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Goal of the adversary for a Signature Scheme
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Goal of the adversary for a Signature Scheme

Total break of the scheme (recovering the private key) – BK

Universal forgery (can sign any message) – UF

Existential forgery (can sign one message) – EUF

Information available to the Attacker

No message attack – NMA

Known message attack – KMA

Chosen message attack – CMA

Then, the strongest model is EUF-CMA.

Benoit Chevallier-Mames An Efficient CDH-based Signature Scheme August 2005, Santa Barbara, USA 4 / 15



Background
The EDL Scheme

Our Scheme
Conclusion

Signature Scheme
Proving Security
Reductionist Security

Proving Security
Reductionist Security

Reduction to hard problems

An attacker that breaks the signature scheme is transformed into a solver of one hard
problem.

e-th root problem (a.k.a. RSA problem)

Factorization

Computational Diffie Hellman problem (being given g x and g a, find g ax) – CDH

Discrete Logarithm (being given g x and g , find x) – DL
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Factorization

Computational Diffie Hellman problem (being given g x and g a, find g ax) – CDH

Discrete Logarithm (being given g x and g , find x) – DL

Tightness of the Reduction

An attacker that breaks the signature scheme with probability ε and within time τ is
transformed into a solver of one hard problem, with probability ε′ and within time τ ′.

The reduction is loose if τ ′

ε′ �
τ
ε

The reduction is tight if τ ′

ε′ ∼
τ
ε
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The EDL signature scheme

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

Key generation: The private key is a random number x ∈ Zq. The corresponding
public key is y = g x .

Signature: To sign a message m ∈M, one first randomly chooses r ∈ {0, 1}`r and
k ∈ Zq, then

1 u = g k (can be computed online)
2 h = H(m, r)
3 z = hx

4 v = hk

5 c = G(g , h, y , z , u, v)
6 s = k + cx mod q

The signature on m is σ = (z , r , s, c).

Verification: To verify a signature σ = (z , r , s, c) on a message m, one computes
h′ = H(m, r), u′ = g s y−c and v ′ = h′

s
z−c . The signature σ is accepted

iff c = G(g , h′, y , z , u′, v ′).

Correctness:
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The Security of EDL

Security of EDL

The scheme is extremely secure:

Attacker model: EUF-CMA.

Hard problem: Computational Diffie Hellman

The reduction is tight, in the random oracle model
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Features of EDL

EDL:

Tight reduction to the CDH problem in the random oracle model

Short keys, short group

Signature size is `p + 2`q + `r , which is for subgroup of Zp:
1024 + 2 ∗ 176 + 111 = 1487 bits, and for elliptic curve groups: 3 ∗ 176 + 111 = 639
bits

No online possibility (or [ST01] technique, that makes signature longer and cost
more time to sign and verify)
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Other variants of EDL

Other variants of EDL

Katz-Wang scheme ([KW03]), based on the Decisional Diffie-Hellman (DDH)

Katz-Wang scheme ([KW03]), based on the CDH, with shorter signatures
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Our Scheme

EDL is defined as follows:

Key generation: The private key is a random number x ∈ Zq. The corresponding
public key is y = g x .

Signature: To sign a message m ∈M, one first randomly chooses r ∈ {0, 1}`r and
k ∈ Zq, then

1 u = g k

2 h = H(m, r)
3 z = hx

4 v = hk

5 c = G(g , h, y , z , u, v)
6 s = k + cx mod q

The signature on m is σ = (z , r , s, c) .

Verification: To verify a signature σ = (z , r , s, c) on a message m, one computes
h′ = H(m, r), u′ = g s y−c and v ′ = h′

s
z−c . The signature σ is accepted

iff c = G(g , h′, y , z , u′, v ′).
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Our Scheme

Step 1 of our construction is defined as follows (Appendix B):

Key generation: The private key is a random number x ∈ Zq. The corresponding
public key is y = g x .

Signature: To sign a message m ∈M, one first randomly chooses
k ∈ Zq, then

1 u = g k

2 h = H(m, u)
3 z = hx

4 v = hk

5 c = G(g , h, y , z , u, v)
6 s = k + cx mod q

The signature on m is σ = (z , s, c).

