An Efficient CDH-based Signature Scheme With a Tight Security Reduction

Benoit Chevallier-Mames^{1,2}

¹Gemplus ARSC/STD/CSE ²Ecole Normale Supérieure, Paris

— Скурто '05 —

CONTENTS

- BACKGROUND
 - Signature Scheme
 - Proving Security
 - Reductionist Security
- 2 THE EDL SCHEME
 - The Scheme
 - The Security of EDL
 - Features of EDL
 - Other variants of EDL
- Our Scheme
 - Our Scheme
 - Features of Our Scheme
 - Exact Security of Our Scheme
 - Intuition of the Proof of Security

SIGNATURE SCHEME DEFINITION

A signature scheme $\rm Sig=$ (GenKey, Sign, Verify) is defined by the three following algorithms:

SIGNATURE SCHEME DEFINITION

A signature scheme $\mathrm{Sig} =$ (GenKey, Sign, Verify) is defined by the three following algorithms:

An Efficient CDH-based Signature Scheme

• The key generation algorithm GenKey.

SIGNATURE SCHEME DEFINITION

A signature scheme $\rm Sig=$ (GenKey, Sign, Verify) is defined by the three following algorithms:

- The key generation algorithm GENKEY.
- The signing algorithm SIGN.

SIGNATURE SCHEME DEFINITION

A signature scheme SIG = (GENKEY, SIGN, VERIFY) is defined by the three following algorithms:

- The key generation algorithm GENKEY.
- The signing algorithm SIGN.
- The verification algorithm VERIFY.

PROVING SECURITY THE ATTACKER MODEL

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

• Total break of the scheme (recovering the private key) – BK

THE ATTACKER MODEL

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF

THE ATTACKER MODEL

Goal of the adversary for a Signature Scheme

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

The attacker model

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

Information available to the Attacker

No message attack – NMA

THE ATTACKER MODEL

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

Information available to the Attacker

- No message attack NMA
- Known message attack KMA

The attacker model

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

Information available to the Attacker

- No message attack NMA
- Known message attack KMA
- Chosen message attack CMA

THE ATTACKER MODEL

Goal of the adversary for a Signature Scheme

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

Information available to the Attacker

- No message attack NMA
- Known message attack KMA
- Chosen message attack CMA

Then, the strongest model is EUF-CMA.

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

• e-th root problem (a.k.a. RSA problem)

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- e-th root problem (a.k.a. RSA problem)
- Factorization

Proving Security REDUCTIONIST SECURITY

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- e-th root problem (a.k.a. RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH

Proving Security REDUCTIONIST SECURITY

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- e-th root problem (a.k.a. RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- e-th root problem (a.k.a. RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

TIGHTNESS OF THE REDUCTION

An attacker that breaks the signature scheme with probability ε and within time τ is transformed into a solver of one hard problem, with probability ε' and within time τ' .

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- e-th root problem (a.k.a. RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

TIGHTNESS OF THE REDUCTION

An attacker that breaks the signature scheme with probability ε and within time τ is transformed into a solver of one hard problem, with probability ε' and within time τ' .

 \bullet The reduction is loose if $\frac{\tau'}{\varepsilon'} \ll \frac{\tau}{\varepsilon}$

GEMPLUS

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- e-th root problem (a.k.a. RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

TIGHTNESS OF THE REDUCTION

An attacker that breaks the signature scheme with probability ε and within time τ is transformed into a solver of one hard problem, with probability ε' and within time τ' .

- \bullet The reduction is loose if $\frac{\tau'}{\varepsilon'} \ll \frac{\tau}{\varepsilon}$
- \bullet The reduction is tight if $\frac{\tau'}{\varepsilon'} \sim \frac{\tau}{\varepsilon}$

. = . = .

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

- $b = \mathcal{H}(m,r)$

The signature on m is $\sigma = (z, r, s, c)$.

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

 - $b = \mathcal{H}(m,r)$

 - $v = h^k$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r)$, $u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

 - $b = \mathcal{H}(m,r)$

 - $v = h^k$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r)$, $u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

Correctness:

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $v = g^x$.

SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

- $u = g^k$ (can be computed online)
- $h = \mathcal{H}(m,r)$
- $v = h^k$
- $c = \mathcal{G}(g, h, v, z, u, v)$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m,r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', v, z, u', v')$.

CORRECTNESS: $h' = \mathcal{H}(m, r) = h$

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then
 - $u = g^k$ (can be computed online)
 - $b = \mathcal{H}(m,r)$

The signature on m is $\sigma = (z, r, s, c)$.

- VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r)$, $u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.
- Correctness: $u' = g^{s} y^{-c} = g^{k+cx} y^{-c} = g^{k+cx} g^{-cx} = g^{k} = u$

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then
 - $u = g^k$ (can be computed online)
 - $h = \mathcal{H}(m,r)$
 - $arr b^x$
 - $v = h^k$
 - $c = \mathcal{G}(g, h, v, z, u, v)$

The signature on m is $\sigma = (z, r, s, c)$.

- VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m,r), u' = g^s v^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', v, z, u', v')$.
- CORRECTNESS: $v' = h'^{s} z^{-c} = h^{k+cx} z^{-c} = h^{k+cx} h^{-cx} = h^{k} = v$

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

- $b = \mathcal{H}(m,r)$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma=(z,r,s,c)$ on a message m, one computes $h'=\mathcal{H}(m,r),\ u'=g^s\ y^{-c}$ and $v'=h'^s\ z^{-c}$. The signature σ is accepted iff $c=\mathcal{G}(g,h',y,z,u',v')$.

Correctness: So $c = \mathcal{G}(g, h', y, z, u', v')$

SECURITY OF EDL

The scheme is extremely secure:

SECURITY OF EDL

The scheme is extremely secure:

Attacker model: EUF-CMA.

SECURITY OF EDL

The scheme is extremely secure:

- Attacker model: EUF-CMA.
- Hard problem: Computational Diffie Hellman

SECURITY OF EDL

The scheme is extremely secure:

- Attacker model: EUF-CMA.
- Hard problem: Computational Diffie Hellman
- The reduction is tight, in the random oracle model

FEATURES OF EDL

EDL:

 \bullet Tight reduction to the CDH problem in the random oracle model

FEATURES OF EDL

EDL:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group

FEATURES OF EDL

EDL:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p+2\ell_q+\ell_r$, which is for subgroup of \mathbb{Z}_p : 1024+2*176+111=1487 bits, and for elliptic curve groups: 3*176+111=639 bits

FEATURES OF EDL

EDL:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p+2\ell_q+\ell_r$, which is for subgroup of \mathbb{Z}_p : 1024+2*176+111=1487 bits, and for elliptic curve groups: 3*176+111=639 bits
- No online possibility (or [ST01] technique, that makes signature longer and cost more time to sign and verify)

OTHER VARIANTS OF EDL

OTHER VARIANTS OF EDL

• Katz-Wang scheme ([KW03]), based on the Decisional Diffie-Hellman (DDH)

OTHER VARIANTS OF EDL

OTHER VARIANTS OF EDL

- Katz-Wang scheme ([KW03]), based on the Decisional Diffie-Hellman (DDH)
- Katz-Wang scheme ([KW03]), based on the CDH, with shorter signatures

Our Scheme

EDL is defined as follows:

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $r \in \{0,1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

 - $b = \mathcal{H}(m,r)$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma=(z,r,s,c)$ on a message m, one computes $h'=\mathcal{H}(m,r),\ u'=g^s\ y^{-c}$ and $v'=h'^s\ z^{-c}$. The signature σ is accepted iff $c=\mathcal{G}(g,h',y,z,u',v')$.

An Efficient CDH-based Signature Scheme

Our Scheme

Step 1 of our construction is defined as follows (Appendix B):

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $k \in \mathbb{Z}_q$, then

 - $h = \mathcal{H}(m, u)$

 - $v = h^k$

The signature on m is $\sigma = (z, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, u), \ u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', v, z, u', v')$.

Our Scheme

Our scheme is defined as follows (Section 4):

- KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.
 - SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses $k \in \mathbb{Z}_q$, then
 - $0 u = g^k$
 - $h = \mathcal{H}(u)$

The signature on m is $\sigma = (z, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, s, c)$ on a message m, one computes $h' = \mathcal{H}(u), \ u' = g^s \ y^{-c}$ and $v' = h'^s \ z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(m, g, h', y, z, u', v')$.

OUR SCHEME:

• Tight reduction to the CDH problem in the random oracle model

OUR SCHEME:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group

OUR SCHEME:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p + 2\ell_q$, which is for subgroup of \mathbb{Z}_p : 1024 + 2*176 = 1376 bits (-7%), and for elliptic curve groups: 3*176 = 528 bits (-17%)

OUR SCHEME:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p + 2\ell_q$, which is for subgroup of \mathbb{Z}_p : 1024 + 2*176 = 1376 bits (-7%), and for elliptic curve groups: 3*176 = 528 bits (-17%)
- Online possibility

EXACT SECURITY OF OUR SCHEME

We have the following theorem:

Theorem

Let A be an adversary which can produce, with success probability ε , an existential forgery under a chosen-message attack within time τ , after q_h queries to the hash oracles and q_s queries to the signing oracle, in the random oracle model. Then the computational Diffie-Hellman problem can be solved with success probability ε' within time τ' , with

$$arepsilon' \geq arepsilon - 2q_sigg(rac{q_s + q_h}{q}igg)$$

and

$$au'\lesssim au+(6q_s+q_h) au_0$$

where τ_0 is the time for an exponentiation in $G_{g,q}$.

