find gax. Our attacker A, after qH (resp. qG) hash queries to
H (resp. G) oracle and qs signature queries, is able to produce a signature forgery
with probability ε within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters
(g, q, Gg,q).

Answering new G(g, h, y, z, u, v) query: The simulator returns a random
number in Zq.

Answering new H(m, u) query: The simulator generates a random number
d ∈ Zq, and returns (ga) gd.

Answering signatures query of m ∈ M: The simulator generates random
(κ, s, c) ∈ (Zq)3. It computes u = gs y−c. If H(m,u) is already set, the sim-
ulator stops and fails (Event 1). Else, the simulator sets h = H(m,u) = gκ

and computes z = (gx)κ — remark that DLh(z) = DLg(y)(= x). Finally, the
simulator computes v = hs z−c. If G(g, h, y, z, u, v) is already set, the simu-
lator fails and stops (Event 2). Else, the simulator sets G(g, h, y, z, u, v) = c
and returns the valid signature (z, s, c).

As we can see, the simulation is valid and indistinguishable from an actual
signer, except for some events:

– Event 1: As (s, c) are random in Zq × Zq, and as u = gs y−c, u is a random
number in Gg,q and so the probability that H(m,u) is already set is less
than qH+qs

q , for one signature query. For qs signature queries, the failure

probability is thus upper bounded by qs·(qH+qs)
q .



24 Benôıt Chevallier-Mames

– Event 2: From the simulation, the input tuples to the G oracle are of the form
(g, h, y, z, u, v) = (g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which is determined
by relationH(gk) = gκ. Then, the probability that G(g, h, y, z, u, v) is already
set is less than qs+qG

q . For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qG)
q .

Solving the CDH challenge (g, gx, ga): Except when these two rare events
occur, attacker A returns, with probability ε, a valid signature forgery σ =
(z, s, c) on a message m that was not submitted to the signature oracle, with
h = H(m,u) = (ga) gd for some d known to the simulator. Then, provided
that DLh(z) = DLg(y) = x, the solution to the CDH challenge is z (gx)−d.

As for EDL signature scheme, DLh(z) = DLg(y) = x, except with a proba-
bility qG

q .
We get hence the conclusion that our variant of EDL signature scheme is

tightly as secure as the Diffie-Hellman problem. The success probability ε′ of
our reduction satisfies

ε′ ≥ ε− qs

(
2qs + qh

q

)
−qh

q

Furthermore, the running time τ ′ of this simulation satisfies

t′ . τ + (6qs + qh)τ0

where τ0 is the time required for an exponentiation. ut

C Our Scheme With Even Shorter Signatures

(Section that was added Monday, January 23, 2006)

Classically (e.g., as in Schnorr signature scheme), we show in this section
that we can use in fact a shorter hash output. Namely, our scheme is unchanged,
except that now, we define G output to be {0, 1}`c , and no more in Zq. Our
scheme becomes:

Global set-up: Let `p, `q and `c < `q denote security parameters. Let also a
cyclic group Gg,q, generated by g, for a `p-bit prime p and a `q-bit prime
divisor q of (p − 1). Finally, let two hash functions, H : Gg,q → Gg,q and
G :M× (Gg,q)6 → {0, 1}`c .

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx.

Signature: To sign a message m ∈M, one first randomly chooses k ∈ Zq, and
computes u = gk, h = H(u), z = hx and v = hk. Next, one computes c =
G(m, g, h, y, z, u, v) and s = k+cx mod q. The signature on m is σ = (z, s, c).



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 25

Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × Zq) × {0, 1}`c on a
message m ∈ M, one computes u′ = gs y−c, h′ = H(u′), and v′ = h′

s
z−c.

The signature σ is accepted iff c = G(m, g, h′, y, z, u′, v′).

As an advantage, signatures are shorter: they are `p +`c +`q bit long, instead
of `p + 2`q.

We now prove that the scheme is still as secure, and then, we will see the
gain that this little transformation can give.

Theorem 5. Let A be an adversary against our modified signature
scheme, which can produce, with success probability ε, an existential forgery
under a chosen-message attack within time τ , after qh queries to the hash
oracles and qs queries to the signing oracle, in the random oracle model.
Then the Computational Diffie-Hellman problem can be solved with success
probability ε′ within time τ ′, with

ε′ ≥ ε− 2qs

(
qs + qh

q

)
− qh

2`c

and
τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

We use most of the proof of Section 4.2, and just point out when the size of
c is crucial.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use
an attacker A against our modified signature scheme to solve this challenge, i.e.,
to find gax. Our attacker A, after qH (resp. qG) hash queries to H (resp. G) oracle
and qs signature queries, is able to produce a signature forgery with probability
ε within time τ . We let qh = qH + qG and y = gx.

Attacker A is run with the following simulation:

Initialisation: A is initialised with public key y = gx and public parameters
(g, q,Gg,q).

Answering new G(m, g, h, y, z, u, v) query: The simulator returns a ran-
dom number in {0, 1}`c .

Answering new H(u) query: The simulator generates a random number d ∈
Zq, and returns (ga) gd. All queries u are stored in a list called U-List.

Answering signatures query on m ∈ M: The simulator generates randomly
(κ, s, c) ∈ (Zq)2 × {0, 1}`c . Then, it computes u = gs y−c. If H(u) is already
set, the simulator stops (Event 1). Else, the simulator sets h = H(u) = gκ

and computes z = (gx)κ — remark that DLh(z) = DLg(y)(= x). Finally, the
simulator computes v = hs z−c. If G(m, g, h, y, z, u, v) is already set, the sim-
ulator stops and fails (Event 2). Else, the simulator sets G(m, g, h, y, z, u, v) =
c, and returns the valid signature (z, s, c). All u’s computed during signature
queries are stored in a list called Υ -List



26 Benôıt Chevallier-Mames

As we can see, this simulator is valid and indistinguishable from an actual
signer, except for some events:

– Event 1: As u is a random number in Gg,q, the probability that the H(u)
is already set is less than qs+qH

q , for one signature query. For qs signature

queries, the failure probability is thus upper bounded by qs·(qs+qH)
q .

