
1

An efficient certificateless two-party
authenticated key agreement protocol

Debiao He 1 Sahadeo Padhye 2, Jianhua Chen 1, *
1 School of Mathematics and Statistics, Wuhan University, Wuhan, China
2 Motilal Nehru NAtional Institute of Technology, Allahabad, India

*Email: chenjianhua.math@gmail.com

Abstract: Due to avoiding the key escrow problem in the identity-based cryptosystem,

certificateless public key cryptosystem (CLPKC) has received a significant attention. As an

important part of the CLPKC, the certificateless authenticated key agreement (CLAKA) protocol

also received considerable attention. Most CLAKA protocols are built from bilinear mappings on

elliptic curves which need costly operations. To improve the performance, several pairing-free

CLAKA protocols have been proposed. In this paper we propose a new pairing-free CLAKA

protocol. Compared with the related protocols our protocol has better performance. We also show

our protocol is provably secure in a very strong security model, i.e. the extended Canetti-

Krawczyk (eCK) model.

Key words: Certificateless cryptography; Authenticated key agreement; Provable

security; Bilinear pairings; Elliptic curve

Classification Codes: 11T71, 94A60

1. Introduction

To realize information security, the public key cryptography has been widely

used in networks communications. In the traditional public key cryptography

(PKC), there is a need for certificate to assurance to the user about the relationship

between a public key and the identity of the holder of the corresponding private

key. So there come the problems of certificate management, including revocation,

storage, distribution etc. [1]. To solve the above problem, Shamir introduced the

concept of identity-based cryptography (ID-PKC) [2]. In ID-PKC setting, a user’s

public key can be derived from his identity (e.g., his name or email address) and

his secret key is generated by the Key Generation Center (KGC). Then there

come the key escrow problem, i.e. the PKG knows all the user’s secret keys. In

2003, Al-Riyami et al. [3] proposed the certificateless public key cryptography

(CLPKC) to solve the key escrow problem. Since then the CLPKC received a

significant attention.

2

After Al-Riyami et al.’s work [3], numerous certificateless authenticated key

agreement (CLAKA) protocols, using bilinear mappings on elliptic curves, have been

proposed, e.g., [4–10]. However, the relative computation cost of a pairing is

approximately twenty times higher than that of the scalar multiplication over

elliptic curve group [11]. Therefore, CLAKA protocols without bilinear pairings

would be more appealing in terms of efficiency. Recently, several CLAKA

protocols without pairing have been proposed in [12-15]. Yang et al. [14] pointed

out that neither Geng et al.’s protocol [14], nor Hou et al.’s protocol [13] is

secure. He et al. [15] also proposed a CLAKA protocol without pairing. However,

He et al.’s protocol is vulnerable to the type 1 adversary [16]. Although the latest

CLAKA protocol [16] is more efficient than other protocols [12-15], it is provably

secure under the mBR model [17], which is a very weak model. Yang et al. have

shown that their scheme is provably secure in a very strong model-the extended

Canetti-Krawczyk (eCK) model [18]. However, the user in Yang et al.’ protocol

needs nine elliptic curve scalar multiplications to finish the key agreement.

Moreover, the user has to verify the validity of public keys. This not only

increases the burden of the user, but also reverses the thought of CLPKC. In this

paper, we will propose a new pairing-free CLAKA protocol, which is provably

secure in the eCK model. Besides, our protocol has better performance than the

related protocols.

The remainder of this paper is organized as follows. Section 2 describes some

preliminaries. In Section 3, we propose our CLAKA protocol. The security

analysis of the proposed protocol is presented in Section 4. In Section 5,

performance analysis is presented. Finally, in Section 6 we conclude the paper.

2. Preliminaries

2.2. Notations

In this subsection, we first introduce some notations as follows, which are
used in this paper.

 ,p n : two large prime numbers;

 pF : a finite field;

 / pE F : an elliptic curve defined on pF ;

 G : the cyclic additive group composed of the points on / pE F ;

3

 P : a generator of G ;

 1()H ⋅ : a secure one-way hash function, where * *
1 :{0,1} nH G Z× → ;

 2 ()H ⋅ : a secure one-way hash function, where

* * *
2 :{0,1} {0,1} pH G G G G G Z× × × × × × → ;

 iID : the identity of user i ;

 (, pubx P): the KGC’s private/public key pair, where pubP xP= ;

 (,i ix P): the user i ’s secret value/public key pair, where i iP x P= ⋅ ;

 (,i ir R): a random point generated by KGC, where i iR r P= ⋅ ;

 (,)i is R : the user i ’s partial private key, where modi i is r h x n= + ,

1 (,)i i ih H ID R= ;

 (,i it T): the user i ’s ephemeral private/public key pair, where i iT t P= ⋅ ;

2.1. Background of elliptic curve group

Let the symbol / pE F denote an elliptic curve E over a prime finite field

pF , defined by an equation

baxxy ++= 32 ， pFba ∈, (1)

and with the discriminant
3 24 27 0a bΔ = + ≠ . (2)

The points on / pE F together with an extra point O called the point at

infinity form a group

{(,) : , , (,) 0} { }pG x y x y F E x y O= ∈ = ∪ . (3)

G is a cyclic additive group in the point addition “+” defined as follows: Let

,P Q G∈ , l be the line containing P and Q (tangent line to / pE F if P =

Q), and R , the third point of intersection of l with / pE F . Let l′ be the line

connecting R and O . Then P “+” Q is the point such that l′ intersects

/ pE F at R and O . Scalar multiplication over / pE F can be computed as

follows:

()tP P P P t times= + + +… (4).

Let the order of G be n . The following problems are commonly used in

the security analysis of many cryptographic protocols.

4

Computational Diffie-Hellman (CDH) problem: Given a generator P of

G and (,)aP bP for unknown *, R na b Z∈ , the task of CDH problem is to

compute abP .

For convenience, we define the function cdh as cdh (aP ,bP)= abP

Decisional Diffie-Hellman (DDH) problem: Given a generator P of G

and (, ,)aP bP cP for unknown *, , R na b c Z∈ , the task of DDH problem is to

decide whether the equation abP cP= holds.

Gap Diffie-Hellman (GDH) problem: Given a generator P of G ,

(,)aP bP for unknown *, R na b Z∈ and an oracle ddhpO , the task of GDH problem

is to compute abP , where ddhpO is a decision oracle that on input (aP ,bP ,

cP), answers 1 if (,)cdh aP bP cP= ; answers 0, otherwise.

The GDH assumption states that the probability of any polynomial-time

algorithm to solve the GDH problem is negligible.

2.2. CLAKA protocol

A CLAKA protocol consists of six polynomial-time algorithms [2, 8]: Setup ,

Partial - Private - Key - Extract , Set Secret Value− − , Set - Private - Key ,

Set Public Key− − and Key Agreement− . These algorithms are defined as

follows.

Setup : This algorithm takes security parameter k as input and returns the

system parameters params and master key.

Partial - Private - Key - Extract : This algorithm takes params , master key,

a user's identity iID as inputs and returns a partial private key.

Set Secret Value− − : This algorithm takes params and a user's identity

iID as inputs, and generates a secret value.

Set - Private - Key : This algorithm takes params , a user's partial private

key and his secret value as inputs, and outputs the full private key.

Set Public Key− − : This algorithm takes params and a user's secret value as

inputs, and generates a public key for the user.

