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elliptic curves which need costly operations. To improve the performance, several pairing-free 

CLAKA protocols have been proposed. In this paper we propose a new pairing-free CLAKA 
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Krawczyk (eCK) model. 
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1. Introduction 

To realize information security, the public key cryptography has been widely 

used in networks communications. In the traditional public key cryptography 

(PKC), there is a need for certificate to assurance to the user about the relationship 

between a public key and the identity of the holder of the corresponding private 

key. So there come the problems of certificate management, including revocation, 

storage, distribution etc. [1]. To solve the above problem, Shamir introduced the 

concept of identity-based cryptography (ID-PKC) [2]. In ID-PKC setting, a user’s 

public key can be derived from his identity (e.g., his name or email address) and 

his secret key is generated by the Key Generation Center ( KGC). Then there 

come the key escrow problem, i.e. the PKG knows all the user’s secret keys. In 

2003, Al-Riyami et al. [3] proposed the certificateless public key cryptography 

(CLPKC) to solve the key escrow problem. Since then the CLPKC received a 

significant attention. 
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After Al-Riyami et al.’s work [3], numerous certificateless authenticated key 

agreement (CLAKA) protocols, using bilinear mappings on elliptic curves, have been 

proposed, e.g., [4–10]. However, the relative computation cost of a pairing is 

approximately twenty times higher than that of the scalar multiplication over 

elliptic curve group [11]. Therefore, CLAKA protocols without bilinear pairings 

would be more appealing in terms of efficiency. Recently, several CLAKA 

protocols without pairing have been proposed in [12-15]. Yang et al. [14] pointed 

out that neither Geng et al.’s protocol [14], nor Hou et al.’s protocol [13] is 

secure. He et al. [15] also proposed a CLAKA protocol without pairing. However, 

He et al.’s protocol is vulnerable to the type 1 adversary [16]. Although the latest 

CLAKA protocol [16] is more efficient than other protocols [12-15], it is provably 

secure under the mBR model [17], which is a very weak model. Yang et al. have 

shown that their scheme is provably secure in a very strong model-the extended 

Canetti-Krawczyk (eCK) model [18]. However, the user in Yang et al.’ protocol 

needs nine elliptic curve scalar multiplications to finish the key agreement. 

Moreover, the user has to verify the validity of public keys. This not only 

increases the burden of the user, but also reverses the thought of CLPKC. In this 

paper, we will propose a new pairing-free CLAKA protocol, which is provably 

secure in the eCK model. Besides, our protocol has better performance than the 

related protocols. 

The remainder of this paper is organized as follows. Section 2 describes some 

preliminaries. In Section 3, we propose our CLAKA protocol. The security 

analysis of the proposed protocol is presented in Section 4. In Section 5, 

performance analysis is presented. Finally, in Section 6 we conclude the paper. 

2. Preliminaries 

2.2. Notations 

In this subsection, we first introduce some notations as follows, which are 
used in this paper.  

 ,p n : two large prime numbers; 

 pF : a finite field; 

 / pE F : an elliptic curve defined on pF ; 

 G : the cyclic additive group composed of the points on / pE F ; 
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 P : a generator of G ; 

 1( )H ⋅ : a secure one-way hash function, where * *
1 :{0,1} nH G Z× → ;  

 2 ( )H ⋅ : a secure one-way hash function, where 

* * *
2 :{0,1} {0,1} pH G G G G G Z× × × × × × → ;  

 iID : the identity of user i ; 

 ( , pubx P ): the KGC’s private/public key pair, where pubP xP= ; 

 ( ,i ix P ): the user i ’s secret value/public key pair, where i iP x P= ⋅ ; 

 ( ,i ir R ): a random point generated by KGC, where i iR r P= ⋅ ; 

 ( , )i is R : the user i ’s partial private key, where modi i is r h x n= + , 

1 ( , )i i ih H ID R= ; 

 ( ,i it T ): the user i ’s ephemeral private/public key pair, where i iT t P= ⋅ ; 

2.1. Background of elliptic curve group 

Let the symbol / pE F  denote an elliptic curve E  over a prime finite field 

pF , defined by an equation  

baxxy ++= 32 ， pFba ∈,                                  (1) 

and with the discriminant  
3 24 27 0a bΔ = + ≠ .                                        (2) 

The points on / pE F  together with an extra point O  called the point at 

infinity form a group  

{( , ) : , , ( , ) 0} { }pG x y x y F E x y O= ∈ = ∪ .                        (3) 

G  is a cyclic additive group in the point addition “+” defined as follows: Let 

,P Q G∈ , l  be the line containing P  and Q  (tangent line to / pE F  if P  = 

Q ), and R , the third point of intersection of l  with / pE F . Let l′  be the line 

connecting R  and O . Then P  “+” Q  is the point such that l′  intersects 

/ pE F  at R  and O . Scalar multiplication over / pE F  can be computed as 

follows:  

(  )tP P P P t times= + + +…                                    (4). 

Let the order of G  be n . The following problems are commonly used in 

the security analysis of many cryptographic protocols. 
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Computational Diffie-Hellman (CDH) problem: Given a generator P  of 

G  and ( , )aP bP  for unknown *, R na b Z∈ , the task of CDH problem is to 

compute abP .  

For convenience, we define the function cdh  as cdh ( aP ,bP )= abP  

Decisional Diffie-Hellman (DDH) problem: Given a generator P  of G  

and ( , , )aP bP cP  for unknown *, , R na b c Z∈ , the task of DDH problem is to 

decide whether the equation abP cP=  holds.  

Gap Diffie-Hellman (GDH) problem: Given a generator P  of G , 

( , )aP bP  for unknown *, R na b Z∈  and an oracle ddhpO , the task of GDH problem 

is to compute abP , where  ddhpO  is a decision oracle that on input ( aP ,bP , 

cP ), answers 1 if ( , )cdh aP bP cP= ; answers 0, otherwise.  

The GDH assumption states that the probability of any polynomial-time 

algorithm to solve the GDH problem is negligible. 

2.2. CLAKA protocol 

A CLAKA protocol consists of six polynomial-time algorithms [2, 8]: Setup , 

Partial - Private - Key - Extract , Set Secret Value− − , Set - Private - Key , 

Set Public Key− −  and Key Agreement− . These algorithms are defined as 

follows. 

Setup : This algorithm takes security parameter k  as input and returns the 

system parameters params and master key. 

Partial - Private - Key - Extract : This algorithm takes params , master key, 

a user's identity iID  as inputs and returns a partial private key. 

Set Secret Value− − : This algorithm takes params  and a user's identity 

iID  as inputs, and generates a secret value. 

Set - Private - Key :  This algorithm takes params , a user's partial private 

key and his secret value as inputs, and outputs the full private key. 

Set Public Key− − : This algorithm takes params and a user's secret value as 

inputs, and generates a public key for the user. 

Key Agreement− : This is a probabilistic polynomial-time interactive 

algorithm which involves two entities A  and B , if the protocol does not fail, 

A  and B  will obtain a secret session key. 
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2.3. Security model for CLAKA protocols 

In CLAKA scheme, there are two types of adversaries with different 

capabilities [9, 14]. The type 1 adversary 1A  acts as a dishonest user while the 

type 2 adversary 2A  acts as a malicious key generation center (KGC). 1A  

does not know the master key, but 1A  can replace the public keys of any entity 

with a value of his choice. 2A  knows the master key, but he cannot replace any 

user's public key. 

