
Purdue University
Purdue e-Pubs

Cyber Center Publications Cyber Center

9-2014

An Efficient Certificateless Encryption for Secure
Data Sharing in Public Clouds
Seung-Hyun Seo
Purdue Unviersity, West Lafayette, IN, USA, seo29@purdue.edu

Mohamed Yoosuf Mohamed Nabeel
Purdue University

Xiaoyu Ding
Purdue University, West Lafayette, IN, USA, ding55@purdue.edu

Elisa Bertino
Purdue University, bertino@cs.purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ccpubs

Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences
Commons, and the Physical Sciences and Mathematics Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Seo, Seung-Hyun; Mohamed Nabeel, Mohamed Yoosuf; Ding, Xiaoyu; and Bertino, Elisa, "An Efficient Certificateless Encryption for
Secure Data Sharing in Public Clouds" (2014). Cyber Center Publications. Paper 621.
http://dx.doi.org/10.1109/TKDE.2013.138

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cc?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=docs.lib.purdue.edu%2Fccpubs%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014 2107

An Efficient Certificateless Encryption for
Secure Data Sharing in Public Clouds

Seung-Hyun Seo, Member, IEEE, Mohamed Nabeel, Member, IEEE,
Xiaoyu Ding, Student Member, IEEE, and Elisa Bertino, Fellow, IEEE

Abstract—We propose a mediated certificateless encryption scheme without pairing operations for securely sharing sensitive
information in public clouds. Mediated certificateless public key encryption (mCL-PKE) solves the key escrow problem in identity
based encryption and certificate revocation problem in public key cryptography. However, existing mCL-PKE schemes are either
inefficient because of the use of expensive pairing operations or vulnerable against partial decryption attacks. In order to address the
performance and security issues, in this paper, we first propose a mCL-PKE scheme without using pairing operations. We apply our
mCL-PKE scheme to construct a practical solution to the problem of sharing sensitive information in public clouds. The cloud is
employed as a secure storage as well as a key generation center. In our system, the data owner encrypts the sensitive data using the
cloud generated users’ public keys based on its access control policies and uploads the encrypted data to the cloud. Upon successful
authorization, the cloud partially decrypts the encrypted data for the users. The users subsequently fully decrypt the partially
decrypted data using their private keys. The confidentiality of the content and the keys is preserved with respect to the cloud, because
the cloud cannot fully decrypt the information. We also propose an extension to the above approach to improve the efficiency of
encryption at the data owner. We implement our mCL-PKE scheme and the overall cloud based system, and evaluate its security and
performance. Our results show that our schemes are efficient and practical.

Index Terms—Cloud computing, certificateless cryptography, confidentiality, access control

1 INTRODUCTION

DUE TO the benefits of public cloud storage, organiza-
tions have been adopting public cloud services such as

Microsoft Skydrive [18] and Dropbox [11] to manage their
data. However, for the widespread adoption of cloud stor-
age services, the public cloud storage model should solve
the critical issue of data confidentiality. That is, shared sen-
sitive data must be strongly secured from unauthorized
accesses. In order to assure confidentiality of sensitive data
stored in public clouds, a commonly adopted approach
is to encrypt the data before uploading it to the cloud.
Since the cloud does not know the keys used to encrypt
the data, the confidentiality of the data from the cloud is
assured. However, as many organizations are required to
enforce fine-grained access control to the data, the encryp-
tion mechanism should also be able to support fine-grained
encryption based access control. As shown in Fig. 1, a typi-
cal approach used to support fine-grained encryption based
access control is to encrypt different sets of data items to
which the same access control policy applies with different
symmetric keys and give users either the relevant keys [4],
[19] or the ability to derive the keys [20], [23]. Even though

• The authors are with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907 USA.
E-mail: {seo29, nabeel, ding55, bertino}@purdue.edu.

Manuscript received 21 Dec. 2012; revised 19 Apr. 2013; accepted
3 July 2013. Date of publication 4 Aug. 2013; date of current version
31 July 2014.
Recommended for acceptance by E. Ferrari.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.138

the key derivation-based approaches reduce the number of
keys to be managed, symmetric key based mechanisms in
general have the problem of high costs for key manage-
ment. In order to reduce the overhead of key management,
an alternative is to use a public key cryptosystem. However,
a traditional public key cryptosystem requires a trusted
Certificate Authority (CA) to issue digital certificates that
bind users to their public keys. Because the CA has to
generate its own signature on each user’s public key and
manage each user’s certificate, the overall certificate man-
agement is very expensive and complex. To address such
shortcoming, Identity-Based Public Key Cryptosystem (IB-
PKC) was introduced, but it suffers from the key escrow
problem as the key generation server learns the private keys
of all users. Recently, Attribute Based Encryption (ABE)
has been proposed that allows one to encrypt each data
item based on the access control policy applicable to the
data. However, in addition to the key escrow problem,
ABE has the revocation problem as the private keys given
to existing users should be updated whenever a user is
revoked. In order to address the key escrow problem in
IB-PKC, Al-Riyami and Paterson introduced a new cryp-
tosystem called Certificateless Public Key Cryptography
(CL-PKC) [2].