Key Agreement− : This is a probabilistic polynomial-time interactive

algorithm which involves two entities A and B , if the protocol does not fail,

A and B will obtain a secret session key.

5

2.3. Security model for CLAKA protocols

In CLAKA scheme, there are two types of adversaries with different

capabilities [9, 14]. The type 1 adversary 1A acts as a dishonest user while the

type 2 adversary 2A acts as a malicious key generation center (KGC). 1A

does not know the master key, but 1A can replace the public keys of any entity

with a value of his choice. 2A knows the master key, but he cannot replace any

user's public key.

Let ,
s
i j∏ represents the s th session which runs at party i with intended

partner party j . A session ,
s
i j∏ enters an accepted state when it computes a

session key ,
s
i jSK . Two sessions ,

s
i j∏ and ,

t
j i∏ are called matching if they

have the same session identity.

Lippold et al. [9] transformed original eCK model [18] from the traditional

PKI-based setting to the CLPKC setting. The eCK model in the CLPKC setting is

defined by the following game between a challenger C and an adversary

{ 1, 2}∈A A A . The game runs in two phases. During the first phase, the

adversary A is allowed to issue the following queries in any order:

()Create i : On receiving such a query, C generates the public/private key

pair for participant i with identity iID .

RevealMasterKey : C gives the master secret key to A .

,()s
i jRevealSessionKey ∏ : If the session has not been accepted, C returns

⊥ to A . Otherwise C reveals the accepted session key to A .

()RevealPartialPrivateKey i : C returns participant i ’s partial private key

to A .

()RevealSecretValue i : C returns participant i ’s secret value to A .

(,)ReplacePublicKey i pk : C replaces participant i ’s public key with the

value chose by A .

,()s
i jRevealEphemeralKey ∏ : C returns participant i ’s ephemeral private

key to A .

,(,)s
i jSend m∏ : The adversary sends the message m to the session ,

s
i j∏ and

get a response according to the protocol specification.

6

Once the adversary A decides that the first phase is over, it starts the

second phase by choosing a fresh session ,
s
i j∏ and issuing a ,()s

i jTest ∏ query,

where the fresh session and test query are defined later.

The type 1 adversary 1A could get any user’s secret value, since he can

replace the public key of any entity with a value of his choice. The type 2

adversary 2A could get any user’s partial private key since he has access to the

master key. Then several cases do not exist in Lippold et al.’s model [9]. To get

better performance, we define the definition of freshness for CLAKA scheme

against two type of adversary as follows.

Definition 1 (Freshness for CLAKA Scheme against Type 1 Adversary). Let

instance ,
s
i j∏ be a completed session, which is executed by an honest party i

with another honest party j . We define ,
s
i j∏ to be fresh if none of the following

three conditions hold:

 The adversary 1A reveals the session key of ,
s
i j∏ or of its matching

session (if the latter exists).

 j is engaged in ,
t
j i∏ the session matching to ,

s
i j∏ and 1A either

reveals both of i ’s partial private key and ,
s
i j∏ ’s ephemeral private key

or both of j ’s partial private key and ,
t
j i∏ ’s ephemeral private key.

 No sessions matching to ,
s
i j∏ exist and 1A either reveals both of i ’s

partial private key and ,
s
i j∏ ’s ephemeral private key or j ’s partial

private key.

Definition 2 (Freshness for CLAKA Scheme against Type 2 Adversary). Let

instance ,
s
i j∏ be a completed session, which is executed by an honest party i

with another honest party j . We define ,
s
i j∏ to be fresh if none of the following

three conditions hold:

 The adversary 2A reveals the session key of ,
s
i j∏ or of its matching

session (if the latter exists).

 j is engaged in ,
t
j i∏ the session matching to ,

s
i j∏ and 2A either

reveals both of i ’s secret value and ,
s
i j∏ ’s ephemeral private key or

both of j ’s secret value and ,
t
j i∏ ’s ephemeral private key.

7

 No sessions matching to ,
s
i j∏ exist and 2A either reveals both of i ’s

secret value and ,
s
i j∏ ’s ephemeral private key or j ’s partial private

key.

,()s
i jTest ∏ : At some point, A may choose one of the oracles, say ,

s
i j∏ , to ask

a single Test query. This oracle must be fresh. To answer the query, the oracle

flips a fair coin {0,1}b∈ , and returns the session key held by ,
s
i j∏ if 0b = , or a

random sample from the distribution of the session key if 1b = .

At the end of the game, A must output a guess bit b′ . A wins if and

only if b b′ = . A ’s advantage to win the above game, denoted by ()Adv kA , is

defined as: 1() Pr[]
2

Adv k b b′= = −A , where k is a security parameter.

Definition 3. A CLAKA scheme is said to be secure if:

(1) In the presence of a benign adversary on ,
s
i j∏ and ,

t
j i∏ , both oracles

always agree on the same session key, and this key is distributed uniformly at

random.

(2) For any adversary { 1, 2}∈A A A , ()Adv kA is negligible.

3. Our protocol

In this section, we will propose a new CLAKA protocol based on previous

works [9, 14, 16]. Our protocol consists of six polynomial-time algorithms. They

are described as follows.

Setup : This algorithm takes a security parameter k as an input, returns

system parameters and a master key. Given k , KGC does the following steps.

1) KGC chooses a k -bit prime p and determines the tuple

{ , / , , }p pF E F G P as defined in Section 2.1.

2) KGC chooses the master private key *
nx Z∈ and computes the master

public key pubP xP= .

3) KGC chooses two cryptographic secure hash functions
* *

1 :{0,1} nH G Z× → and * * *
2 :{0,1} {0,1} nH G G G G G G Z× × × × × × × → .

4) KGC publishes 1 2{ , / , , , , , }p p pubparams F E F G P P H H= as system

parameters and keeps the master key x secretly.

8

Partial - Private - Key - Extract : This algorithm takes master key, a user’s

identifier, system parameters as inputs, and returns the user’s ID-based private

key. KGC works as follows.

1) KGC chooses a random number *
i nr Z∈ , computes i iR r P= ⋅ and

1(,)i i ih H ID R= .

2) KGC computes modi i is r h x n= + and issues (,)i is R to the users

through secret channel.

Set Secret Value− − : The user picks randomly *
i nx Z∈ , computes i iP x P= ⋅

and sets ix as his secret value.

Set - Private - Key : The user with identity iID takes the pair (,)i i isk x s=

as its private key.

Set Public Key− − : The user with identity iID takes ()i ipk P= as its

public key.

Key Agreement− : Assume that an entity A with identity AID has private

key (,)A A Ask x s= and public key ()A Apk P= and an entity B with identity

BID has private key (,)B B Bsk x s= and public key ()B Bpk P= want to

establish a session key, they can do, as shown in Fig.1, as follows.

1) A chooses a random number *
A nt Z∈ and computes A AT t P= ⋅ , then A

sends 1 { , , }A A AM ID R T= to B .

2) After receiving 1M , B chooses a random number *
B nt Z∈ and

computes B BT t P= ⋅ , then B sends 2 { , , }B B BM ID R T= to A .