Let ,
s
i j∏  represents the s th session which runs at party i  with intended 

partner party j . A session ,
s
i j∏  enters an accepted  state when it computes a 

session key ,
s
i jSK . Two sessions ,

s
i j∏  and ,

t
j i∏  are called matching if they 

have the same session identity. 

Lippold et al. [9] transformed original eCK model [18] from the traditional 

PKI-based setting to the CLPKC setting. The eCK model in the CLPKC setting is 

defined by the following game between a challenger C  and an adversary 

{ 1, 2}∈A A A . The game runs in two phases. During the first phase, the 

adversary A  is allowed to issue the following queries in any order: 

( )Create i : On receiving such a query, C  generates the public/private key 

pair for participant i  with identity iID . 

RevealMasterKey : C  gives the master secret key to A . 

,( )s
i jRevealSessionKey ∏ : If the session has not been accepted, C  returns 

⊥ to A . Otherwise C  reveals the accepted session key to A . 

( )RevealPartialPrivateKey i : C  returns participant i ’s partial private key 

to A . 

( )RevealSecretValue i : C  returns participant i ’s secret value to A . 

( , )ReplacePublicKey i pk : C  replaces participant i ’s public key with the 

value chose by A . 

,( )s
i jRevealEphemeralKey ∏ : C  returns participant i ’s ephemeral private 

key to A . 

,( , )s
i jSend m∏ : The adversary sends the message m  to the session ,

s
i j∏  and 

get a response according to the protocol specification. 
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Once the adversary A  decides that the first phase is over, it starts the 

second phase by choosing a fresh session ,
s
i j∏  and issuing a ,( )s

i jTest ∏  query, 

where the fresh session and test query are defined later. 

The type 1 adversary 1A  could get any user’s secret value, since he can 

replace the public key of any entity with a value of his choice. The type 2 

adversary 2A  could get any user’s partial private key since he has access to the 

master key. Then several cases do not exist in Lippold et al.’s model [9]. To get 

better performance, we define the definition of freshness for CLAKA scheme 

against two type of adversary as follows. 

Definition 1 (Freshness for CLAKA Scheme against Type 1 Adversary). Let 

instance ,
s
i j∏  be a completed session, which is executed by an honest party i  

with another honest party j . We define ,
s
i j∏  to be fresh if none of the following 

three conditions hold: 

 The adversary 1A  reveals the session key of ,
s
i j∏  or of its matching 

session (if the latter exists). 

 j  is engaged in ,
t
j i∏  the session matching to ,

s
i j∏  and 1A  either 

reveals both of i ’s partial private key and ,
s
i j∏ ’s ephemeral private key 

or both of j ’s partial private key and ,
t
j i∏ ’s ephemeral private key. 

 No sessions matching to ,
s
i j∏  exist and 1A  either reveals both of i ’s 

partial private key and ,
s
i j∏ ’s ephemeral private key or j ’s partial 

private key. 

Definition 2 (Freshness for CLAKA Scheme against Type 2 Adversary). Let 

instance ,
s
i j∏  be a completed session, which is executed by an honest party i  

with another honest party j . We define ,
s
i j∏  to be fresh if none of the following 

three conditions hold: 

 The adversary 2A  reveals the session key of ,
s
i j∏  or of its matching 

session (if the latter exists). 

 j  is engaged in ,
t
j i∏  the session matching to ,

s
i j∏  and 2A  either 

reveals both of i ’s secret value and ,
s
i j∏ ’s ephemeral private key or 

both of j ’s secret value and ,
t
j i∏ ’s ephemeral private key. 
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 No sessions matching to ,
s
i j∏  exist and 2A  either reveals both of i ’s 

secret value and ,
s
i j∏ ’s ephemeral private key or  j ’s partial private 

key. 

,( )s
i jTest ∏ : At some point, A may choose one of the oracles, say ,

s
i j∏ , to ask 

a single Test query. This oracle must be fresh. To answer the query, the oracle 

flips a fair coin {0,1}b∈ , and returns the session key held by ,
s
i j∏  if 0b = , or a 

random sample from the distribution of the session key if 1b = . 

At the end of the game, A  must output a guess bit b′ . A  wins if and 

only if b b′ = . A ’s advantage to win the above game, denoted by ( )Adv kA , is 

defined as: 1( ) Pr[ ]
2

Adv k b b′= = −A , where k  is a security parameter. 

Definition 3. A CLAKA scheme is said to be secure if: 

(1) In the presence of a benign adversary on ,
s
i j∏  and ,

t
j i∏ , both oracles 

always agree on the same session key, and this key is distributed uniformly at 

random. 

(2) For any adversary { 1, 2}∈A A A , ( )Adv kA  is negligible. 

3. Our protocol 

In this section, we will propose a new CLAKA protocol based on previous 

works [9, 14, 16]. Our protocol consists of six polynomial-time algorithms. They 

are described as follows. 

Setup : This algorithm takes a security parameter k  as an input, returns 

system parameters and a master key. Given k , KGC does the following steps.  

1) KGC chooses a k -bit prime p  and determines the tuple 

{ , / , , }p pF E F G P  as defined in Section 2.1. 

2) KGC chooses the master private key *
nx Z∈  and computes the master 

public key pubP xP= . 

3) KGC chooses two cryptographic secure hash functions 
* *

1 :{0,1} nH G Z× →  and * * *
2 :{0,1} {0,1} nH G G G G G G Z× × × × × × × → . 

4) KGC publishes 1 2{ , / , , , , , }p p pubparams F E F G P P H H=  as system 

parameters and keeps the master key x  secretly. 
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Partial - Private - Key - Extract : This algorithm takes master key, a user’s 

identifier, system parameters as inputs, and returns the user’s ID-based private 

key. KGC works as follows. 

1) KGC chooses a random number *
i nr Z∈ , computes i iR r P= ⋅  and 

1( , )i i ih H ID R= . 

2) KGC computes modi i is r h x n= +  and issues ( , )i is R  to the users 

through secret channel. 

Set Secret Value− − : The user picks randomly *
i nx Z∈ , computes i iP x P= ⋅  

and sets ix  as his secret value. 

Set - Private - Key : The user with identity iID  takes the pair ( , )i i isk x s=  

as its private key. 

Set Public Key− − : The user with identity iID  takes ( )i ipk P=  as its 

public key. 

Key Agreement− : Assume that an entity A  with identity AID  has private 

key ( , )A A Ask x s=  and public key ( )A Apk P=  and an entity B  with identity 

BID  has private key ( , )B B Bsk x s=  and public key ( )B Bpk P=  want to 

establish a session key, they can do, as shown in Fig.1, as follows. 

1) A  chooses a random number *
A nt Z∈  and computes A AT t P= ⋅ , then A  

sends 1 { , , }A A AM ID R T=  to B . 

2) After receiving 1M , B  chooses a random number *
B nt Z∈  and 

computes B BT t P= ⋅ , then B  sends 2 { , , }B B BM ID R T=  to A . 