Lei et al. [16] then proposed the CL-PRE (Certificateless
Proxy Re-Encryption) scheme for secure data sharing in
public cloud environments. Although their scheme is based
on CL-PKC to solve the key escrow problem and certificate
management, it relies on pairing operations. Despite recent
advances in implementation techniques, the computational
costs required for pairing are still considerably high

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2108 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

Fig. 1. Symmetric key based fine-grained encryption.

compared to the costs of standard operations such as mod-
ular exponentiation in finite fields. Moreover, their scheme
only achieves Chosen Plaintext Attack (CPA) security. As
pointed out in [3], CPA security is often not sufficient to
guarantee security in general protocol settings. For exam-
ple, CPA is not sufficient for many applications such as
encrypted email forwarding and secure data sharing that
require security against Chosen Ciphertext Attack (CCA).

In this paper, we address the shortcomings of such
previous approaches and propose a novel mediated
Certificateless Public Key Encryption (mCL-PKE) scheme
that does not utilize pairing operations. Since most CL-PKC
schemes are based on bilinear pairings, they are computa-
tionally expensive. Our scheme reduces the computational
overhead by using a pairing-free approach. Further, the
computation costs for decryption at the users are reduced
as a semi-trusted security mediator partially decrypts the
encrypted data before the users decrypt. The security
mediator acts as a policy enforcement point as well and
supports instantaneous revocation of compromised or mali-
cious users. In Section 5, we show that our scheme is
much more efficient than the pairing based scheme pro-
posed by Lei et al. [16]. Moreover, compared to symmetric
key based mechanisms, our approach can efficiently man-
age keys and user revocations. In symmetric key systems,
users are required to manage a number of keys equal to
at least the logarithm of the number of users, whereas in
our approach, each user only needs to maintain its pub-
lic/private key pair. Further, revocation of users in a typical
symmetric key system requires updating the private keys
given to all the users in the group, whereas in our approach
private keys of the users are not required to be changed.

Based on our mCL-PKE scheme, we propose a novel
approach to assure the confidentiality of data stored in
public clouds while enforcing access control requirements.
There are five entities in our system: the data owner, users,
the Security Mediator (SEM), the Key Generation Center
(KGC), and the storage service (see Fig. 2 for a high-
level architecture of our approach). The SEM, KGC, and

Fig. 2. CL-PKE based fine-grained encryption.

Fig. 3. CL-PKE with intermediate keys based fine-grained encryption.

the storage service are semi-trusted and reside in a public
cloud. Although they are not trusted for the confidentiality
of the data and the keys, they are trusted for executing the
protocols correctly. According to the access control policy,
the data owner encrypts a symmetric data encryption key
using mCL-PKE scheme and encrypts the data items using
symmetric encryption algorithm. Then, data owner uploads
encrypted data items and the encrypted data encryption
key to the cloud. Notice that a major advantage of our
approach compared to conventional approaches is that the
KGC, which is the entity in charge of generating the keys,
resides in a public cloud. Thus, it simplifies a task of key
management for organizations.

In a conventional CL-PKE scheme, user’s complete pri-
vate key consists of a secret value chosen by the user and
a partial private key generated by the KGC. Unlike the CL-
PKE scheme, the partial private key is securely given to the
SEM, and the user keeps only the secret value as its own
private key in the mCL-PKE scheme. So, each user’s access
request goes through the SEM which checks whether the
user is revoked before it partially decrypts the encrypted
data using the partial private key. It does not suffer from the
key escrow problem, because the user’s own private key is
not revealed to any party. It should be noted that neither
the KGC nor the SEM can decrypt the encrypted data for
specific users. Moreover, since each access request is medi-
ated through the SEM, our approach supports immediate
revocation of compromised users.

It is important to notice that if one directly applies our
basic mCL-PKE scheme to cloud computing and if many
users are authorized to access the same data, the encryp-
tion costs at the data owner can become quite high. In such
case, the data owner has to encrypt the same data encryp-
tion key multiple times, once for each user, using the users’
public keys. To address this shortcoming, we introduce an
extension of the basic mCL-PKE scheme. Our extended
mCL-PKE scheme requires the data owner to encrypt the
data encryption key only once and to provide some addi-
tional information to the cloud so that authorized users
can decrypt the content using their private keys. Fig. 3
gives a high-level view of the extension. The idea is similar
to Proxy Re-Encryption (PRE) by which the data encryp-
tion key is encrypted using the data owner’s public key
and later can be decrypted by different private keys after
some transformation by the cloud which acts as the proxy.
However, in our extension, the cloud simply acts as stor-
age and does not perform any transformation. Instead, the
user is able to decrypt using its own private key and an
intermediate key issued by the data owner.

SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2109

Our main contributions are summarized as follows:

• We propose a new mCL-PKE scheme. We present
the formal security model and provide the secu-
rity proof. Since our mCL-PKE scheme does not
depend on the pairing-based operation, it reduces
the computational overhead. Moreover, we intro-
duce an extension of mCL-PKE scheme to efficiently
encrypt data for multiple users.

• We propose a novel approach to securely share data
in a public cloud. Unlike conventional approaches,
the KGC only needs to be semi-trusted and can
reside in the public cloud, because our mCL-
PKE scheme does not suffer from the key escrow
problem.

• We have implemented our mCL-PKE scheme and the
extension to evaluate the performance. The experi-
mental result shows that our mCL-PKE scheme can
be realistically applied in a public cloud for secure
data sharing.

The remainder of this paper is organized as follows:
Section 2 introduces our mCL-PKE scheme without pairing,
and presents a security model and security proof. Section 3
proposes an approach for secure sharing data in public
clouds. Section 4 proposes the extended scheme for secure
cloud storage. Section 5 shows the performance evaluation.
Section 6 discusses related works and Section 7 concludes
the paper.