Then both A and B can compute the shared secrets as follows:

A computes
1

1()((,))AB A A B B B B pubK t s T R H ID R P= + + + (5)

2 ()()AB A A B BK t x T P= + + (6)

and
3
AB A BK t T= ⋅ (7)

B computes
1

1()((,))BA B B A A A A pubK t s T R H ID R P= + + + (8)

2 ()()BA B B A AK t x T P= + + (9)

9

and
3
BA B AK t T= ⋅ (10)

Thus the agreed session key for A and B can be computed as:
1 2 3

2
1 2 3

2

(|| || || || || ||)

(|| || || || || ||)
A B A B AB AB AB

A B A B BA BA BA

sk H ID ID T T K K K

H ID ID T T K K K

=

=
 (11)

Fig. 1. Key agreement of our protocol

Since A AT t P= ⋅ , A AP x P= ⋅ , 1(,)A A A A pubs P R H ID R P= + , B BT t P= ⋅ ,

B BP x P= ⋅ and 1(,)B B B B pubs P R H ID R P= + , then we have

1
1

1
1

()((,))

()() ()()

()((,))

AB A A B B B B pub

A A B B B B A A

B B A A A A pub BA

K t s T R H ID R P

t s t s P t s t s P

t s T R H ID R P K

= + + +

= + + = + +

= + + + =

 (12)

2

2

()()
()() ()()

()()

AB A A B B

A A B B B B A A

B B A A BA

K t x T P
t x t x P t x t x P

t x T P K

= + +
= + + = + +

= + + =

 (13)

and
3 3
AB A B B A BAK t t P t t P K= = = (14)

Thus, the correctness of the protocol is proved.

4. Security Analysis

In this section, we will show our scheme is provably secure in eCK model.

We treat 1H and 2H as two random oracles [19]. For the security, the

following lemmas and theorems are provided.

Lemma 1. If two oracles are matching, both of them will be accepted and

will get the same session key which is distributed uniformly at random in the

session key sample space.

10

Proof. From the correction analysis of our protocol in Section 3, we know if

two oracles are matching, then both of them are accepted and have the same

session key. The session keys are distributed uniformly since At and Bt are

selected uniformly during the execution.

Lemma 2. Assuming that the GDH problem is intractable, the advantage of a

type 1 adversary against our protocol is negligible.

Proof. Suppose that there is a type 1 adversary 1A who can win the game

defined in subsection 2.3 with a non-negligible advantage 1()Adv kA in

polynomial-time t . Then, we will show how to use the ability of 1A to

construct an algorithm C to solve the GDH problem.

Let 0n be the maximum number of sessions that any one party may have.

Assume that the adversary 1A activates at most 1n distinctive honest parties.

Assume that the adversary 1A activates at most 2n distinctive hash queries.

Assume also that 1()Adv kA is non-negligible. Before the game starts, C tries

to guess the test session and the strategy that the adversary 1A will adopt. C

randomly selects two indexes 1, {1, , }I J n I J∈ ≠… ： , which represent the I th

and the J th distinct honest party that the adversary initially chooses. Also, C

chooses 0{1, , }S n∈ … and determines the Test session ,
S
I J∏ , which is correct

with probability larger than 2
0 1

1
n n

. Let ,
T
J I∏ be the matching session of ,

S
I J∏ .

Since 1H and 2H are modeled as random oracles, after the adversary issues the

test query, it has only three possible ways to distinguish the tested session key

from a random string:

CASE 1: Forging attack: Assume that ,
S
I J∏ is the test session. At some

point in its run, the adversary 1A queries 2H on the

value 1 2 3(, , , , , ,)I J I J IJ IJ IJID ID T T K K K in the test session owned by I

communicating with J . Clearly, in this case 1A computes the values 1
IJK ,

2
IJK and 3

IJK itself.

CASE 2: Guessing attack: 1A correctly guesses the session key.

CASE 3: Key-replication attack: The adversary 1A forces a non-

matching session to have the same session key with the test session. In this case,

11

the adversary 1A can simply learn the session key by querying the non-

matching session.

Since 2H is a random oracle, the probability of guessing the output of 2H

is (1/ 2)kO , which is negligible. The input to the key derivation function 2H

includes all information that can uniquely identify the matching sessions. Since

two non-matching sessions can not have the same identities and the same

ephemeral public keys and 2H is modeled as a random oracle, the success

probability of Key-replication attack is also negligible. Thus Guessing attack

and Key-replication attack can be ruled out, and the rest of the proof is mainly

devoted to the analysis of Forging attack. As the attack that the adversary 1A

mounts is Forging attack, 1A can not get an advantage in winning the game

against the protocol unless it queries the 2H oracle on the session key.

The rest of this section is mainly devoted to the analysis of the Forging

attack. To relate the advantage of the adversary 1A against our protocol to the

GDH assumption, we use a classical reduction approach. In the following, a

challenger C is interested to use the adversary 1A to turn 1A ’s advantage in

distinguishing the tested session key from a random string into an advantage in

solving the GDH problem. The following two sub-cases should be considered.

CASE 1.1: No honest party owns a matching session to the Test session.

CASE 1.2: The Test session has a matching session owned by another

honest party.

 The analysis of CASE 1.1:

Since 1A is strong type 1 adversary, then he can get any users’ secret key

ix value through ReplacePublicKey query. According to Definition 1, C has

the following two choices for 1A ’s strategy:

CASE 1.1.1: At some point, the partial private key of party I has been

revealed by the adversary 1A . According to Definition 1, 1A is not permitted

to reveal the ephemeral private key of the Test session.

CASE 1.1.2: The partial private key of party I has never been revealed by

the adversary 1A . According to Definition 1, 1A may reveal the ephemeral

private key of the Test session.

CASE 1.1.1:

12

Let ()GDHAdv kC be the advantage that the challenger C gets in solving the

GDH problem given the security parameter k . Given a GDH problem

instance(U uP= ,V vP= , ddhpO) and C ’s task is to compute (,)cdh U V uvP= ,

where ddhpO is a decision oracle that on input (, ,aP bP cP), answers 1 if

(,)cdh aP bP cP= ; answers 0, otherwise. C first chooses 0P G∈ at random,

sets 0P as the system public key pubP , selects the system parameter

1 2{ , / , , , , , }p p pubparams F E F G P P H H= , and sends params to 1A . Then, C

simulates the game outlined in Section 2.3 as follows.

()Create i : C maintains an initially empty list CL consisting of tuples of

the form (, , , ,i i i i iID s R x P). If i J= , C chooses two random numbers

*,i i nh x Z∈ , computes 0i iR U h P= − , i iP x P= , sets 1(,)i i iH ID R h← and stores

(, , , ,i i i iID R x P⊥) and (, ,)i i iID R h in CL and
1HL separately. Otherwise, C

chooses three random numbers *, ,i i i ns h x Z∈ , computes i i i pubR s P h P= − , i iP x P= ,

sets 1(,)i i iH ID R h← and stores (, , , ,i i i i iID s R x P) and (, ,)i i iID R h in CL and

1HL separately.

1(,)i iH ID R : C maintains an initially empty list
1HL which contains tuples

of the form (, ,i i iID R h). If (,i iID R) is on the list
1HL , C returns ih . Otherwise,

C chooses a random number ih , stores (, ,i i iID R h) in
1HL and returns ih .