Then both A  and B  can compute the shared secrets as follows: 

A  computes  
1

1( )( ( , ) )AB A A B B B B pubK t s T R H ID R P= + + +           (5) 

2 ( )( )AB A A B BK t x T P= + +                          (6) 

and  
3
AB A BK t T= ⋅                                    (7) 

B  computes 
1

1( )( ( , ) )BA B B A A A A pubK t s T R H ID R P= + + +           (8) 

2 ( )( )BA B B A AK t x T P= + +                          (9) 
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and  
3
BA B AK t T= ⋅                                   (10) 

Thus the agreed session key for A  and B  can be computed as: 
1 2 3

2
1 2 3

2

( || || || || || || )

( || || || || || || )
A B A B AB AB AB

A B A B BA BA BA

sk H ID ID T T K K K

H ID ID T T K K K

=

=
    (11) 

 
Fig. 1. Key agreement of our protocol 

Since A AT t P= ⋅ , A AP x P= ⋅ , 1( , )A A A A pubs P R H ID R P= + , B BT t P= ⋅ , 

B BP x P= ⋅  and 1( , )B B B B pubs P R H ID R P= + , then we have 

1
1

1
1

( )( ( , ) )

( )( ) ( )( )

( )( ( , ) )

AB A A B B B B pub

A A B B B B A A

B B A A A A pub BA

K t s T R H ID R P

t s t s P t s t s P

t s T R H ID R P K

= + + +

= + + = + +

= + + + =

     (12) 

2

2

( )( )
( )( ) ( )( )

( )( )

AB A A B B

A A B B B B A A

B B A A BA

K t x T P
t x t x P t x t x P

t x T P K

= + +
= + + = + +

= + + =

       (13) 

and 
3 3
AB A B B A BAK t t P t t P K= = =                     (14) 

Thus, the correctness of the protocol is proved. 

4. Security Analysis 

In this section, we will show our scheme is provably secure in eCK model. 

We treat 1H  and 2H  as two random oracles [19]. For the security, the 

following lemmas and theorems are provided. 

Lemma 1. If two oracles are matching, both of them will be accepted and 

will get the same session key which is distributed uniformly at random in the 

session key sample space. 
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Proof. From the correction analysis of our protocol in Section 3, we know if 

two oracles are matching, then both of them are accepted and have the same 

session key. The session keys are distributed uniformly since At  and Bt  are 

selected uniformly during the execution. 

Lemma 2. Assuming that the GDH problem is intractable, the advantage of a 

type 1 adversary against our protocol is negligible.  

Proof. Suppose that there is a type 1 adversary 1A  who can win the game 

defined in subsection 2.3 with a non-negligible advantage 1( )Adv kA  in 

polynomial-time t . Then, we will show how to use the ability of 1A  to 

construct an algorithm C  to solve the GDH problem. 

Let 0n  be the maximum number of sessions that any one party may have. 

Assume that the adversary 1A  activates at most 1n  distinctive honest parties. 

Assume that the adversary 1A  activates at most 2n  distinctive hash queries. 

Assume also that 1( )Adv kA  is non-negligible. Before the game starts, C  tries 

to guess the test session and the strategy that the adversary 1A  will adopt. C  

randomly selects two indexes 1, {1, , }I J n I J∈ ≠… ： , which represent the I th 

and the J th distinct honest party that the adversary initially chooses. Also, C  

chooses 0{1, , }S n∈ …  and determines the Test  session ,
S
I J∏ , which is correct 

with probability larger than 2
0 1

1
n n

.  Let ,
T
J I∏  be the matching session of ,

S
I J∏ . 

Since 1H  and 2H  are modeled as random oracles, after the adversary issues the 

test query, it has only three possible ways to distinguish the tested session key 

from a random string: 

CASE 1: Forging attack: Assume that ,
S
I J∏  is the test session. At some 

point in its run, the adversary 1A  queries 2H  on the 

value 1 2 3( , , , , , , )I J I J IJ IJ IJID ID T T K K K  in the test session owned by I  

communicating with J . Clearly, in this case 1A  computes the values 1
IJK , 

2
IJK  and 3

IJK  itself. 

CASE 2:  Guessing attack: 1A  correctly guesses the session key. 

CASE 3:  Key-replication attack: The adversary 1A  forces a non-

matching session to have the same session key with the test session. In this case, 
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the adversary 1A  can simply learn the session key by querying the non-

matching session. 

Since 2H  is a random oracle, the probability of guessing the output of 2H  

is (1/ 2 )kO , which is negligible. The input to the key derivation function 2H  

includes all information that can uniquely identify the matching sessions. Since 

two non-matching sessions can not have the same identities and the same 

ephemeral public keys and 2H  is modeled as a random oracle, the success 

probability of Key-replication attack is also negligible. Thus Guessing attack 

and Key-replication attack can be ruled out, and the rest of the proof is mainly 

devoted to the analysis of Forging attack. As the attack that the adversary 1A  

mounts is Forging attack, 1A  can not get an advantage in winning the game 

against the protocol unless it queries the 2H  oracle on the session key. 

The rest of this section is mainly devoted to the analysis of the Forging 

attack. To relate the advantage of the adversary 1A  against our protocol to the 

GDH assumption, we use a classical reduction approach. In the following, a 

challenger C  is interested to use the adversary 1A  to turn 1A ’s advantage in 

distinguishing the tested session key from a random string into an advantage in 

solving the GDH problem. The following two sub-cases should be considered. 

CASE 1.1:  No honest party owns a matching session to the Test  session. 

CASE 1.2: The Test  session has a matching session owned by another 

honest party. 

 The analysis of CASE 1.1: 

Since 1A  is strong type 1 adversary, then he can get any users’ secret key 

ix  value through ReplacePublicKey  query. According to Definition 1, C  has 

the following two choices for 1A ’s strategy: 

CASE 1.1.1: At some point, the partial private key of party I  has been 

revealed by the adversary 1A . According to Definition 1, 1A  is not permitted 

to reveal the ephemeral private key of the Test session. 

CASE 1.1.2: The partial private key of party I  has never been revealed by 

the adversary 1A . According to Definition 1, 1A  may reveal the ephemeral 

private key of the Test session. 

CASE 1.1.1: 
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Let ( )GDHAdv kC be the advantage that the challenger C  gets in solving the 

GDH problem given the security parameter k . Given a GDH problem 

instance(U uP= ,V vP= , ddhpO ) and C ’s task is to compute ( , )cdh U V uvP= , 

where ddhpO  is a decision oracle that on input ( , ,aP bP cP ), answers 1 if 

( , )cdh aP bP cP= ; answers 0, otherwise. C  first chooses 0P G∈  at random, 

sets 0P  as the system public key pubP , selects the system parameter 

1 2{ , / , , , , , }p p pubparams F E F G P P H H= , and sends params  to 1A . Then, C  

simulates the game outlined in Section 2.3 as follows. 

( )Create i : C  maintains an initially empty list CL  consisting of tuples of 

the form ( , , , ,i i i i iID s R x P ). If i J= , C  chooses two random numbers 

*,i i nh x Z∈ , computes 0i iR U h P= − , i iP x P= , sets 1( , )i i iH ID R h←  and stores 

( , , , ,i i i iID R x P⊥ ) and ( , , )i i iID R h  in CL  and 
1HL  separately. Otherwise, C  

chooses three random numbers *, ,i i i ns h x Z∈ , computes i i i pubR s P h P= − , i iP x P= , 

sets 1( , )i i iH ID R h←  and stores ( , , , ,i i i i iID s R x P ) and ( , , )i i iID R h  in CL  and 

1HL  separately. 