2 MCL-PKE SCHEME WITHOUT PAIRINGS

In this section, we present the mediated Certificateless
Public Key Encryption (mCL-PKE) scheme and its security
model. Then, we prove the formal security of mCL-PKE
scheme.

2.1 Definitions
Definition 1. The mediated certificateless public key

encryption scheme is a 7-tuple mCL-PKE=(SetUp,
SetPrivateKey, SetPublicKey, SEM-KeyExtract, Encrypt,
SEM-Decrypt, USER-Decrypt). The description of each
algorithm is as follows.

• SetUp: It takes a security parameter k as input and
returns system parameters params and a secret master
key mk. We assume that params are publicly available
to all users.

• SetPrivateKey: It takes params and ID as input and
outputs the user’s (the owner of ID) secret value SKID.
Each user runs this algorithm.

• SetPublicKey: It takes params and a user’s secret value
SKID as input and returns the user’s public key PKID.

• SEM-KeyExtract: Each user registers its own identity
and public key to the KGC. After the KGC verifies the
user’s knowledge of the private key corresponding to its
public key, the KGC takes params, mk and user identity
ID as input and generates a SEM-key corresponding to ID
required during decryption time by the SEM. The KGC
runs this algorithm for each user, and we assume that the
SEM-key is distributed securely to the SEM.

• Encrypt: It takes params, a user’s identity ID, a user’s
public key PKID, and a message M as inputs and returns

either a ciphertext CID or a special symbol ⊥ meaning an
encryption failure. Any entity can run this algorithm.

• SEM-Decrypt: It takes params, a SEM-key, and a
ciphertext CID as input, and then returns either a partial
decrypted message C′

ID for the user or a special symbol ⊥
meaning an decryption failure. Only the SEM runs this
algorithm using SEM-key.

• USER-Decrypt: It takes params, a user’s private key
SKID, the partial decrypted message C′

ID by the SEM as
input and returns either a fully decrypted message M or
a special symbol ⊥ meaning an decryption failure. Only
the user can run this algorithm using its own private key
and the partial decrypted message by the SEM.

Definition 2. The Computational Diffie-Hellman (CDH)
problem is defined as follows: Let p and q be primes such
that q|(p − 1). Let g be a generator of Z

∗
p. Let A be an

adversary. A tries to solve the following problem: Given
(g, ga, gb) for uniformly chosen a, b, c ∈ Z

∗
q , compute k = gab.

We define A’s advantage in solving the CDH problem by
Adv(A)=Pr[A(g, ga, gb) = gab].

2.2 Security Model of Mediated CL-PKE
In general, in order to construct the security model of a
mediated CL-PKE scheme [9], we must consider two types
of adversaries: Type I adversary AI and Type II adver-
sary AII. A type I adversary AI means a normal third
party attacker which does not know the master key, but
can replace public keys of users. That is, AI does not have
access to the master key, but is able to choose any public
key to be used for the challenge ciphertext. A type II adver-
sary AII is a malicious KGC which has the master key, but
is unable to replace public keys of users. That is, AII can
have access to the master key, but can use only a registered
public key for the challenge ciphertext. We do not need to
consider a malicious SEM explicitly, because it is weaker
than AII.

In order to describe the security of the mediated CL-PKE
scheme, we consider a formal game where the adversary
A interacting with their Challenger as follows. The adver-
sary A can be either AI or AII. The Challenger should
keep a history of query-answer while interacting with the
adversaries.

A Formal Game for an adversary A
• SetUp: The Challenger runs SetUp by taking a

security parameter k as input in order to return sys-
tem parameters params and a master key mk. The
Challenger gives params to the adversary A and
keeps mk secret.

• Phase 1: The adversary A can adaptively make var-
ious queries and the Challenger can respond to the
queries as follows:

– SEM-key for ID Extraction: The Challenger
runs SEM-KeyExtract to generate the SEM-key
d0 using an identity ID and params as the
input.

– Public Key Request for ID: The Challenger runs
SetPrivateKey to generate SKID, and then runs
SetPublicKey to generate the public key PKID

2110 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

using ID, SKID and params as the input. It
returns PKID to A.

– Public Key Replacement: The adversary A can
repeatedly replace the public key for any iden-
tity with any value of its choice. The SEM-
key is also updated if the Challenger bundles
the public key with the identity for SEM-
key creation. The replaced public key will be
used in the rest of the game unless replaced
again.

– Private Key Extraction for ID: The Challenger
runs SetPrivateKey to generate SKID using ID
as the input. It returns SKID to A. However,
if the public key of ID has been already
replaced by the adversary A, this query is
disallowed.

– SEM-Decryption: The adversary provides
an identity ID and a ciphertext CID. The
Challenger responds with the partial decryp-
tion C′

ID under the SEM-key d0 that is
associated with the identity ID.

– USER-Decryption: The adversary provides
an identity ID and a ciphertext C′

ID. The
Challenger responds with the decryption of
C′

ID under the private key SKID that is asso-
ciated with the identity ID.