– Event 2: From the simulation, the input tuples to the G oracle are of the form
(m, g, h, y, z, u, v) = (m, g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which is un-
known before the signature query, as h = H(u) was not known by the signer
(in fact, Event 2 happens only if Event 1 does not). Then, the probability that
G(m, g, h, y, z, u, v) is already set is less than qs+qG

q2 . For qs signature queries,

the failure probability is thus upper bounded by qs·(qs+qG)
q2 ≤ qs·(qs+qG)

q .

As a conclusion, except with a probability smaller than δsim = qs

(
qh+2qs

q

)
,

the simulation is successful.
In other words, with a probability εsim ≥ ε − δsim, the attacker A is able

to return a valid signature forgery (ẑ, ŝ, ĉ) on a message m̂ ∈M that was never
submitted to the signature oracle. The simulator deduces from this forgery the
corresponding tuple (û, v̂, ĥ), by the following computations: û = gŝ y−ĉ, ĥ =
H(û), and v̂ = ĥŝ ẑ−ĉ. Notably, if H(û) has not been queried to H oracle by the
attacker or set by the signature oracle, the simulator queries it to H oracle itself.
Hence, û is a member of U-List or a member of Υ -List.

Solving the CDH challenge (g, gx, ga). At this step, once the forgery is
returned by the attacker, there are two cases.

In the first case, û is a member of U-List. We then write û = gk, v̂ = ĥk′

and ẑ = ĥx′ , and we get, as the signature is valid, k = ŝ − ĉx mod q and
k′ = ŝ − ĉx′ mod q. Then, if x 6= x′, we have ĉ = G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) =
k−k′

x′−x mod q.
Here, we can see that the size of G output is important: Indeed, a forger

could try to find (k, k′, m̂, ĥ) and x′ 6= x, so that G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) =
k−k′

x′−x mod q. Fortunately, as the message m̂ is new, G(m̂, g, ĥ, y, ĥx′ , gk, ĥk′) was
not set during a signature query, and so this can happen with probability smaller
than qG

2`c
. Else, we know that DLĥ(ẑ) = DLg(y)(= x).

Apart this error, the simulator receives from the attacker a signature with
ẑ = ĥx, and it knows d such that ĥ = H(û) = (ga) gd. The simulator can return
the solution to the CDH challenge, which is ẑ (gx)−d. As a partial conclusion, in
this first case, the forgery is successfully used to solve the CDH challenge, except
with a probability smaller than δ1 = qh

2`c
.

In the second case, û is not a member of U-List, and so is a member of Υ -List.
This case can happen as there is no message in the input of H, and so we can
imagine that the attacker reuse a u that corresponds to a u of a signature given
by the signature oracle. Then, the simulator can recover from its log files all
quantities that correspond to this u = û, i.e., h, v, z, s, c and m.



An Efficient CDH-based Signature Scheme With a Tight Security Reduction 27

At this moment, we can see that we have u = gs y−c = û = gŝ y−ĉ. It is
exactly the kind of hypothesis that is used by the forking lemma to prove a
(loose) security. However, here, this equality is not obtained by restarting the
attacker (as it is done in the forking lemma), but just by construction. More
precisely, we can recover easily the private key x, as far as ĉ 6= c mod q.

As u = û, it follows that h = ĥ, v = v̂. Furthermore, except if DLĥ(ẑ) 6=
DLg(y)(= x), which happens also in this case with probability smaller than
δ1 = qh

2`c
, we have z = ẑ.8 Then, to have an event ĉ = c mod q, one needs

that G(m, g, h, y, z, u, v) = G(m̂, g, h, y, ẑ, u, v) mod q. As the message m̂ is new,
and so different from m, it is very improbable: it occurs with a probability
smaller than qG

min(2`c ,q)
. Hence, except an error with a probability smaller than

δ2 = qh

min(2`c ,q)
, we have ĉ 6= c mod q, and so we can recover the private key x:

equation s−xc = ŝ−xĉ mod q gives x = s−ŝ
c−ĉ mod q. We can see that this second

case gives not only the solution to the CDH challenge, but also the solution to
the discrete logarithm.

As a conclusion, we can see that in both cases, our simulator can transform
the forgery given by the attacker into the solution to the CDH challenge.

Putting all together, the success probability ε′ of our reduction satisfies ε′ ≥
ε− δsim −max(δ1, δ2), which gives, using qH + qG = qh and `c ≤ `q,

ε′ ≥ ε− qs

(
2qs + qh

q

)
− qh

2`c

and the running time τ ′ satisfies

τ ′ . τ + (6qs + qh)τ0 .

ut

Then, one can adapt the discussion of Section 4.4. If the targeted security
level is κ = 80, it is sufficient to use κ′ = 88 (and hence `q ≥ 176) and `c = 82.
Hence, the size of this modified version of our signature scheme, in a subgroup of
Fp

∗ (taking `p = 1024, `q = 176 and `c = 82), is 1024 + 176 + 82 = 1282 bits. In
the elliptic curve setting, the gain is even more sensible, as z can be represented
with a length around `q = 176: signature sizes is then 176 ∗ 2 + 82 = 434 bits.
This is very efficient for a tight signature on CDH.

8 But even if DLĥ(ẑ) 6= DLg(y)(= x), it does not matter.