1( , )i iH ID R : C  maintains an initially empty list 
1HL  which contains tuples 

of the form ( , ,i i iID R h ). If ( ,i iID R ) is on the list 
1HL , C  returns ih . Otherwise, 

C  chooses a random number ih , stores ( , ,i i iID R h ) in 
1HL  and returns ih . 

2 1 2 3( , , , , , , , )i j i jH ID ID T T Z Z Z sk : C  maintains an initially empty list 
2HL  

with entries of the form ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ). If the tuple is in the list 

2HL , C  responds with sk . Otherwise, C  responds to these queries in the 

following way: 

 If i JID ID= ,  

 C  looks the list SL  for entry ( , , , ,*i j i jID ID T T ). If C  finds the 

entry, he computes 

1 1 1 1( ( , )) ( ( , ))i j j j j j i i iZ Z t T R H ID R s R H ID R= − + + − +  . 

 Then C  checks whether 1Z  is correct by checking whether the 

oracle ddhpO  outputs 1 when the tuple ( 11( , ) , ,i i i pub jR H ID R P T Z+ ) is 
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inputted. C  also checks whether 2Z  and 3Z  are equal by checking 

if the equations 2 ( )( )i i j jZ t x T P= + +  and 3 i jZ t T=  hold separately. 

If 1Z , 2Z  and 3Z  are correct, C  stores the tuple 

( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , where the value sk  comes 

from SL . Otherwise, C  chooses a random number {0,1}ksk ∈  and 

stores the tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

 Otherwise,  

 C  looks up the list SL  for entry ( , , , ,*i j i jID ID T T ). If C  finds the 

entry, he stores the tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , 

where the value sk  comes from SL . 

 Otherwise, C  chooses a random number {0,1}ksk ∈  and stores the 

tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

( )RevealPartialPrivateKey i : C  answers 1A ’s queries as follows. 

 If i JID ID=  then C  stops the simulation.  

 Otherwise, C  looks up the list EL  and returns the corresponding 

partial private key is  to the adversary 1A . 

( )RevealSecretValue i : C  looks up the table CL  for entry ( ,*,*,*,*iID ). If 

C  finds the entry, he returns ix . Otherwise, C  carries out the query 

( )Create i  and returns the corresponding ix . 

( , )ReplacePublicKey i pk : Upon receiving the query, C  looks up the table 

CL  for entry ( ,*,*,*,*iID ). If C  finds the entry, he replaces ix  and iP  with 

ix′  and iP′  separately, where ( )ipk P′=  and i iP x P′ ′= . Otherwise, C  carries 

out ( )Create i  and replaces ix  and iP  with ix′  and iP′  separately. 

,( )s
i jRevealEphemeralKey ∏ : C  answers 1A ’s queries as follows. 

 If , ,
s S
i j I J∏ = ∏ , then C  stops the simulation.  

 Otherwise, C  returns the stored ephemeral private key to 1A . 

RevealMasterKey : C  stops the simulation. 

,( )s
i jRevealSessionKey ∏ : C  answers 1A ’s queries as follows. 
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 If , ,
s S
i j I J∏ = ∏  or , ,

s T
i j J I∏ = ∏ , then C  stops the simulation.  

 Otherwise, if C  returns the session key sk  to 1A . 

,( , )t
i jSend m∏ : C  maintains an initially empty list SL  with entries of the 

form ( , , , ,i j i jID ID T T sk ) and answers 1A ’s queries as follows. 

 If , ,
t S
i j I J∏ =∏ , then C  returns iT V=  to 1A .  

 Otherwise, if i JID ID= , he generates a random i nt Z∈ , computes 

1 1 1 1( ( , )) ( ( , ))i j j j j j i i iZ Z t T R H ID R s R H ID R= − + + − + . Then C  checks 

whether 1Z  is correct by checking whether the oracle ddhpO  outputs 1 

when the tuple ( 21( , ) , ,i i i pub jR H ID R P T Z+ ) is inputted. C  also checks 

whether 2Z  and 3Z  are equal by checking whether the equations 

2 ( )( )i i j jZ t x T P= + +  and 3 i jZ t T=  hold separately. If 1Z , 2Z  and 3Z  

are correct, C  stores the tuple ( , , , ,i j i jID ID T T sk ) into SL , where the 

value sk  comes from 
2HL . Otherwise, C  chooses a random number 

{0,1}ksk ∈  and stores the tuple ( , , , ,i j i jID ID T T sk ) into SL . 

 Otherwise, C  replies according to the specification of the protocol. 

,( )t
i jTest ∏ : C  answers 1A ’s queries as follows. 

 If , ,
s S
i j I J∏ ≠ ∏ , then C  stops the simulation.  

 Otherwise, C  generates a random number  {0,1}kξ ∈  and returns it to 

1A . 

As the adversary 1A  mounts the forging attack, if 1A  succeeds, it must 

have queried oracle 2H  on the form 

1 1( )( ( , ) ) ( )( )I I J J J J pub I I JZ t s T R H ID R P t s T U= + + + = + +  ,  

2 ( )( )I I J JZ t x T P= + +  and 3 I JZ t T= , where IT V=  is the outgoing message of 

Test  session by the simulator and JT  is the incoming message from the 

adversary 1A . To solve ( , )cdh U V , for all entries in 
2HL , C  randomly 

chooses one entry with the probability 
2

1
n

 and computes 

1 1 1 1

1

( ( , )) ( ( , ))
( ( , )) ( , )

J I I I I I J J J

I J J J

Z Z t T R H ID R s R H ID R
t R H ID R cdh U V
= − + + − +

= + =
  (16) 
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The advantage of C  solving GDH problem with the advantage 

12
0 1 2

1( ) ( )GDHAdv k Adv k
n n n

≥C A .                        (17) 

Then ( )GDHAdv kC  is non-negligible since we assume that 1( )Adv kA  is non-

negligible. This contradicts the GDH assumption. 

CASE 1.1.2: 

Let ( )GDHAdv kC be the advantage that the challenger C  gets in solving the 

GDH problem given the security parameter k . Given a GDH problem 

instance(U uP= ,V vP= , ddhpO ) and C ’s task is to compute ( , )cdh U V uvP= , 

where ddhpO  is a decision oracle that on input ( , ,aP bP cP ), answers 1 if 

( , )cdh aP bP cP= ; answers 0, otherwise. C  first chooses 0P G∈  at random, 

sets 0P  as the system public key pubP , selects the system parameter 

1 2{ , / , , , , , }p p pubparams F E F G P P H H= , and sends params  to 1A . Then, C  

simulates the game outlined in Section 2.3 as follows. Then, C  simulates the 

game outlined in Section 2.3. During the game, C  simulates 1A ’s 

1 ( , )i iH ID R , RevealMasterKey , ( )RevealSecretValue i , 

( , )ReplacePublicKey i pk , ,( )s
i jRevealSessionKey ∏  and ,( )s

i jTest ∏  queries as 

that of CASE 1.1.1. C  simulates other oracles as follows. 