2 1 2 3(, , , , , , ,)i j i jH ID ID T T Z Z Z sk : C maintains an initially empty list
2HL

with entries of the form (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk). If the tuple is in the list

2HL , C responds with sk . Otherwise, C responds to these queries in the

following way:

 If i JID ID= ,

 C looks the list SL for entry (, , , ,*i j i jID ID T T). If C finds the

entry, he computes

1 1 1 1((,)) ((,))i j j j j j i i iZ Z t T R H ID R s R H ID R= − + + − + .

 Then C checks whether 1Z is correct by checking whether the

oracle ddhpO outputs 1 when the tuple (11(,) , ,i i i pub jR H ID R P T Z+) is

13

inputted. C also checks whether 2Z and 3Z are equal by checking

if the equations 2 ()()i i j jZ t x T P= + + and 3 i jZ t T= hold separately.

If 1Z , 2Z and 3Z are correct, C stores the tuple

(1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL , where the value sk comes

from SL . Otherwise, C chooses a random number {0,1}ksk ∈ and

stores the tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

 Otherwise,

 C looks up the list SL for entry (, , , ,*i j i jID ID T T). If C finds the

entry, he stores the tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL ,

where the value sk comes from SL .

 Otherwise, C chooses a random number {0,1}ksk ∈ and stores the

tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

()RevealPartialPrivateKey i : C answers 1A ’s queries as follows.

 If i JID ID= then C stops the simulation.

 Otherwise, C looks up the list EL and returns the corresponding

partial private key is to the adversary 1A .

()RevealSecretValue i : C looks up the table CL for entry (,*,*,*,*iID). If

C finds the entry, he returns ix . Otherwise, C carries out the query

()Create i and returns the corresponding ix .

(,)ReplacePublicKey i pk : Upon receiving the query, C looks up the table

CL for entry (,*,*,*,*iID). If C finds the entry, he replaces ix and iP with

ix′ and iP′ separately, where ()ipk P′= and i iP x P′ ′= . Otherwise, C carries

out ()Create i and replaces ix and iP with ix′ and iP′ separately.

,()s
i jRevealEphemeralKey ∏ : C answers 1A ’s queries as follows.

 If , ,
s S
i j I J∏ = ∏ , then C stops the simulation.

 Otherwise, C returns the stored ephemeral private key to 1A .

RevealMasterKey : C stops the simulation.

,()s
i jRevealSessionKey ∏ : C answers 1A ’s queries as follows.

14

 If , ,
s S
i j I J∏ = ∏ or , ,

s T
i j J I∏ = ∏ , then C stops the simulation.

 Otherwise, if C returns the session key sk to 1A .

,(,)t
i jSend m∏ : C maintains an initially empty list SL with entries of the

form (, , , ,i j i jID ID T T sk) and answers 1A ’s queries as follows.

 If , ,
t S
i j I J∏ =∏ , then C returns iT V= to 1A .

 Otherwise, if i JID ID= , he generates a random i nt Z∈ , computes

1 1 1 1((,)) ((,))i j j j j j i i iZ Z t T R H ID R s R H ID R= − + + − + . Then C checks

whether 1Z is correct by checking whether the oracle ddhpO outputs 1

when the tuple (21(,) , ,i i i pub jR H ID R P T Z+) is inputted. C also checks

whether 2Z and 3Z are equal by checking whether the equations

2 ()()i i j jZ t x T P= + + and 3 i jZ t T= hold separately. If 1Z , 2Z and 3Z

are correct, C stores the tuple (, , , ,i j i jID ID T T sk) into SL , where the

value sk comes from
2HL . Otherwise, C chooses a random number

{0,1}ksk ∈ and stores the tuple (, , , ,i j i jID ID T T sk) into SL .

 Otherwise, C replies according to the specification of the protocol.

,()t
i jTest ∏ : C answers 1A ’s queries as follows.

 If , ,
s S
i j I J∏ ≠ ∏ , then C stops the simulation.

 Otherwise, C generates a random number {0,1}kξ ∈ and returns it to

1A .

As the adversary 1A mounts the forging attack, if 1A succeeds, it must

have queried oracle 2H on the form

1 1()((,)) ()()I I J J J J pub I I JZ t s T R H ID R P t s T U= + + + = + + ,

2 ()()I I J JZ t x T P= + + and 3 I JZ t T= , where IT V= is the outgoing message of

Test session by the simulator and JT is the incoming message from the

adversary 1A . To solve (,)cdh U V , for all entries in
2HL , C randomly

chooses one entry with the probability
2

1
n

 and computes

1 1 1 1

1

((,)) ((,))
((,)) (,)

J I I I I I J J J

I J J J

Z Z t T R H ID R s R H ID R
t R H ID R cdh U V
= − + + − +

= + =
 (16)

15

The advantage of C solving GDH problem with the advantage

12
0 1 2

1() ()GDHAdv k Adv k
n n n

≥C A . (17)

Then ()GDHAdv kC is non-negligible since we assume that 1()Adv kA is non-

negligible. This contradicts the GDH assumption.

CASE 1.1.2:

Let ()GDHAdv kC be the advantage that the challenger C gets in solving the

GDH problem given the security parameter k . Given a GDH problem

instance(U uP= ,V vP= , ddhpO) and C ’s task is to compute (,)cdh U V uvP= ,

where ddhpO is a decision oracle that on input (, ,aP bP cP), answers 1 if

(,)cdh aP bP cP= ; answers 0, otherwise. C first chooses 0P G∈ at random,

sets 0P as the system public key pubP , selects the system parameter

1 2{ , / , , , , , }p p pubparams F E F G P P H H= , and sends params to 1A . Then, C

simulates the game outlined in Section 2.3 as follows. Then, C simulates the

game outlined in Section 2.3. During the game, C simulates 1A ’s

1 (,)i iH ID R , RevealMasterKey , ()RevealSecretValue i ,

(,)ReplacePublicKey i pk , ,()s
i jRevealSessionKey ∏ and ,()s

i jTest ∏ queries as

that of CASE 1.1.1. C simulates other oracles as follows.

()Create i : C simulates the oracle in the same way as that of CASE 1.1

except for i I= . If i I= , C chooses two random numbers *,i i nh x Z∈ ,

computes 0i iR V h P= − , i iP x P= , sets 1(,)i i iH ID R h← and stores

(, , , ,i i i iID R x P⊥) and (, ,)i i iID R h in CL and
1HL separately.

2 1 2 3(, , , , , , ,)i j i jH ID ID T T Z Z Z h : C simulates the oracle in the same way as

that of CASE 1.1.1 except for the form (1 2 3, , , , , ,I J I JID ID T T Z Z Z) and

(1 2 3, , , , , ,J I J IID ID T T Z Z Z). C responds to these queries in the following way:

 If (1 2 3, , , , , , ,I J I JID ID T T Z Z Z h) or (1 2 3, , , , , , ,J I J IID ID T T Z Z Z h) is in

2HL , C responds with the stored value h .

 Otherwise, C looks up the table SL for entry (, , , ,*i j i jID ID T T). If

there is no such entry, C choose a random number {0,1}kh∈ and

16

stores the new entry (1 2 3, , , , , , ,i j i jID ID T T Z Z Z h) in
2HL . Otherwise, C

compute 1 1 1 1((,)) ((,))i j j j j j i i iZ Z t T R H ID R t R H ID R= − + + − + . Then

C checks whether 1Z is correct by checking whether the oracle ddhpO

outputs 1 when the tuple (11 1(,) , (,) ,i i i pub j j j pubR H ID R P R H ID R P Z+ +)

is inputted.C also checks whether 2Z and 3Z are equal by checking if

the equations 2 ()()i i j jZ t x T P= + + and 3 i jZ t T= hold separately. If

1Z , 2Z and 3Z are correct, C stores the tuple

(1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL , where the value sk comes from

SL . Otherwise, C chooses a random number {0,1}ksk ∈ and stores the

tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

()RevealPartialPrivateKey i : C answers 1A ’s queries as follows.