• Challenge Phase: Once A determines that Phase 1
is over, it outputs a challenge identity ID∗ and a
pair of plaintext (M0, M1) with an equal length. In
case that A is a AI, it chooses a public key of iden-
tity ID∗, PKID∗ by using the Public Key Replacement
query. For the identity ID∗, AI cannot ask both the
SEM-Key Extraction query and Private Key Extraction
query. If A is a AII, the public key of identity ID∗
cannot be replaced. For the identity ID∗, AII can-
not ask Private Key Extraction query. The Challenger
picks β ∈R {0, 1} and creates a target ciphertext CID∗
which is the encryption of Mβ under the public key
of ID∗. In case of AI, the public key of ID∗ is PKID∗ .
Otherwise, the public key of ID∗ is the original one.
The Challenger returns CID∗ to A.

• Phase 2: A continues to issue more queries, but
it cannot issue both the SEM-Key Extraction query
and Private Key Extraction query for the ID∗. If
AI has requested the private key corresponding to
the public key PKID∗ , then it cannot make a SEM-
Decrypt query for CID∗ . On the other hand, if AII
has requested the SEM-key corresponding to ID∗, it
cannot make a USER-Decrypt query for C′

ID∗ where
C′

ID∗ is the result of SEM-Decrypt query for CID∗ .
• Guess: A outputs its guess bit β ′ ∈R {0, 1}.
In case of β ′ = β, A wins. We define A〉’s advantage

in the above game by 2 ×
∣
∣
∣Pr[β ′ = β] − 1

2

∣
∣
∣ , i ∈ {I, II}. A

mediated CL-PKE scheme is IND-CCA secure if there is no
probabilistic polynomial-time adversary in the above games
with non-negligible advantage in the security parameter
k. The security of our mediated certificateless public key
encryption scheme is based on the assumed intractability
of the CDH problem.

2.3 Basic Algorithm
• SetUp:

KGC takes as input a security parameter k to gen-
erate two primes p and q such that q|p − 1. It then
performs the following steps:

1) Pick a generator g of Z∗
p with order q.

2) Select x ∈ Z
∗
q uniformly at random and com-

pute y = gx.
3) Choose cryptographic hash functions

H1:{0, 1}∗×Z
∗
p → Z

∗
q , H2:{0, 1}∗×Z

∗
p×Z

∗
p → Z

∗
q ,

H3:{0, 1}∗ → Z
∗
q , H4:Z∗

p → {0, 1}n+k0 ,
H5:Z∗

p → {0, 1}n+k0 , and H6:Z∗
p × {0, 1}n+k0 ×

Z
∗
p × {0, 1}n+k0 → Z

∗
q , where n, k0 are the

bit-length of a plaintext and a random bit
string, respectively.

The system parameters params are (p, q, n, k0, g,

y, H1, H2, H3, H4, H5, H6). The master key of KGC
is x. The plaintext space is M = {0, 1}n and the
ciphertext space is C = Z

∗
p × {0, 1}n+k0 × Z

∗
q .

• SetPrivateKey:
The entity A chooses zA ∈ Z

∗
q uniformly at random

as the private key of A.
• SetPublicKey:

The entity A computes UA = gzA .
• SEM-KeyExtract:

KGC selects s0, s1 ∈ Z
∗
q and computes w0 = gs0 ,

w1 = gs1 , d0 = s0 + xH1 (IDA, w0), d1 = s1 +
xH2 (IDA, w0, w1). KGC sets d0 as the SEM-key for
A. After A proves the knowledge of the secret value
zA such that UA = gzA , KGC sets (UA, w0, w1, d1) as
the A’s public keys.

• Encrypt:
To encrypt a plaintext M ∈ {0, 1}n for the entity A
with identity IDA and public keys (UA, w0, w1, d1), it
performs the following steps:

1) Check whether gd1 = w1 · yH2(IDA,w0,w1).
If the checking result is not valid, encryption
algorithm must be aborted.

2) Choose σ ∈ {0, 1}k0 and
compute r = H3 (M, σ, IDA, UA).

3) Compute C1 = gr.
4) Compute C2 = (M||σ) ⊕ H4

(

UA
r) ⊕ H5

(

wr
0·

yH1(IDA,w0)·r).
5) Compute C3

C3 = H6
(

UA, (M||σ) ⊕ H4
(

Ur
A

)

, C1, C2
)

.
Output the ciphertext C = (C1, C2, C3).
In Step 1, an entity who wants to encrypt a message
can verify the validity of receiver’s public key. From
Step 2 to Step 5 are the process of encryption.

• SEM-Decrypt:
Given the ciphertext C = (C1, C2, C3), a IDA, A’s pub-
lic keys (UA, w0, w1, d1), SEM performs the following
steps using the SEM-key d0:

1) Check that IDA is a legitimate user whose key
has not been revoked.

2) Compute C1
d0 .

C1
d0 = gr·d0 = gr·(s0+xH1(IDA,w0))

= gr·s0 · gr·xH1(IDA,w0) = w0
r · yr·H1(IDA,w0).

SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2111

3) Compute C2 ⊕ H5

(

Cd0
1

)

.

C2 ⊕ H5

(

Cd0
1

)

= (M||σ) ⊕ H4
(

UA
r) ⊕ H5

(

wr
0 · yH1(IDA,w0)·r) ⊕

H5

(

Cd0
1

)

= (M||σ) ⊕ H4
(

UA
r) ⊕

H5
(

wr
0 · yH1(IDA,w0)·r) ⊕ H5

(

wr
0 · yH1(IDA,w0)·r) =

(M||σ) ⊕ H4
(

UA
r).

4) Check whether C3 =
H6

(

UA, C2 ⊕ H5

(

Cd0
1

)

, C1, C2

)

.