( )Create i : C  simulates the oracle in the same way as that of CASE 1.1 

except for i I= . If i I= , C  chooses two random numbers *,i i nh x Z∈ , 

computes 0i iR V h P= − , i iP x P= , sets 1( , )i i iH ID R h←  and stores 

( , , , ,i i i iID R x P⊥ ) and ( , , )i i iID R h  in CL  and 
1HL  separately. 

2 1 2 3( , , , , , , , )i j i jH ID ID T T Z Z Z h : C  simulates the oracle in the same way as 

that of CASE 1.1.1 except for the form ( 1 2 3, , , , , ,I J I JID ID T T Z Z Z ) and 

( 1 2 3, , , , , ,J I J IID ID T T Z Z Z ). C  responds to these queries in the following way: 

 If  ( 1 2 3, , , , , , ,I J I JID ID T T Z Z Z h ) or ( 1 2 3, , , , , , ,J I J IID ID T T Z Z Z h ) is in 

2HL , C  responds with the stored value h . 

 Otherwise, C  looks up the table SL  for entry ( , , , ,*i j i jID ID T T ). If 

there is no such entry, C  choose a random number {0,1}kh∈  and 
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stores the new entry ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z h ) in 
2HL . Otherwise, C  

compute 1 1 1 1( ( , )) ( ( , ))i j j j j j i i iZ Z t T R H ID R t R H ID R= − + + − + . Then 

C  checks whether 1Z  is correct by checking whether the oracle ddhpO  

outputs 1 when the tuple ( 11 1( , ) , ( , ) ,i i i pub j j j pubR H ID R P R H ID R P Z+ + ) 

is inputted.C  also checks whether 2Z  and 3Z  are equal by checking if 

the equations 2 ( )( )i i j jZ t x T P= + +  and 3 i jZ t T=  hold separately. If 

1Z , 2Z  and 3Z  are correct, C  stores the tuple 

( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , where the value sk  comes from 

SL . Otherwise, C  chooses a random number {0,1}ksk ∈  and stores the 

tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

( )RevealPartialPrivateKey i : C  answers 1A ’s queries as follows. 

 If i I=  or i J= , C  stops the simulation.  

 Otherwise, C  looks up the list CL  and returns the corresponding 

partial private key iD  to the adversary 1A . 

,( )s
i jRevealEphemeralKey ∏ : C returns the stored ephemeral private key to 

1A . 

,( , )s
i jSend m∏ : C  simulates the oracle in the same way as that of CASE 1.1 

except for the following queries:  

 If , ,
s S
i j I J∏ = ∏ , C  chooses i nt Z∈  and returns i iT t P=  to 1A . 

 If i I=  and j J= (the case that i J=  and j I=  could be deal with 

similarly). 

 C  chooses i nt Z∈  and returns i iT t P=  to 1A .  

C  looks up the list 
2HL  for entry ( , , , ,*,*,*,*i j i jID ID T T ) (If ,

s
i j∏  is 

responder session, C  will look up for ( , , , ,*,*,*,*j i j iID ID T T )). If there 

is no such entry, C  choose a random number {0,1}ksk ∈  and stores the 

new entry ( , , , ,i j i jID ID T T sk ) in SL . Otherwise, C  computes 

1 1 1 1( ( , )) ( ( , ))i j j j j j i i iZ Z t T R H ID R t R H ID R= − + + − + . Then C  

checks whether 1Z  is correct by checking whether the oracle ddhpO  
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outputs 1 when the tuple ( 11 1( , ) , ( , ) ,i i i pub j j j pubR H ID R P R H ID R P Z+ + ) 

is inputted.C  also checks whether 2Z  and 3Z  are equal by checking if 

the equations 2 ( )( )i i j jZ t x T P= + +  and 3 i jZ t T=  hold separately. If all 

of the equations are equal, C  stores ( , , , ,i j i jID ID T T h ) into SL , where 

h  comes from 
2HL . Otherwise, C  chooses a random number sk  and 

stores ( , , , ,i j i jID ID T T sk ) into SL . 

As the adversary 1A  mounts the forging attack, if 1A  succeeds, it must 

have queried oracle 2H  on the form 

1 1( )( ( , ) ) ( )( )I I J J J J pub I I JZ t s T R H ID R P t s T U= + + + = + + 2 ( )( )I I J JZ t x T P= + +  

and 3 I JZ t T=  where I IT t P=  is the outgoing message of Test  session by the 

simulator 1A . To solve ( , )cdh U V , for all entries in 
2HL , C  randomly 

chooses one entry with the probability 
2

1
n

 and computes  

1 1 1 1

1

( ( , )) ( ( , ))
( ( , )) ( , )

I J J J J J I I I

I J J J I

Z Z t T R H ID R t R H ID R
s R H ID R s U cdh U V
= − + + − +

= + = =
.   (18) 

We can conclude that  

12
0 1 2

1( ) ( )GBCDHAdv k Adv k
n n n

≥C A .                        (19) 

Then ( )GBCDHAdv kC  is non-negligible since we assume that 1( )Adv kA  is 

non-negligible. This contradicts the GCDH assumption. 

 The analysis of CASE 1.2: 

In this case, the Test  session ,
S
I J∏  has a matching session owned by 

another honest party J . According to Definition 1, the adversary 1A  has four 

ways to mount the attacks.  

CASE 1.2.1. The adversary 1A  makes ephemeral key query to both the 

Test  session and the matching session of the Test  session (The adversary does 

not reveal their corresponding partial private key). In this case, the proof is 

identical to that of CASE 1.1.2. To save space, we omit the details. 

CASE 1.2.2. The adversary 1A  makes queries to the partial private key of 

the owner of Test  session and its peer's ephemeral private key. In this case, the 

proof is identical to that of CASE 1.1.1. To save space, we omit the details. 
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CASE 1.2.3. The adversary 1A  makes queries to the ephemeral private key 

of the owner of Test  session and its peer's partial private key. In this case, the 

proof is identical to that of CASE 1.1.1. To save space, we omit the details. 

CASE 1.2.4. The adversary 1A  learns the partial private key of both the 

owner of Test  session and its peer. (The adversary does not reveal their 

corresponding ephemeral private key).  

C  answers 1( , )i iH ID R , ( , )ReplacePublicKey i pk , ( )RevealSecretValue i ,  

RevealMasterKey ,( )t
i jRevealSessionKey ∏  and ,( )t

i jTest ∏  as he does in the 

above case. He also answers other queries as follows. 

( )Create i : C  maintains an initially empty list CL  consisting of tuples of 

the form ( , , , ,i i i i iID s R x P ). C  chooses three random numbers *, ,i i i ns h x Z∈ , 

computes i i i pubR s P h P= − , i iP x P= , sets 1( , )i i iH ID R h←  and stores 

( , , , ,i i i i iID s R x P ) and ( , , )i i iID R h  in CL  and 
1HL  separately. 