 If i I= or i J= , C stops the simulation.

 Otherwise, C looks up the list CL and returns the corresponding

partial private key iD to the adversary 1A .

,()s
i jRevealEphemeralKey ∏ : C returns the stored ephemeral private key to

1A .

,(,)s
i jSend m∏ : C simulates the oracle in the same way as that of CASE 1.1

except for the following queries:

 If , ,
s S
i j I J∏ = ∏ , C chooses i nt Z∈ and returns i iT t P= to 1A .

 If i I= and j J= (the case that i J= and j I= could be deal with

similarly).

 C chooses i nt Z∈ and returns i iT t P= to 1A .

C looks up the list
2HL for entry (, , , ,*,*,*,*i j i jID ID T T) (If ,

s
i j∏ is

responder session, C will look up for (, , , ,*,*,*,*j i j iID ID T T)). If there

is no such entry, C choose a random number {0,1}ksk ∈ and stores the

new entry (, , , ,i j i jID ID T T sk) in SL . Otherwise, C computes

1 1 1 1((,)) ((,))i j j j j j i i iZ Z t T R H ID R t R H ID R= − + + − + . Then C

checks whether 1Z is correct by checking whether the oracle ddhpO

17

outputs 1 when the tuple (11 1(,) , (,) ,i i i pub j j j pubR H ID R P R H ID R P Z+ +)

is inputted.C also checks whether 2Z and 3Z are equal by checking if

the equations 2 ()()i i j jZ t x T P= + + and 3 i jZ t T= hold separately. If all

of the equations are equal, C stores (, , , ,i j i jID ID T T h) into SL , where

h comes from
2HL . Otherwise, C chooses a random number sk and

stores (, , , ,i j i jID ID T T sk) into SL .

As the adversary 1A mounts the forging attack, if 1A succeeds, it must

have queried oracle 2H on the form

1 1()((,)) ()()I I J J J J pub I I JZ t s T R H ID R P t s T U= + + + = + + 2 ()()I I J JZ t x T P= + +

and 3 I JZ t T= where I IT t P= is the outgoing message of Test session by the

simulator 1A . To solve (,)cdh U V , for all entries in
2HL , C randomly

chooses one entry with the probability
2

1
n

 and computes

1 1 1 1

1

((,)) ((,))
((,)) (,)

I J J J J J I I I

I J J J I

Z Z t T R H ID R t R H ID R
s R H ID R s U cdh U V
= − + + − +

= + = =
. (18)

We can conclude that

12
0 1 2

1() ()GBCDHAdv k Adv k
n n n

≥C A . (19)

Then ()GBCDHAdv kC is non-negligible since we assume that 1()Adv kA is

non-negligible. This contradicts the GCDH assumption.

 The analysis of CASE 1.2:

In this case, the Test session ,
S
I J∏ has a matching session owned by

another honest party J . According to Definition 1, the adversary 1A has four

ways to mount the attacks.

CASE 1.2.1. The adversary 1A makes ephemeral key query to both the

Test session and the matching session of the Test session (The adversary does

not reveal their corresponding partial private key). In this case, the proof is

identical to that of CASE 1.1.2. To save space, we omit the details.

CASE 1.2.2. The adversary 1A makes queries to the partial private key of

the owner of Test session and its peer's ephemeral private key. In this case, the

proof is identical to that of CASE 1.1.1. To save space, we omit the details.

18

CASE 1.2.3. The adversary 1A makes queries to the ephemeral private key

of the owner of Test session and its peer's partial private key. In this case, the

proof is identical to that of CASE 1.1.1. To save space, we omit the details.

CASE 1.2.4. The adversary 1A learns the partial private key of both the

owner of Test session and its peer. (The adversary does not reveal their

corresponding ephemeral private key).

C answers 1(,)i iH ID R , (,)ReplacePublicKey i pk , ()RevealSecretValue i ,

RevealMasterKey ,()t
i jRevealSessionKey ∏ and ,()t

i jTest ∏ as he does in the

above case. He also answers other queries as follows.

()Create i : C maintains an initially empty list CL consisting of tuples of

the form (, , , ,i i i i iID s R x P). C chooses three random numbers *, ,i i i ns h x Z∈ ,

computes i i i pubR s P h P= − , i iP x P= , sets 1(,)i i iH ID R h← and stores

(, , , ,i i i i iID s R x P) and (, ,)i i iID R h in CL and
1HL separately.

2 1 2 3(, , , , , , ,)i j i jH ID ID T T Z Z Z sk : C maintains an initially empty list
2HL

with entries of the form (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk). If the tuple is in the list

2HL , C responds with sk . Otherwise, C responds to these queries in the

following way:

 C looks the list SL for entry (, , , ,*i j i jID ID T T). If C finds the entry,

he computes

1 1 1((,))i j j j j j iZ Z s T R H ID R s T= − + + − (20)

2 2Z Z= (21)

and

2 2 ()i j j j iZ Z x T P x T= − + − (21)

Then C checks whether iZ is correct by checking whether the oracle

ddhpO outputs 1 when the tuple (, , ii jT T Z) is inputted, where 1,2,3i = . If

1Z , 2Z and 3Z are correct, C stores the tuple

(1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL , where the value sk comes from

SL . Otherwise, C chooses a random number {0,1}ksk∈ and stores the

tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

19

 Otherwise, C chooses a random number {0,1}ksk∈ and stores the

tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

()RevealPartialPrivateKey i : C looks up the list CL and returns the

corresponding partial private key is to the adversary 1A .

,()s
i jRevealEphemeralKey ∏ : C answers 1A ’s queries as follows.

 If , ,
s S
i j I J∏ =∏ or , ,

s T
i j J I∏ =∏ , then C stops the simulation.

 Otherwise, C returns the stored ephemeral private key to 1A .

,(,)s
i jSend m∏ : C maintains an initially empty list SL with entries of the

form (, , , ,i j i jID ID T T sk) and answers 1A ’s queries as follows.

 If , ,
s T
i j I J∏ =∏ , C returns iT U= to 1A .

 Otherwise, if , ,
s T
i j I J∏ =∏ , C returns iT V= to 1A .

 Otherwise, C replies according to the specification of the protocol.

As the attack that adversary 1A mounts the forging attack, if 1A

succeeds, it must have queried oracle 2H on the form

1 1()((,))I I J J J J pubZ t s T R H ID R P= + + + , 2 ()()I I J JZ t x T P= + + and

3 I JZ t T= , where IT U= is the outgoing message of Test session by the

simulator and JT V= is the incoming message from the adversary 1A . To

solve (,)cdh U V , for all entries in
2HL , C randomly chooses one entry with the

probability
2

1
n

 and returns 3Z as the solution to (,)cdh U V .

The advantage of C solving GDH problem with the advantage

12
0 1 2

1() ()GDHAdv k Adv k
n n n

≥C A . (22)

Then ()GDHAdv kC is non-negligible since we assume that 1()Adv kA is non-

negligible. This contradicts the GDH assumption.