If it is valid, SEM sends C1 and C′
2 = (M||σ) ⊕

H4(UA
r) to A. Otherwise, abort SEM-Decrypt.

In Step 1, SEM ascertains whether the user’s identi-
fication information is valid. In Step 2 SEM performs
the partial decryption of the ciphertext C using SEM-
key. In Step 3, SEM computes token information that
is needed for complete decryption in USER-Decrypt
algorithm. After SEM finishes executing the partial
decryption and the token generation, it performs the
validity checking for the ciphertext C in Step 4. In
order to prevent from the partial decryption attack,
Step 4 must be required.

• USER-Decrypt:
Given C1 and C′

2 from the SEM, A performs the
following steps using his private key zA:

1) Compute C1
zA

C1
zA = gr·zA = gzA·r = UA

r

2) Parse M′ and σ ′ from M′||σ ′ = H4
(

C1
zA

) ⊕ C′
2

3) Compute r′ = H3
(

M′, σ ′, IDA, UA
)

and gr′

4) Check whether gr′ = C1
If the verification succeeds then return the fully
decrypted message M′ = M. Otherwise, the USER-
Decrypt must be aborted. In Step 1 and Step 2, user
A fully decrypts C′

2 using own private key zA. After
A computes the value for a validity checking in Step
3, A ascertains whether the decryption is successful
in Step 4.

2.4 Security Analysis
The security of our mCL-PKE scheme is based on the
assumed intractability of the CDH problem. The following
theorem summaries the security of our scheme.

Theorem 1. Our mediated certificateless public key encryption
scheme mCL-PKE is IND-CCA secure against Type I and
Type II adversaries in the random oracle model, under the
assumption that the CDH problem is intractable.

In order to prove the Theorem 1, we have to consider
both kinds of adversaries (Type I and Type II) to estab-
lish the chosen ciphertext security of the above mCL-PKE
scheme. Thus, the Theorem 1 is proved based on Lemma 1
and 2. We adopt the security proof techniques from [25].

Lemma 1. Suppose that the hash functions Hi(i = 1, 2,

3, 4, 5, 6) are random oracles and there exists a Type I
IND-CCA adversary AI against the mCL-PKE scheme with
advantage ε when running in time t, making qpub public
key requests queries, qsem SEM-key extraction queries, qpri
private key extraction queries, qpubR public key replacement
queries, qDS SEM decryption queries, qDU USER decryption
queries and qi random oracle queries to Hi (1 ≤ i ≤ 6). Then,

for any (0 ≤ δ ≤ ε), there exists either an algorithm B to
solve the CDH problem with advantage ε′ ≥ 1

q5
Pr

[

AskH∗
5
] ≥

1
q5

(

ε(1−δ)
qpubR

e
(

qsem+qpri+1
) − q6

2k0
− q4

2k0
− q3

2k0
− qDS +qDU

q

)

and run-

ning in time T = max
{

t + (q1 + q2 + q3 + q4 + q5 + q6)O(1)+
(

qpub + qpubR + qDS + qDU

) (

5texp + O(1)
)

, cq2t/ε
}

, where
texp denotes the time for computing exponentiation in Z

∗
p,

and c is constant greater than 120,686 assuming that
ε ≥ 10

(

qsem + 1
) (

qsem + q2
)

/q, or an attacker who breaks
the EUF-CMA(existential unforgeability under adaptive
chosen message attack) security of the Schnorr signature with
advantage δ within time T.

Proof. In order to prove Lemma 1, we assume that the
Schnorr signature scheme is EUF-CMA secure with
advantage δ (0 ≤ δ ≤ ε) within time T. Let AI
be a Type I IND-CCA adversary against the mCL-PKE
scheme. By using AI , we show how to construct an
algorithm B to solve the CDH problem. Suppose that
B is given a random instance

(

g, ga, gb) of the CDH
problem. B sets y = ga and simulates the SetUp algo-
rithm of the mCL-PKE scheme by supplying AI with
(p, q, n, k0, g, y, H1, H2, H3, H4, H5, H6) as public param-
eters, where H1, H2, H3, H4, H5, H6 are random oracles
controlled by B. B can simulate the Challenger’s execu-
tion of each phase of the formal Game. AI may make
queries to random oracles Hi(1 ≤ i ≤ 6) at any time and
B responds as follows:

H1 queries:Bmaintains a H1 list of tuples 〈(IDi, w0i), e0i〉.
On receiving such a query on (IDi, w0i), B first check if
there is a tuple 〈(IDi, w0i), e0i〉 on the H1 list. If there is,
then B returns e0i. Otherwise, B chooses e0i ∈R Z

∗
q , adds

〈(IDi, w0i), e0i〉 to the H1 list and returns e0i.
H2 queries: B maintains a H2 list of tuples 〈(IDi, w0i,

w1i), e1i〉. On receiving such a query on (IDi, w0i, w1i), B
first checks if there is a tuple 〈(IDi, w0i, w1i), e1i〉 on the
H2 list. If there is, return e1i. Otherwise, B picks e1i ∈R Z

∗
q ,

adds 〈(IDi, w0i, w1i), e1i〉 to the H2 list and returns e1i.
H3 queries: B maintains a H3 list of tuples 〈(Mi, σi, IDi,

Ui), ri〉. On receiving such a query on (Mi, σi, IDi, Ui),
B first checks if there is a tuple 〈(Mi, σi, IDi,

Ui), ri〉 on the H3 list. If there is, return ri. Otherwise,
B picks ri ∈R Z

∗
q and returns ri.