2 1 2 3( , , , , , , , )i j i jH ID ID T T Z Z Z sk : C  maintains an initially empty list 
2HL  

with entries of the form ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ). If the tuple is in the list 

2HL , C  responds with sk . Otherwise, C  responds to these queries in the 

following way: 

 C  looks the list SL  for entry ( , , , ,*i j i jID ID T T ). If C  finds the entry, 

he computes 

1 1 1( ( , ))i j j j j j iZ Z s T R H ID R s T= − + + −        (20) 

2 2Z Z=                                 (21) 

and 

2 2 ( )i j j j iZ Z x T P x T= − + −                  (21) 

Then C  checks whether iZ  is correct by checking whether the oracle 

ddhpO  outputs 1 when the tuple ( , , ii jT T Z ) is inputted, where 1,2,3i = . If 

1Z , 2Z  and 3Z  are correct, C  stores the tuple 

( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , where the value sk  comes from 

SL . Otherwise, C  chooses a random number {0,1}ksk∈  and stores the 

tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 
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 Otherwise, C  chooses a random number {0,1}ksk∈  and stores the 

tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

( )RevealPartialPrivateKey i : C  looks up the list CL  and returns the 

corresponding partial private key is  to the adversary 1A . 

,( )s
i jRevealEphemeralKey ∏ : C  answers 1A ’s queries as follows. 

 If , ,
s S
i j I J∏ =∏  or , ,

s T
i j J I∏ =∏ , then C  stops the simulation.  

 Otherwise, C  returns the stored ephemeral private key to 1A . 

,( , )s
i jSend m∏ : C  maintains an initially empty list SL  with entries of the 

form ( , , , ,i j i jID ID T T sk ) and answers 1A ’s queries as follows. 

 If , ,
s T
i j I J∏ =∏ , C  returns iT U=  to 1A .  

 Otherwise, if , ,
s T
i j I J∏ =∏  , C  returns iT V=  to 1A . 

 Otherwise, C  replies according to the specification of the protocol. 

As the attack that adversary 1A  mounts the forging attack, if 1A  

succeeds, it must have queried oracle 2H  on the form 

1 1( )( ( , ) )I I J J J J pubZ t s T R H ID R P= + + +  ,  2 ( )( )I I J JZ t x T P= + +  and 

3 I JZ t T= , where IT U=  is the outgoing message of Test  session by the 

simulator and JT V=  is the incoming message from the adversary 1A . To 

solve ( , )cdh U V , for all entries in 
2HL , C  randomly chooses one entry with the 

probability 
2

1
n

 and returns 3Z  as the solution to ( , )cdh U V . 

The advantage of C  solving GDH problem with the advantage 

12
0 1 2

1( ) ( )GDHAdv k Adv k
n n n

≥C A .         (22) 

Then ( )GDHAdv kC  is non-negligible since we assume that 1( )Adv kA  is non-

negligible. This contradicts the GDH assumption. 

We could conclude that the advantage of a type 1 adversary against our 

protocol is negligible if the GCDH problem is intractable. 

Lemma 2. Assuming that the GDH problem is intractable, the advantage of a 

type 2 adversary against our protocol is negligible.  
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Proof. Suppose that there is a type 2 adversary 2A  who can win the game 

defined in subsection 2.3 with a non-negligible advantage 2 ( )Adv kA  in 

polynomial-time t . Then, we will show how to use the ability of 2A  to 

construct an algorithm C  to solve the GDH problem. 

Let 0n  be the maximum number of sessions that any one party may have. 

Assume that the adversary 2A  activates at most 1n  distinctive honest parties. 

Assume that the adversary 2A  activates at most 2n  distinctive hash queries. 

Assume also that 2 ( )Adv kA  is non-negligible. Before the game starts, C  tries 

to guess the test session and the strategy that the adversary 2A  will adopt. C  

randomly selects two indexes 1, {1, , }I J n I J∈ ≠… ： , which represent the I th 

and the J th distinct honest party that the adversary initially chooses. Also, C  

chooses 0{1, , }S n∈ …  and determines the Test  session ,
S
I J∏ , which is correct 

with probability larger than 2
0 1

1
n n

.  Let ,
T
J I∏  be the matching session of ,

S
I J∏ . 

Since 1H  and 2H  are modeled as random oracles, after the adversary issues the 

test query, it has only three possible ways to distinguish the tested session key 

from a random string: 

CASE 1: Forging attack: Assume that ,
S
I J∏  is the test session. At some 

point in its run, the adversary 1A  queries 2H  on the 

value 1 2 3( , , , , , , )I J I J IJ IJ IJID ID T T K K K  in the test session owned by I  

communicating with J . Clearly, in this case 2A  computes the values 1
IJK , 

2
IJK  and 3

IJK  itself. 

CASE 2:  Guessing attack: 2A  correctly guesses the session key. 

CASE 3:  Key-replication attack: The adversary 2A  forces a non-

matching session to have the same session key with the test session. In this case, 

the adversary 2A  can simply learn the session key by querying the non-

matching session. 

Through the same analysis, we know the success probability of Key-

replication attack and Guessing attack is also negligible. Thus Guessing attack 

and Key-replication attack can be ruled out. As the attack that the adversary 
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2A  mounts is Forging attack, 2A  can not get an advantage in winning the 

game against the protocol unless it queries the 2H  oracle on the session key. 

In the following, a challenger C  is interested to use the adversary 2A  to 

turn 2A ’s advantage in distinguishing the tested session key from a random 

string into an advantage in solving the GDH problem. The following two sub-

cases should be considered. 

CASE 1.1:  No honest party owns a matching session to the Test  session. 

CASE 1.2: The Test  session has a matching session owned by another 

honest party. 

 The analysis of CASE 1.1: 

Since 2A  is strong type 2 adversary, then he can get any users’ partial 

private key since he is a malicious KGC. According to Definition 2, C  has the 

following two choices for 2A ’s strategy: 

CASE 1.1.1: At some point, the secret value of party I  has been revealed by 

the adversary 2A . According to Definition 2, 2A  is not permitted to reveal 

the ephemeral private key of the Test session. 

CASE 1.1.2: The secret value of party I  has never been revealed by the 

adversary 2A . According to Definition 2, 2A  may reveal the ephemeral 

private key of the Test session. 

CASE 1.1.1: 

Let ( )GDHAdv kC be the advantage that the challenger C  gets in solving the 

GDH problem given the security parameter k . Given a GDH problem instance 

(U uP= ,V vP= , ddhpO ) and C ’s task is to compute ( , )cdh U V uvP= , where 

ddhpO  is a decision oracle that on input ( , ,aP bP cP ), answers 1 if 

( , )cdh aP bP cP= ; answers 0, otherwise. C  first chooses a random number 
*
nx Z∈ , sets xP  as the system public key pubP , selects the system parameter 

1 2{ , / , , , , , }p p pubparams F E F G P P H H= , and sends params  to 2A . Then, C  

simulates the game outlined in Section 2.3 as follows. 

( )Create i : C  maintains an initially empty list CL  consisting of tuples of 

the form ( , , , ,i i i i iID s R x P ). If i J= , C  chooses two random numbers *
i nr Z∈ , 

computes  i iR r P= , 1( , )i i ih H ID R= , i i is r h x= + , iP U=  and stores 

( , , , ,i i i iID s R P⊥ )in CL . Otherwise, C  chooses two random numbers *,i i nr x Z∈ , 
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computes  i iR r P= , 1( , )i i ih H ID R= , i i is r h x= + , i iP x P=  and stores 

( , , , ,i i i i iID s R x P ) in CL . 

1( , )i iH ID R : C  maintains an initially empty list 
1HL  which contains tuples 

of the form ( , ,i i iID R h ). If ( ,i iID R ) is on the list 
1HL , C  returns ih . Otherwise, 

C  chooses a random number ih , stores ( , ,i i iID R h ) in 
1HL  and returns ih . 