We could conclude that the advantage of a type 1 adversary against our

protocol is negligible if the GCDH problem is intractable.

Lemma 2. Assuming that the GDH problem is intractable, the advantage of a

type 2 adversary against our protocol is negligible.

20

Proof. Suppose that there is a type 2 adversary 2A who can win the game

defined in subsection 2.3 with a non-negligible advantage 2 ()Adv kA in

polynomial-time t . Then, we will show how to use the ability of 2A to

construct an algorithm C to solve the GDH problem.

Let 0n be the maximum number of sessions that any one party may have.

Assume that the adversary 2A activates at most 1n distinctive honest parties.

Assume that the adversary 2A activates at most 2n distinctive hash queries.

Assume also that 2 ()Adv kA is non-negligible. Before the game starts, C tries

to guess the test session and the strategy that the adversary 2A will adopt. C

randomly selects two indexes 1, {1, , }I J n I J∈ ≠… ： , which represent the I th

and the J th distinct honest party that the adversary initially chooses. Also, C

chooses 0{1, , }S n∈ … and determines the Test session ,
S
I J∏ , which is correct

with probability larger than 2
0 1

1
n n

. Let ,
T
J I∏ be the matching session of ,

S
I J∏ .

Since 1H and 2H are modeled as random oracles, after the adversary issues the

test query, it has only three possible ways to distinguish the tested session key

from a random string:

CASE 1: Forging attack: Assume that ,
S
I J∏ is the test session. At some

point in its run, the adversary 1A queries 2H on the

value 1 2 3(, , , , , ,)I J I J IJ IJ IJID ID T T K K K in the test session owned by I

communicating with J . Clearly, in this case 2A computes the values 1
IJK ,

2
IJK and 3

IJK itself.

CASE 2: Guessing attack: 2A correctly guesses the session key.

CASE 3: Key-replication attack: The adversary 2A forces a non-

matching session to have the same session key with the test session. In this case,

the adversary 2A can simply learn the session key by querying the non-

matching session.

Through the same analysis, we know the success probability of Key-

replication attack and Guessing attack is also negligible. Thus Guessing attack

and Key-replication attack can be ruled out. As the attack that the adversary

21

2A mounts is Forging attack, 2A can not get an advantage in winning the

game against the protocol unless it queries the 2H oracle on the session key.

In the following, a challenger C is interested to use the adversary 2A to

turn 2A ’s advantage in distinguishing the tested session key from a random

string into an advantage in solving the GDH problem. The following two sub-

cases should be considered.

CASE 1.1: No honest party owns a matching session to the Test session.

CASE 1.2: The Test session has a matching session owned by another

honest party.

 The analysis of CASE 1.1:

Since 2A is strong type 2 adversary, then he can get any users’ partial

private key since he is a malicious KGC. According to Definition 2, C has the

following two choices for 2A ’s strategy:

CASE 1.1.1: At some point, the secret value of party I has been revealed by

the adversary 2A . According to Definition 2, 2A is not permitted to reveal

the ephemeral private key of the Test session.

CASE 1.1.2: The secret value of party I has never been revealed by the

adversary 2A . According to Definition 2, 2A may reveal the ephemeral

private key of the Test session.

CASE 1.1.1:

Let ()GDHAdv kC be the advantage that the challenger C gets in solving the

GDH problem given the security parameter k . Given a GDH problem instance

(U uP= ,V vP= , ddhpO) and C ’s task is to compute (,)cdh U V uvP= , where

ddhpO is a decision oracle that on input (, ,aP bP cP), answers 1 if

(,)cdh aP bP cP= ; answers 0, otherwise. C first chooses a random number
*
nx Z∈ , sets xP as the system public key pubP , selects the system parameter

1 2{ , / , , , , , }p p pubparams F E F G P P H H= , and sends params to 2A . Then, C

simulates the game outlined in Section 2.3 as follows.

()Create i : C maintains an initially empty list CL consisting of tuples of

the form (, , , ,i i i i iID s R x P). If i J= , C chooses two random numbers *
i nr Z∈ ,

computes i iR r P= , 1(,)i i ih H ID R= , i i is r h x= + , iP U= and stores

(, , , ,i i i iID s R P⊥)in CL . Otherwise, C chooses two random numbers *,i i nr x Z∈ ,

22

computes i iR r P= , 1(,)i i ih H ID R= , i i is r h x= + , i iP x P= and stores

(, , , ,i i i i iID s R x P) in CL .

1(,)i iH ID R : C maintains an initially empty list
1HL which contains tuples

of the form (, ,i i iID R h). If (,i iID R) is on the list
1HL , C returns ih . Otherwise,

C chooses a random number ih , stores (, ,i i iID R h) in
1HL and returns ih .

2 1 2 3(, , , , , , ,)i j i jH ID ID T T Z Z Z sk : C maintains an initially empty list
2HL

with entries of the form (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk). If the tuple is in the list

2HL , C responds with sk . Otherwise, C responds to these queries in the

following way:

 If i JID ID= ,

 C looks the list SL for entry (, , , ,*i j i jID ID T T). If C finds the

entry, he computes 2 2 ()i j j j iZ Z t T P x P= − + − .

 Then C checks whether 2Z is correct by checking whether the

oracle ddhpO outputs 1 when the tuple (2, ,i jP T Z) is inputted. C

also checks whether 1Z and 3Z are equal by checking whether the

equations 1 1()((,))i i j j j jZ t s T R H ID R= + + + and 3 i jZ t T= hold

separately. If 1Z , 2Z and 3Z are correct, C stores the tuple

(1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL , where the value sk comes

from SL . Otherwise, C chooses a random number {0,1}ksk∈ and

stores the tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

 Otherwise,

 C looks the list SL for entry (, , , ,*i j i jID ID T T). If C finds the

entry, he stores the tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL ,

where the value sk comes from SL .

 Otherwise, C chooses a random number {0,1}ksk∈ and stores the

tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

()RevealPartialPrivateKey i : C looks up the list EL and returns the

corresponding partial private key is to the adversary 2A .

23

()RevealSecretValue i : C answers 2A ’s queries as follows.

 If i JID ID= , then C stops the simulation.

 Otherwise, C looks up the table CL for entry (,*,*,*,*iID) and

returns ix .

,()t
i jRevealEphemeralKey ∏ : C answers 2A ’s queries as follows.

 If , ,
s S
i j I J∏ =∏ , then C stops the simulation.

 Otherwise, C returns the stored ephemeral private key to 2A .

RevealMasterKey : C returns the master key x to 2A .

,()t
i jRevealSessionKey ∏ : C answers 2A ’s queries as follows.

 If , ,
s S
i j I J∏ =∏ or , ,

s T
i j I J∏ =∏ , then C stops the simulation.

 Otherwise, if C returns the session key sk to 2A .

,(,)s
i jSend m∏ : C maintains an initially empty list SL with entries of the

form (, , , ,i j i jID ID T T sk) and answers 2A ’s queries as follows.

 If , ,
s S
i j I J∏ =∏ , then C returns iT V= to 2A .