H4 queries: B maintains a H4 list of tuples 〈A, h1〉.
On receiving such a query on A, B first checks if there
is a tuple 〈A, h1〉 on the H4 list. If there is, return h1.
Otherwise, B picks h1 ∈R {0, 1}n+k0 , adds 〈A, h1〉 to the
H4 list and returns h1.

H5 queries: B maintains a H5 list of tuples 〈B, h2〉.
On receiving such a query on A, B first checks if there
is a tuple 〈B, h2〉 on the H5 list. If there is, return h2.
Otherwise, B picks h2 ∈R {0, 1}n+k0 , adds 〈B, h2〉 to the
H5 list and returns h2.

H6 queries: B maintains a H6 list of tuples 〈(Ui, C,

D, E), h3〉. On receiving such a query on (Ui, C, D, E), B
first checks if there is a tuple 〈(Ui, C, D, E), h3〉 on the
H6 list. If there is, return h3. Otherwise, B picks h3 ∈R
{0, 1}n+k0 and returns h3.

Phase 1: AI launches Phase 1 of its attack by making
a series of requests, each of which is either a Public Key
Request, a SEM-Key Extraction, a Private Key Extraction,

2112 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

a Public Key Replacement, a SEM-Decryption or a USER-
Decryption query.
Public Key Request: B maintains a public key list

〈IDi, (Ui, w0i, w1i, d1i), coin〉. On receiving such a query on
IDi, B responds as follows:

1) If there is a tuple 〈IDi, (Ui, w0i, w1i, d1i), coin〉 on the
list, B returns (Ui, w0i, w1i, d1i).

2) Otherwise, B picks coin ∈ {0, 1} with Pr[coin = 0] =
γ (γ will be determined in the Guess).

• In case of coin = 0, choose d0i, d1i, e0i, e1i,

zi ∈R Z
∗
q , compute w0i = gd0i y−e0i , w1i =

gd1i y−e1i , Ui = gzi . (Check the H1 list and if
there is a tuple 〈(IDi, w0i), e0〉, select again
d0i, e0i ∈R Z

∗
q ; Check the H2 list and if

there is a tuple 〈(IDi, w0i, w1i), e1〉, select
again d1i, e1i ∈R Z

∗
q .) Add 〈(IDi, w0i), e0i〉

to the H1 list, 〈(IDi, w0i, w1i), e1i〉 to the H2
list, 〈IDi, d0i, (w0i, w1i, d1i)〉 to the partial key
list, 〈IDi, zi〉 to the private key list and
〈IDi, (Ui, w0i, w1i, d1i)〉 to the public key list.
Return (Ui, w0i, w1i, d1i) as answer.

• In case of coin = 1, choose s0i, d1i, e1i, zi ∈R Z
∗
q ,

compute w0i = gs0i , w1i = gd1i y−e1i , Ui = gzi .

(Check the H2 list and if there is a tuple
〈(IDi, w0i, w1i), e1〉, select again d1i, e1i ∈R Z

∗
q .)

Add 〈(IDi, w0i, w1i), e1i〉 to the H2 list and
〈IDi, (Ui, w0i, w1i, d1i), s0i, coin〉 to the public
key list. Return (Ui, w0i, w1i, d1i) as answer.

SEM-Key Extraction: B maintains a partial key list of
tuples 〈IDi, d0i, (w0i, w1i, d1i)〉. On receiving such a query on
IDi, B responds as follows:

1) If a tuple 〈IDi, d0i, (w0i, w1i, d1i)〉 exists on the list, B
returns d0i as the SEM-key and (w0i, w1i, d1i) as the
partial public key.

2) Otherwise, B runs the simulation algorithm for
public key request by using IDi as input.

• In case of coin = 0, B searches the partial
key list of the form 〈IDi, d0i, (w0i, w1i, d1i)〉 and
returns d0i as the SEM-key.

• In case of coin = 1, B aborts.

Private Key Extraction: B maintains a private key list
of tuples 〈IDi, zi〉. On receiving such a query on IDi, B
responds as follows:

1) If a tuple 〈IDi, zi〉 exists on the list, B returns zi as
the private key.

2) Otherwise, B runs the simulation algorithm for
public key request by using IDi as input.

• In case of coin = 0, B searches the partial key
list 〈IDi, zi〉 and returns zi as the private key.

• In case of coin = 1, B aborts.

Public Key Replacement: AI can replace the pub-
lic key of any user IDi, (Ui, w0i, w1i, d1i) with any
value

(

U′
i, w′

0i, w′
1i, d′

1i

)

of its choice. If
(

w′
0i, w′

1i, d′
1i

) =
(w0i, w1i, d1i) but it satisfies gd′

1i = w′
1i · yH2

(

IDi,w′
0i,w

′
1i

)

, B
aborts. Otherwise, B records the change.

SEM-Decryption queries: AI can request B to decrypt
partially ciphertext C for IDi. B searches the public key list
for a tuple 〈IDi, (Ui, w0i, w1i, d1i), coin〉. Then B responds as
follows:

1) If the public key has not been replaced and coin = 0,

• B searches the partial key list for a tuple
〈IDi, d0i, (w0i, w1i, d1i)〉.