2 1 2 3( , , , , , , , )i j i jH ID ID T T Z Z Z sk : C  maintains an initially empty list 
2HL  

with entries of the form ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ). If the tuple is in the list 

2HL , C  responds with sk . Otherwise, C  responds to these queries in the 

following way: 

 If i JID ID= ,  

 C  looks the list SL  for entry ( , , , ,*i j i jID ID T T ). If C  finds the 

entry, he computes 2 2 ( )i j j j iZ Z t T P x P= − + − . 

 Then C  checks whether 2Z  is correct by checking whether the 

oracle ddhpO  outputs 1 when the tuple ( 2, ,i jP T Z ) is inputted. C  

also checks whether 1Z  and 3Z  are equal by checking whether the 

equations 1 1( )( ( , ))i i j j j jZ t s T R H ID R= + + +  and 3 i jZ t T=  hold 

separately. If 1Z , 2Z  and 3Z  are correct, C  stores the tuple 

( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , where the value sk  comes 

from SL . Otherwise, C  chooses a random number {0,1}ksk∈  and 

stores the tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

 Otherwise,  

 C  looks the list SL  for entry ( , , , ,*i j i jID ID T T ). If C  finds the 

entry, he stores the tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , 

where the value sk  comes from SL . 

 Otherwise, C  chooses a random number {0,1}ksk∈  and stores the 

tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

( )RevealPartialPrivateKey i : C  looks up the list EL  and returns the 

corresponding partial private key is  to the adversary 2A . 
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( )RevealSecretValue i : C  answers 2A ’s queries as follows. 

 If i JID ID= , then C  stops the simulation.  

 Otherwise, C  looks up the table CL  for entry ( ,*,*,*,*iID ) and 

returns ix .  

,( )t
i jRevealEphemeralKey ∏ : C  answers 2A ’s queries as follows. 

 If , ,
s S
i j I J∏ =∏ , then C  stops the simulation.  

 Otherwise, C  returns the stored ephemeral private key to 2A . 

RevealMasterKey : C  returns the master key x  to 2A . 

,( )t
i jRevealSessionKey ∏ : C  answers 2A ’s queries as follows. 

 If , ,
s S
i j I J∏ =∏  or , ,

s T
i j I J∏ =∏ , then C  stops the simulation.  

 Otherwise, if C  returns the session key sk  to 2A . 

,( , )s
i jSend m∏ : C  maintains an initially empty list SL  with entries of the 

form ( , , , ,i j i jID ID T T sk ) and answers 2A ’s queries as follows. 

 If , ,
s S
i j I J∏ =∏ , then C  returns iT V=  to 2A .  

 Otherwise, if i JID ID= , he generates a random i nt Z∈ , computes 

2 2 ( )i j j j iZ Z t T P x P= − + − . Then C  checks whether 2Z  is correct by 

checking whether the oracle ddhpO  outputs 1 when the tuple ( 2, ,i jP T Z ) 

is inputted.C  also checks whether 1Z  and 3Z  are equal by checking 

whether the equations 1 1( )( ( , ))i i j j j jZ t s T R H ID R= + + +  and 3 i jZ t T=  

hold separately. If 1Z , 2Z  and 3Z  are correct, C  stores the tuple 

( , , , ,i j i jID ID T T sk ) into SL , where the value sk  comes from 
2HL . 

Otherwise, C  chooses a random number {0,1}ksk∈  and stores the 

tuple ( , , , ,i j i jID ID T T sk ) into SL . 

 Otherwise, C  replies according to the specification of the protocol. 

,( )t
i jTest ∏ : C  answers 2A ’s queries as follows. 

 If , ,
t S
i j I J∏ ≠ ∏ , then C  stops the simulation.  

 Otherwise, C  generates a random number  {0,1}kξ ∈  and returns it to 

2A . 
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As the adversary 2A  mounts the forging attack, if 2A  succeeds, it must 

have queried oracle 2H  on the form 1 1( )( ( , ) )I I J J J J pubZ t s T R H ID R P= + + +  ,  

2 ( )( )I I JZ t x T U= + +  and 3 I JZ t T= , where IT V=  is the outgoing message of 

Test  session by the simulator and JT  is the incoming message from the 

adversary 2A . To solve ( , )GDH U V , for all entries in 
2HL , C  randomly 

chooses one entry with the probability 
2

1
n

 and computes 

2 2 3( ))I JZ Z x T U Z= − + −                         (23) 

It is easy to verify that the equation 2 ( , )Z cdh U V=  holds. The advantage of 

C  solving GDH problem with the advantage 

22
0 1 2

1( ) ( )GDHAdv k Adv k
n n n

≥C A .                       (24) 

Then ( )GDHAdv kC  is non-negligible since we assume that 2 ( )Adv kA  is non-

negligible. This contradicts the GDH assumption. 

CASE 1.1.2: 

C  answers 1( , )i iH ID R , ( )RevealPartialPrivateKey i , 

,( )t
i jRevealEphemeralKey ∏ , RevealMasterKey , ,( )t

i jRevealSessionKey ∏  and 

,( )t
i jTest ∏  as he does in CASE 3.1.3 of Lemma 3. He also answers other queries 

as follows. 

( )Create i : C  simulates the oracle in the same way as that of CASE 1.1.1 

except for i I= . If i I= , C  chooses two random numbers *
i nr Z∈ , computes  

i iR r P= , 1( , )i i ih H ID R= , i i is r h x= + , iP V=  and stores ( , , , ,i i i iID s R P⊥ )in 

CL . Otherwise, C  chooses two random numbers *,i i nr x Z∈ , computes  

i iR r P= , 1( , )i i ih H ID R= , i i is r h x= + , i iP x P=  and stores ( , , , ,i i i i iID s R x P ) in 

CL . 

2 1 2 3( , , , , , , , )i j i jH ID ID T T Z Z Z h : C  simulates the oracle in the same way as 

that of CASE 1.1.1 except for the form ( 1 2 3, , , , , ,I J I JID ID T T Z Z Z ) and 

( 1 2 3, , , , , ,J I J IID ID T T Z Z Z ). C  responds to these queries in the following way: 
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 If  ( 1 2 3, , , , , , ,I J I JID ID T T Z Z Z h ) or ( 1 2 3, , , , , , ,J I J IID ID T T Z Z Z h ) is in 

2HL , C  responds with the stored value h . 

 Otherwise, C  looks up the table SL  for entry ( , , , ,*i j i jID ID T T ). If 

there is no such entry, C  choose a random number {0,1}kh∈  and 

stores the new entry ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z h ) in 
2HL . Otherwise, C  

compute 2 2 ( )i j j j iZ Z t T P t P= − + − . Then C  checks whether 2Z  is 

correct by checking whether the oracle ddhpO  outputs 1 when the tuple 

( 1, ,i jP P Z ) is inputted. C  also checks whether 1Z  and 3Z  are equal by 

checking if the equations 1 1( )( ( , ) )i i j j j j pubZ t s T R H ID R P= + + +  and 

3 i jZ t T=  hold separately. If 1Z , 2Z  and 3Z  are correct, C  stores the 

tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL , where the value sk  comes 

from SL . Otherwise, C  chooses a random number {0,1}ksk∈  and 

stores the tuple ( 1 2 3, , , , , , ,i j i jID ID T T Z Z Z sk ) into 
2HL . 