 Otherwise, if i JID ID= , he generates a random i nt Z∈ , computes

2 2 ()i j j j iZ Z t T P x P= − + − . Then C checks whether 2Z is correct by

checking whether the oracle ddhpO outputs 1 when the tuple (2, ,i jP T Z)

is inputted.C also checks whether 1Z and 3Z are equal by checking

whether the equations 1 1()((,))i i j j j jZ t s T R H ID R= + + + and 3 i jZ t T=

hold separately. If 1Z , 2Z and 3Z are correct, C stores the tuple

(, , , ,i j i jID ID T T sk) into SL , where the value sk comes from
2HL .

Otherwise, C chooses a random number {0,1}ksk∈ and stores the

tuple (, , , ,i j i jID ID T T sk) into SL .

 Otherwise, C replies according to the specification of the protocol.

,()t
i jTest ∏ : C answers 2A ’s queries as follows.

 If , ,
t S
i j I J∏ ≠ ∏ , then C stops the simulation.

 Otherwise, C generates a random number {0,1}kξ ∈ and returns it to

2A .

24

As the adversary 2A mounts the forging attack, if 2A succeeds, it must

have queried oracle 2H on the form 1 1()((,))I I J J J J pubZ t s T R H ID R P= + + + ,

2 ()()I I JZ t x T U= + + and 3 I JZ t T= , where IT V= is the outgoing message of

Test session by the simulator and JT is the incoming message from the

adversary 2A . To solve (,)GDH U V , for all entries in
2HL , C randomly

chooses one entry with the probability
2

1
n

 and computes

2 2 3())I JZ Z x T U Z= − + − (23)

It is easy to verify that the equation 2 (,)Z cdh U V= holds. The advantage of

C solving GDH problem with the advantage

22
0 1 2

1() ()GDHAdv k Adv k
n n n

≥C A . (24)

Then ()GDHAdv kC is non-negligible since we assume that 2 ()Adv kA is non-

negligible. This contradicts the GDH assumption.

CASE 1.1.2:

C answers 1(,)i iH ID R , ()RevealPartialPrivateKey i ,

,()t
i jRevealEphemeralKey ∏ , RevealMasterKey , ,()t

i jRevealSessionKey ∏ and

,()t
i jTest ∏ as he does in CASE 3.1.3 of Lemma 3. He also answers other queries

as follows.

()Create i : C simulates the oracle in the same way as that of CASE 1.1.1

except for i I= . If i I= , C chooses two random numbers *
i nr Z∈ , computes

i iR r P= , 1(,)i i ih H ID R= , i i is r h x= + , iP V= and stores (, , , ,i i i iID s R P⊥)in

CL . Otherwise, C chooses two random numbers *,i i nr x Z∈ , computes

i iR r P= , 1(,)i i ih H ID R= , i i is r h x= + , i iP x P= and stores (, , , ,i i i i iID s R x P) in

CL .

2 1 2 3(, , , , , , ,)i j i jH ID ID T T Z Z Z h : C simulates the oracle in the same way as

that of CASE 1.1.1 except for the form (1 2 3, , , , , ,I J I JID ID T T Z Z Z) and

(1 2 3, , , , , ,J I J IID ID T T Z Z Z). C responds to these queries in the following way:

25

 If (1 2 3, , , , , , ,I J I JID ID T T Z Z Z h) or (1 2 3, , , , , , ,J I J IID ID T T Z Z Z h) is in

2HL , C responds with the stored value h .

 Otherwise, C looks up the table SL for entry (, , , ,*i j i jID ID T T). If

there is no such entry, C choose a random number {0,1}kh∈ and

stores the new entry (1 2 3, , , , , , ,i j i jID ID T T Z Z Z h) in
2HL . Otherwise, C

compute 2 2 ()i j j j iZ Z t T P t P= − + − . Then C checks whether 2Z is

correct by checking whether the oracle ddhpO outputs 1 when the tuple

(1, ,i jP P Z) is inputted. C also checks whether 1Z and 3Z are equal by

checking if the equations 1 1()((,))i i j j j j pubZ t s T R H ID R P= + + + and

3 i jZ t T= hold separately. If 1Z , 2Z and 3Z are correct, C stores the

tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL , where the value sk comes

from SL . Otherwise, C chooses a random number {0,1}ksk∈ and

stores the tuple (1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk) into
2HL .

()RevealSecretValue i : : C simulates the oracle in the same way as that of

CASE 1.1.1 except for i I= . If i I= , C stops the simulation.

,(,)s
i jSend m∏ : C simulates the oracle in the same way as that of CASE 1.1

except for the following queries:

 If , ,
s S
i j I J∏ = ∏ , C chooses i nt Z∈ and returns i iT t P= to 1A .

 If i I= and j J= (the case that i J= and j I= could be deal with

similarly).

 C chooses i nt Z∈ and returns i iT t P= to 1A .

C looks up the list
2HL for entry (, , , ,*,*,*,*i j i jID ID T T) (If ,

s
i j∏ is

responder session, C will look up for (, , , ,*,*,*,*j i j iID ID T T)). If there

is no such entry, C choose a random number {0,1}ksk ∈ and stores the

new entry (, , , ,i j i jID ID T T sk) in SL . Otherwise, C computes

2 2 ()i j j j iZ Z t T P t P= − + − . Then C checks whether 2Z is correct by

checking whether the oracle ddhpO outputs 1 when the tuple (1, ,i jP P Z) is

inputted. C also checks whether 2Z and 3Z are equal by checking if

26

the equations 1 1()((,))i i j j j j pubZ t s T R H ID R P= + + + and 3 i jZ t T= hold

separately. If all of the equations are equal, C stores (, , , ,i j i jID ID T T h)

into SL , where h comes from
2HL . Otherwise, C chooses a random

number sk and stores (, , , ,i j i jID ID T T sk) into SL .

As the adversary 2A mounts the forging attack, if 2A succeeds, it must

have queried oracle 2H on the form 1 1()((,))I I J J J J pubZ t s T R H ID R P= + + + ,

2 ()()I I JZ t x T U= + + and 3 I JZ t T= , where IP U= , JP V= and JT is the

incoming message from the adversary 2A . To solve (,)GDH U V , for all entries

in
2HL , C randomly chooses one entry with the probability

2

1
n

 and proceeds

with following steps:

C computes

2 2 () (,)I J JZ Z t T U t V cdh U V= − + − = (25)

The advantage of C solving GDH problem with the advantage

22
0 1 2

1() ()GDHAdv k Adv k
n n n

≥C A .

Then ()GDHAdv kC is non-negligible since we assume that 2 ()Adv kA is non-

negligible. This contradicts the GDH assumption.

 The analysis of CASE 1.2:

In this case, the Test session ,
S
I J∏ has a matching session owned by

another honest party J . According to Definition 1, the adversary 1A has four

ways to mount the attacks.

CASE 1.2.1. The adversary 1A makes ephemeral key query to both the

Test session and the matching session of the Test session (The adversary does

not reveal their corresponding partial private key). In this case, the proof is

identical to that of CASE 1.1.2. To save space, we omit the details.

CASE 1.2.2. The adversary 1A makes queries to the partial private key of

the owner of Test session and its peer's ephemeral private key. In this case, the

proof is identical to that of CASE 1.1.1. To save space, we omit the details.

CASE 1.2.3. The adversary 1A makes queries to the ephemeral private key

of the owner of Test session and its peer's partial private key. In this case, the

proof is identical to that of CASE 1.1.1. To save space, we omit the details.