Verification: To verify a signature σ = (z , s, c) on a message m, one computes
h′ = H(m, u), u′ = g s y−c and v ′ = h′

s
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Our Scheme

Our scheme is defined as follows (Section 4):

Key generation: The private key is a random number x ∈ Zq. The corresponding
public key is y = g x .

Signature: To sign a message m ∈M, one first randomly chooses
k ∈ Zq, then

1 u = g k

2 h = H(u)
3 z = hx

4 v = hk

5 c = G(m, g , h, y , z , u, v)
6 s = k + cx mod q

The signature on m is σ = (z , s, c).

Verification: To verify a signature σ = (z , s, c) on a message m, one computes
h′ = H(u), u′ = g s y−c and v ′ = h′

s
z−c . The signature σ is accepted iff

c = G(m, g , h′, y , z , u′, v ′).
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Features of Our Scheme

Our Scheme:

Tight reduction to the CDH problem in the random oracle model

Short keys, short group

Signature size is `p + 2`q, which is for subgroup of Zp: 1024 + 2 ∗ 176 = 1376 bits
(-7%), and for elliptic curve groups: 3 ∗ 176 = 528 bits (-17%)

Online possibility
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Exact Security of Our Scheme

We have the following theorem:

Theorem

Let A be an adversary which can produce, with success probability ε, an existential
forgery under a chosen-message attack within time τ , after qh queries to the hash oracles
and qs queries to the signing oracle, in the random oracle model. Then the computational
Diffie-Hellman problem can be solved with success probability ε′ within time τ ′, with

ε′ ≥ ε− 2qs

�
qs + qh

q

�

and
τ ′ . τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.
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Intuition of the Proof of Security

Imagine a forger returns a forge (ẑ , ŝ, ĉ), we compute corresponding û, v̂ . As in EDL, we

write û = g k , v̂ = ĥk′ and ẑ = ĥx′ (we do not know k, k ′, x , x ′).

As the signature is valid,

1 u′ = g s y−c

2 v ′ = h′
s
z−c

So, in the exponent world,

1 k = ŝ − ĉx mod q
2 k ′ = ŝ − ĉx ′ mod q

Then, if x 6= x ′, we have ĉ = G(m̂, g , ĥ, y , ĥx′ , g k , ĥk′) = k−k′

x′−x
mod q.

This is impossible to find with a probability
qG
q

. Apart this negligible error, we know that

x = x ′ (btw, k = k ′), and so that ẑ = ĥx .

Conclusion:

the forger is able to find a new h and its corresponding hx

or the forger is able to reuse an h that was given by the simulator/actual signer
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Intuition of the Proof of Security

Two Cases:

the forger is able to find a new h and its corresponding hx

or the forger is able to reuse an h that was given by the simulator/actual signer

In case 1, the proof shows that the attacker can be used to solve a CDH (g , g a, g x):
roughly, the simulator returns to hash queries h = (g a)d , for a random d . Then, he
deduces the answer of the CDH challenge ẑ1/d = ĥx/d = ((g a)d)x/d = g ax .

In case 2, the proof shows that the attacker can be used to solve a DL (or collision on H
or G hash functions). As h = H(u) = ĥ = H(û), u = û. So u = g s y−c = û = g ŝ y−ĉ . If
c 6= ĉ, we recover the DL as x = s−ŝ

c−ĉ
mod q.

Benoit Chevallier-Mames An Efficient CDH-based Signature Scheme August 2005, Santa Barbara, USA 14 / 15



Background
The EDL Scheme

Our Scheme
Conclusion

Our Scheme
Features of Our Scheme
Exact Security of Our Scheme
Intuition of the Proof of Security

Intuition of the Proof of Security

Two Cases:

the forger is able to find a new h and its corresponding hx

or the forger is able to reuse an h that was given by the simulator/actual signer

In case 1, the proof shows that the attacker can be used to solve a CDH (g , g a, g x):
roughly, the simulator returns to hash queries h = (g a)d , for a random d . Then, he
deduces the answer of the CDH challenge ẑ1/d = ĥx/d = ((g a)d)x/d = g ax .
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Conclusion:

More details in the paper, or in its full version, at
http://eprint.iacr.org/2005/035

Thank you
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