• B computes C1
d0i and C2 ⊕ H5(C

d0i
1)

• B checks whether C3 = H6(Ui, C2 ⊕
H5(C

d0i
1), C1, C2). If it is valid, B returns C′

2 =
C2 ⊕ H5(C

d0i
1). Otherwise, B outputs ⊥.

2) Otherwise, B searches the H3 list for a tuple
〈(Mi, σi, IDi, Ui), ri〉, where C1 = gri ,
C2 = (Mi||σi)⊕H4

(

Ui
ri
)⊕H5

(

wri
0i · yH1(IDi,w0i)·ri

)

and
C3 = H6

(

Ui, (Mi||σi) ⊕ H4
(

Uri
i

)

, C1, C2
)

. B returns
the corresponding C′

2 = (Mi||σi) ⊕ H4(Ui
ri) if such a

tuple exists. Otherwise, B outputs ⊥.

USER-Decryption queries: This query should be per-
formed after SEM-Decryption query performing. AI can
request B to perform User-decryption for C1, C′

2. B searches
the public key list for a tuple 〈IDi, (Ui, w0i, w1i, d1i), coin〉.
Then B responds as follows:

1) If the public key has not been replaced and coin = 0,

• B searches private key list of tuples 〈IDi, zi〉.
• B computes C1

zi and H4(C1
zi).

• B parses M′ and σ ′ from M′||σ ′ = H4(C1
zi) ⊕

C′
2.

• B computes r′ = H3(M′||σ ′||IDi||Ui) and gr′ .
• B checks whether gr′ = C1. If gr′ = C1, it

returns M′ = M. Otherwise, B outputs ⊥.

2) Otherwise, B searches the H3 list for a tuple
〈(Mi, σi, IDi, Ui), ri〉, where C1 = gri ,
C2 = (Mi||σi) ⊕ H4

(

Ui
ri
) ⊕ H5

(

wri
0i · yH1(IDi,w0i)·ri

)

and C3 = H6
(

Ui, (Mi||σi) ⊕ H4
(

Uri
i

)

, C1, C2
)

. B
returns the corresponding Mi if such a tuple exists.
Otherwise, B outputs ⊥.

Challenge Phase: AI outputs ID∗ and two messages
M0, M1 on which it wishes to be challenged. On receiv-
ing ID∗, B searches the public key list for the tuple
〈ID∗,

(

U∗, w∗
0, w∗

1, d∗
1
)

, coin〉. Then B responds as follows:

1) If coin = 0, B aborts the game.
2) Otherwise, B performs the following actions:

• B picks σ ∗ ∈R {0, 1}k0 , β ∈R {0, 1} and
C∗

2, C∗
3 ∈R {0, 1}n+k0 .

• B sets C∗
1 = gb, e∗

0 = H1(ID∗, w∗
0), b = H3(Mβ,

σ ∗, ID∗, U∗), c = H4
(

U∗b), H5

(

w∗b
0 · ye∗0b

)

=
C∗

2 ⊕ (Mβ ||σ ∗) ⊕ c and H6
(

U∗|| (Mβ ||σ ∗)

⊕c||C∗
1||C∗

2
) = C∗

3.
• B outputs 〈C∗

1, C∗
2, C∗

3〉 as the challenge cipher-
text. According to the above construction,
C∗

2 = (Mβ ||σ ∗) ⊕ H4
(

U∗b) ⊕ H5

(

w∗b
0 · ye∗0b

)

=
(Mβ ||σ ∗) ⊕ H4(U∗b) ⊕ H5

(

gbs∗0 · gabe∗0
)

.

SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2113

Phase 2: B continues to respond to AI ’s requests in the
same way as it did in Phase 1. AI cannot make a SEM-
Key Extraction query or a Private Key Extraction query on
ID∗. For the combination of ID∗ and

(

U∗, w∗
0, w∗

1, d∗
1
)

used
to encrypt Mβ , AI should not make decryption query on
〈C∗

1, C∗
2, C∗

3〉.
Guess: Eventually, AI outputs its guess. B chooses

a random pair 〈B, h〉 from the H5 list and outputs
(

B
gbs∗0

) 1
e∗0 (= gab) as the solution to the CDH problem.

Analysis. First of all, we evaluate the simulation of the
random oracles given above. It is evident that the simula-
tions of H1 and H2 are perfect through the constructions
of H1 and H2. Moreover, as long as AI does not query
(Mβ, σ ∗, ID∗, U∗) to H3 nor U∗b to H4 nor w∗b

0 · ye∗0b to H5
nor U∗||(Mβ ||σ ∗) ⊕ c||C∗

1||C∗
2 to H6, the simulations of H3,

H4, H5 and H6 are perfect. Let AskH∗
3 denote the event that

(Mβ, σ ∗, ID∗, U∗) has been queried to H3, AskH∗
4 denote the

event that U∗b has been queried to H4, AskH∗
5 denote the

event that w∗b
0 · ye∗0b has been queried to H5 and AskH∗

6
denote the event that U∗||(Mβ ||σ ∗) ⊕ c||C∗

1||C∗
2 has been

queried to H6.
The simulated challenge ciphertext is identically dis-

tributed as the real one, because H3, H4, H5 and H6 are
random oracles. Now we evaluate the simulation of the
decryption oracle. As to the simulation of decryption
oracle, B will wrongly reject a valid ciphertext during
the simulation with probability smaller than

qDS +qDU
q .

That is, Pr[DecErr] ≤ qDS +qDU
q , where DecErr denotes

the event that B rejects a valid ciphertext during the
simulation.