Imagine a forge returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

$$u' = g^s y^{-c}$$

$$v' = h'^{s} z^{-c}$$

So, in the exponent world,

$$k' = \hat{s} - \hat{c}x' \bmod q$$

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

- $u' = g^s y^{-c}$
- $v' = h'^{s} z^{-c}$

So, in the exponent world,

- $k' = \hat{s} \hat{c}x' \bmod q$

Then, if $x \neq x'$, we have $\hat{c} = \mathcal{G}(\hat{m}, g, \hat{h}, y, \hat{h}^{x'}, g^k, \hat{h}^{k'}) = \frac{k-k'}{x'-x} \mod q$.

Imagine a forge returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

- $u' = g^s y^{-c}$
- $v' = h'^{s} z^{-c}$

So, in the exponent world,

- $k' = \hat{s} \hat{c}x' \bmod q$

Then, if $x \neq x'$, we have $\hat{c} = \mathcal{G}(\hat{m}, g, \hat{h}, y, \hat{h}^{x'}, g^k, \hat{h}^{k'}) = \frac{k-k'}{x'-x} \mod q$.

This is impossible to find with a probability $\frac{q_{\mathcal{G}}}{q}$. Apart this negligible error, we know that x=x' (btw, k=k'), and so that $\hat{\mathbf{z}}=\hat{\mathbf{h}}^{x}$.

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

- $u' = g^s y^{-c}$
- $v' = h'^{s} z^{-c}$

So, in the exponent world,

- $k = \hat{s} \hat{c}x \mod a$
- $k' = \hat{s} \hat{c}x' \mod a$

Then, if $x \neq x'$, we have $\hat{c} = \mathcal{G}(\hat{m}, g, \hat{h}, y, \hat{h}^{x'}, g^k, \hat{h}^{k'}) = \frac{k-k'}{k'-k'} \mod q$.

This is impossible to find with a probability $\frac{q_G}{a}$. Apart this negligible error, we know that x = x' (btw, k = k'), and so that $\hat{z} = \hat{h}^x$.

CONCLUSION:

- the forger is able to find a new h and its corresponding h^x
- or the forger is able to reuse an h that was given by the simulator/actual signer

Two Cases:

- the forger is able to find a new h and its corresponding h^x
- or the forger is able to reuse an h that was given by the simulator/actual signer

Two Cases:

- the forger is able to find a new h and its corresponding h^x
- or the forger is able to reuse an h that was given by the simulator/actual signer

In case 1, the proof shows that the attacker can be used to solve a CDH (g, g^a, g^x) : roughly, the simulator returns to hash queries $h=(g^a)^d$, for a random d. Then, he deduces the answer of the CDH challenge $\hat{z}^{1/d}=\hat{h}^{x/d}=((g^a)^d)^{x/d}=g^{ax}$.

Two Cases:

- the forger is able to find a new h and its corresponding h^x
- or the forger is able to reuse an h that was given by the simulator/actual signer

In case 1, the proof shows that the attacker can be used to solve a CDH (g, g^a, g^x) : roughly, the simulator returns to hash queries $h=(g^a)^d$, for a random d. Then, he deduces the answer of the CDH challenge $\hat{z}^{1/d}=\hat{h}^{x/d}=((g^a)^d)^{x/d}=g^{ax}$.

In case 2, the proof shows that the attacker can be used to solve a DL (or collision on ${\cal H}$ or \mathcal{G} hash functions). As $h = \mathcal{H}(u) = \hat{h} = \mathcal{H}(\hat{u})$, $u = \hat{u}$. So $u = g^s y^{-c} = \hat{u} = g^{\hat{s}} y^{-\hat{c}}$. If $c \neq \hat{c}$, we recover the DL as $x = \frac{s - \hat{s}}{\hat{c} - \hat{c}} \mod q$.

CONCLUSION

CONCLUSION:

 More details in the paper, or in its full version, at http://eprint.iacr.org/2005/035

CONCLUSION

CONCLUSION:

- More details in the paper, or in its full version, at http://eprint.iacr.org/2005/035
- Thank you