( )RevealSecretValue i : : C  simulates the oracle in the same way as that of 

CASE 1.1.1 except for i I= . If i I= , C  stops the simulation.  

,( , )s
i jSend m∏ : C  simulates the oracle in the same way as that of CASE 1.1 

except for the following queries:  

 If , ,
s S
i j I J∏ = ∏ , C  chooses i nt Z∈  and returns i iT t P=  to 1A . 

 If i I=  and j J= (the case that i J=  and j I=  could be deal with 

similarly). 

 C  chooses i nt Z∈  and returns i iT t P=  to 1A .  

C  looks up the list 
2HL  for entry ( , , , ,*,*,*,*i j i jID ID T T ) (If ,

s
i j∏  is 

responder session, C  will look up for ( , , , ,*,*,*,*j i j iID ID T T )). If there 

is no such entry, C  choose a random number {0,1}ksk ∈  and stores the 

new entry ( , , , ,i j i jID ID T T sk ) in SL . Otherwise, C  computes 

2 2 ( )i j j j iZ Z t T P t P= − + − . Then C  checks whether 2Z  is correct by 

checking whether the oracle ddhpO  outputs 1 when the tuple ( 1, ,i jP P Z ) is 

inputted. C  also checks whether 2Z  and 3Z  are equal by checking if 
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the equations 1 1( )( ( , ) )i i j j j j pubZ t s T R H ID R P= + + +  and 3 i jZ t T=  hold 

separately. If all of the equations are equal, C  stores ( , , , ,i j i jID ID T T h ) 

into SL , where h  comes from 
2HL . Otherwise, C  chooses a random 

number sk  and stores ( , , , ,i j i jID ID T T sk ) into SL . 

As the adversary 2A  mounts the forging attack, if 2A  succeeds, it must 

have queried oracle 2H  on the form 1 1( )( ( , ) )I I J J J J pubZ t s T R H ID R P= + + +  ,  

2 ( )( )I I JZ t x T U= + +  and 3 I JZ t T= , where IP U= , JP V=  and JT  is the 

incoming message from the adversary 2A . To solve ( , )GDH U V , for all entries 

in 
2HL , C  randomly chooses one entry with the probability 

2

1
n

 and proceeds 

with following steps: 

C  computes 

2 2 ( ) ( , )I J JZ Z t T U t V cdh U V= − + − =                   (25) 

The advantage of C  solving GDH problem with the advantage 

22
0 1 2

1( ) ( )GDHAdv k Adv k
n n n

≥C A . 

Then ( )GDHAdv kC  is non-negligible since we assume that 2 ( )Adv kA  is non-

negligible. This contradicts the GDH assumption. 

 The analysis of CASE 1.2: 

In this case, the Test  session ,
S
I J∏  has a matching session owned by 

another honest party J . According to Definition 1, the adversary 1A  has four 

ways to mount the attacks.  

CASE 1.2.1. The adversary 1A  makes ephemeral key query to both the 

Test  session and the matching session of the Test  session (The adversary does 

not reveal their corresponding partial private key). In this case, the proof is 

identical to that of CASE 1.1.2. To save space, we omit the details. 

CASE 1.2.2. The adversary 1A  makes queries to the partial private key of 

the owner of Test  session and its peer's ephemeral private key. In this case, the 

proof is identical to that of CASE 1.1.1. To save space, we omit the details. 

CASE 1.2.3. The adversary 1A  makes queries to the ephemeral private key 

of the owner of Test  session and its peer's partial private key. In this case, the 

proof is identical to that of CASE 1.1.1. To save space, we omit the details. 
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CASE 1.2.4. The adversary 1A  learns the partial private key of both the 

owner of Test  session and its peer. (The adversary does not reveal their 

corresponding ephemeral private key). In this case, the proof is identical to that of 

CASE 1.2.4 of the above lemma. To save space, we omit the details. 

We could conclude that the advantage of a type 2 adversary against our 

protocol is negligible if the GCDH problem is intractable. 

From the above three lemmas, we can get the following theorem. 

Theorem 1. Our protocol is a secure CLAKA protocol in the eCK model 

under the GDH assumption. 

5. Comparison with previous protocols 

Let mBR and eCK denote the modified Bellare-Rogaway model [17] and the 

extended Canetti–Krawczyk (eCK) model [18] separately. For the convenience of 

evaluating the computational cost, we define some notations as follows. 

 mulT : The time of executing a scalar multiplication operation of point. 

 addT : The time of executing an addition operation of point. 

 invT : The time of executing a modular invasion operation. 

 hT : The time of executing a one-way hash function. 

We will compare the efficiency of our protocol with five CLAKA protocols 

without pairings, i.e. Geng et al.’s protocol [12], Hou et al.’s protocol [13], Yang 

et al.’s protocol[14], and He et al.’s protocols[15,16]. Table 1 shows the 

comparison between pairing-free CLAKA protocols in terms of efficiency, 

security model and underlying hardness assumptions. 

Since the scalar multiplication operation of point is more complicated than the 

addition operation of points, modular invasion operation and the hash function 

operation, then our protocol has better performance than Geng et al.’s protocol 

[12], Hou et al.’s protocol [13] and He et al’s protocol[15]. Moreover, Geng et 

al.’s protocol [12], Hou et al.’s protocol [13] and He et al’s protocol[15] are not 

secure against type 1 adversary. Then our protocol has advantage in both the 

performance and the security over Geng et al.’s protocol [12], Hou et al.’s 

protocol [13] and He et al’s protocol [15]. It is well known that the eCK model is 

much superior to the mBR model. Then Yang et al.’s protocol [15] and our 

protocol has advantage in security to He et al.’s protocol [16]. At the same time, 
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our protocol also has better performance than He et al.’s protocol [16]. Yang et 

al.’s proposed the first pairing-free CLAKA protocol, which is provably secure in 

the eCK model. However, in Yang et al.’s protocol, the user has to verify the 

validity of public keys. This does not only increase the burden of the user, but also 

reverse the thought of CLPKC. From Table 1, we know our protocol has much 

better performance than Yang et al.’s protocol [15]. We conclude that our protocol 

is more suitable for practical applications. 

Table 1: Comparisons among different protocols 

 Computational 

cost 

Security 

model 

Assumption Message 

exchange 

Geng et al.’s 

protocol [12] 
7 2mul hT T+  mBR GDH 2 

Hou et al.’s 

protocol [13] 
6 2mul hT T+  mBR GDH 2 

Yang et al.’s 

protocol [14] 
9 2mul hT T+  eCK GDH 2 

He et al’s 

protocol[15] 
5 3

2
mul add

inv h

T T
T T

+
+ +

 
mBR GDH 3 

He et al’s 

protocol[16] 
5 4

2
mul add

h

T T
T
+

+
 

mBR GDH 2 

Our protocol 5 3
2

mul add

h

T T
T
+

+
 

eCK GDH 2 

6. Conclusion 

The certificateless public key cryptography is receiving significant attention 

because it is a new paradigm that simplifies the public key cryptography. 

Recently, several pairing-free CLAKA have been proposed. In this paper, we 

proposed a more efficient CLAKA protocol without pairings and proved its 

security in the eCK model under the GDH assumption. The proposed protocol has 

the best performance among the related protocols. 
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