27

CASE 1.2.4. The adversary 1A learns the partial private key of both the

owner of Test session and its peer. (The adversary does not reveal their

corresponding ephemeral private key). In this case, the proof is identical to that of

CASE 1.2.4 of the above lemma. To save space, we omit the details.

We could conclude that the advantage of a type 2 adversary against our

protocol is negligible if the GCDH problem is intractable.

From the above three lemmas, we can get the following theorem.

Theorem 1. Our protocol is a secure CLAKA protocol in the eCK model

under the GDH assumption.

5. Comparison with previous protocols

Let mBR and eCK denote the modified Bellare-Rogaway model [17] and the

extended Canetti–Krawczyk (eCK) model [18] separately. For the convenience of

evaluating the computational cost, we define some notations as follows.

 mulT : The time of executing a scalar multiplication operation of point.

 addT : The time of executing an addition operation of point.

 invT : The time of executing a modular invasion operation.

 hT : The time of executing a one-way hash function.

We will compare the efficiency of our protocol with five CLAKA protocols

without pairings, i.e. Geng et al.’s protocol [12], Hou et al.’s protocol [13], Yang

et al.’s protocol[14], and He et al.’s protocols[15,16]. Table 1 shows the

comparison between pairing-free CLAKA protocols in terms of efficiency,

security model and underlying hardness assumptions.

Since the scalar multiplication operation of point is more complicated than the

addition operation of points, modular invasion operation and the hash function

operation, then our protocol has better performance than Geng et al.’s protocol

[12], Hou et al.’s protocol [13] and He et al’s protocol[15]. Moreover, Geng et

al.’s protocol [12], Hou et al.’s protocol [13] and He et al’s protocol[15] are not

secure against type 1 adversary. Then our protocol has advantage in both the

performance and the security over Geng et al.’s protocol [12], Hou et al.’s

protocol [13] and He et al’s protocol [15]. It is well known that the eCK model is

much superior to the mBR model. Then Yang et al.’s protocol [15] and our

protocol has advantage in security to He et al.’s protocol [16]. At the same time,

28

our protocol also has better performance than He et al.’s protocol [16]. Yang et

al.’s proposed the first pairing-free CLAKA protocol, which is provably secure in

the eCK model. However, in Yang et al.’s protocol, the user has to verify the

validity of public keys. This does not only increase the burden of the user, but also

reverse the thought of CLPKC. From Table 1, we know our protocol has much

better performance than Yang et al.’s protocol [15]. We conclude that our protocol

is more suitable for practical applications.

Table 1: Comparisons among different protocols

 Computational

cost

Security

model

Assumption Message

exchange

Geng et al.’s

protocol [12]
7 2mul hT T+ mBR GDH 2

Hou et al.’s

protocol [13]
6 2mul hT T+ mBR GDH 2

Yang et al.’s

protocol [14]
9 2mul hT T+ eCK GDH 2

He et al’s

protocol[15]
5 3

2
mul add

inv h

T T
T T

+
+ +

mBR GDH 3

He et al’s

protocol[16]
5 4

2
mul add

h

T T
T
+

+

mBR GDH 2

Our protocol 5 3
2

mul add

h

T T
T
+

+

eCK GDH 2

6. Conclusion

The certificateless public key cryptography is receiving significant attention

because it is a new paradigm that simplifies the public key cryptography.

Recently, several pairing-free CLAKA have been proposed. In this paper, we

proposed a more efficient CLAKA protocol without pairings and proved its

security in the eCK model under the GDH assumption. The proposed protocol has

the best performance among the related protocols.

Acknowledgements

The authors thank Prof. Ervin Y. Rodin and the anonymous reviewers for their

valuable comments. This research was supported by the Fundamental Research

29

Funds for the Central Universities and the Specialized Research Fund for the

Doctoral Program of Higher Education of China (Grant No. 20110141120003).

References

[1] K.Y. Choi, J.H. Park, D.H. Lee, A new provably secure certificateless short signature scheme,

Computers and Mathematics with Applications 61(7)(2011) 1760-1768.

[2] A. Shamir, Identity-based cryptosystems and signature protocols, Proc. CRYPTO1984,

LNCS, vol.196, 1984, pp.47–53.

[3] S. Al-Riyami, K.G. Paterson, Certificateless public key cryptography, Proceedings of

ASIACRYPT 2003, LNCS 2894, Springer-Verlag, 2003, pp. 452–473.

[4] Z. Shao. Efficient authenticated key agreement protocol using self-certifed public keys from

pairings. Wuhan University Journal of Natural Sciences, 10(1) (2005) 267-270.

[5] S. Wang, Z. Cao, X. Dong, Certificateless authenticated key agreement based on the MTI/CO

protocol, Journal of Information and Computational Science 3 (2006) 575–581.

[6] T. Mandt, C. Tan, Certificateless authenticated two-party key agreement protocols, in:

Proceedings of the ASIAN 2006, LNCS, vol. 4435, Springer-Verlag, 2008, pp. 37–44.

[7] Y. Shi, J. Li, Two-party authenticated key agreement in certificateless public key

cryptography, Wuhan University Journal of Natural Sciences 12 (1) (2007) 71–74.

[8] C. Swanson. Security in key agreement: Two-party certificateless protocols. Master Thesis,

University of Waterloo, 2008.

[9] G. Lippold, C. Boyd, J. Nieto. Strongly secure certificateless key agreement. In Pairing 2009,

2009, pp. 206-230.

[10] L. Zhang, F. Zhang, Q. Wua, J. Domingo-Ferrer, Simulatable certificateless two-party

authenticated key agreement protocol, Information Sciences 180 (2010) 1020–1030.

[11] L. Chen, Z. Cheng, and N.P. Smart, Identity-based key agreement protocols from pairings,

International Journal Information Security 6 (2007) 213–241.

[12] M. Geng and F. Zhang. Provably secure certificateless two-party authenticated key agreement

protocol without pairing. In International Conference on Computational Intelligence and

Security, 2009, pp. 208-212.

[13] M. Hou and Q. Xu. A two-party certificateless authenticated key agreement protocol without

pairing. In 2nd IEEE International Conference on Computer Science and Information

Technology, 2009, pp. 412-416.

[14] G. Yang, C. Tan, Strongly secure certificateless key exchange without pairing, 6th ACM

Symposium on Information, Computer and Communications Security, 2011, pp. 71-79.

[15] D. He, J. Chen, J. Hu, A pairing-free certificateless authenticated key agreement protocol,

International Journal of Communication Systems, (In press) DOI: 10.1002/dac.1265, 2011.

[16] D. He, Y. Chen, J. Chen, R. Zhang, W. Han, A new two-round certificateless authenticated

key agreement protocol without bilinear pairings, Mathematical and Computer Modelling

(2011), doi:10.1016/j.mcm.2011.08.004

30

[17] M. Bellare, P. Rogaway. Entity authentication and key distribution. In: Proceedings of the

CRYPTO 1993. LNCS, vol. 773. Springer-Verlag; 1993. p. 232–49.

[18] B. LaMacchia, K. Lauter, A. Mityagin. Stronger security of authenticated key exchange. In:

Proceedings of the ProvSection 2007. LNCS, vol. 4784. Springer-Verlag; 2007. p. 1–16.

[19] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient

protocols, in Proc. 1st ACM Conf. Comput. Commun. Security, 1993, pp. 62–73.