Let E = (AskH∗
6 ∨ AskH∗

5 ∨ AskH∗
4 ∨ AskH∗

3 ∨
DecErr)|¬Abort. If E does not happen during the simula-
tion, B will not gain any advantage greater than 1/2 to
guess β, because of the randomness of the output of H5.
In other words, Pr[β ′ = β|¬E] ≤ 1/2. We obtain Pr[β ′ =
β] = Pr[β ′ = β|¬E]Pr[¬E] + Pr[β ′ = β|E]Pr[E] ≤ 1

2 Pr[¬E] +
Pr[E] = 1

2 + 1
2 Pr[E].

By definition of ε, we have ε ≤ 2
(

Pr[β ′ = β] − 1
2

)

≤
Pr[E] ≤ Pr[AskH∗

6]+Pr[AskH∗
5]+Pr[AskH∗

4]+Pr[AskH∗
3]+Pr[DecErr]

Pr[¬Abort] .
The probability that B does not abort during the simula-
tion is given by γ qsem+qpri(1 − γ)(1 − δ)qpubR . This probability
is maximized at γ = 1 − 1

qsem+qpri+1 . Therefore, we have

Pr[¬Abort] ≥ (1−δ)
qpubR

e(qsem+qpri+1)
, where e denotes the base of the

natural logarithm.
Hence, we obtain the following Pr

[

AskH∗
5
] ≥ εPr

[¬Abort]−Pr
[

AskH∗
6
]−Pr

[

AskH∗
4
]−Pr

[

AskH∗
3
]−Pr[DecErr]

≥ ε(1 − δ)qpubR

e(qsem + qpri + 1)
− q6

2k0
− q4

2k0
− q3

2k0
− qDS + qDU

q
.

If AskH∗
5 happens, then AI will be able to distinguish the

simulation from the real one. AI can tell that the challenge
ciphertext C∗ by the simulation is invalid. H5

(

w∗b
0 · ye∗0b

)

has been recorded on the H5 list. Then, B wins if it chooses
the correct element from the H5 list. Therefore, we obtain
the advantage for B to solve the CDH problem.

ε′ ≥ 1
q5

Pr
[

Ask H∗
5
] ≥ 1

q5

(

ε(1 − δ)qpubR

e(qsem + qpri + 1)
− q6

2k0
− q4

2k0

− q3

2k0
− qDS + qDU

q

)

.

The running time of the B who is the CDH attacker
is bounded by T = max{t + (q1 + q2 + q3 + q4 + q5 +
q6)O(1) + (qpub + qpubR + qDS + qDU)(5texp + O(1)), cq2t/ε},
where texp denotes the time for computing exponentiation
in Z

∗
p, and c is constant greater than 120,686 assuming that

ε ≥ 10(qsem + 1)(qsem + q2)/q. This estimation is from the
result of [21].

Lemma 2. Suppose that the hash functions Hi(i = 1, 2, 3,

4, 5, 6) are random oracles and there exists a Type II IND-
CCA adversary AII against the mCL-PKE scheme with
advantage ε when running in time t, making qpub pub-
lic key requests queries, qsem SEM-key extraction queries,
qpri private key extraction queries, qpubR public key replace-
ment queries, qDS SEM decryption queries, qDU USER
decryption queries and qi random oracle queries to Hi
(1 ≤ i ≤ 6). Then, there exists an algorithm B to solve
the CDH problem with advantage ε′ ≥ 1

q4
Pr

[

AskH∗
4
] ≥

1
q4

(
ε

e(qpri+1)
− q6

2k0
− q5

2k0
− q3

2k0
− qDS +qDU

q

)

running in time
T < t + (q1 + q2 + q3 + q4 + q5 + q6)O(1) + (qpub + qDS +
qDU)(4texp +O(1)), where texp denotes the time for computing
exponentiation in Z

∗
p.

Proof. Let AII be a Type II IND-CCA adversary against
the mCL-PKE scheme. By using AII , we show how
to construct an algorithm B to solve the CDH prob-
lem. Suppose that B is given a random instance
(

g, ga, gb) of the CDH problem. B chooses x ∈R
Z

∗
q , computes y = gx and simulates the SetUp

algorithm of the mCL-PKE scheme by supplying
AII with (p, q, n, k0, g, y, H1, H2, H3, H4, H5, H6), where
H1, H2, H3, H4, H5, H6 are random oracles controlled by
B. B can simulate the Challenger’s execution of each
phase of Game. AII may make queries to Hi(1 ≤ i ≤ 6)

at any time during its attack and B responds as follows:
H1 queries: B maintains a H1 list of tuples

〈(IDi, w0i), e0i〉. On receiving a query on (IDi, w0i), B does
the following:

1) If 〈(IDi, w0i), e0i〉 is on the H1 list, B returns e0i.
2) Otherwise, B chooses e0i ∈R Z

∗
q , adds 〈(IDi, w0i), e0i〉

to the H1 list and returns e0i.
H2 queries: B maintains a H2 list of tuples 〈(IDi, w0i,

w1i), e1i〉. On receiving a query on (IDi, w0i, w1i), B first
checks if 〈(IDi, w0i, w1i), e1i〉 is on the H2 list, return e1i.
Otherwise, B picks e1i ∈R Z

∗
q , adds 〈(IDi, w0i, w1i), e1i〉 to

the H2 and returns e1i.
H3 queries: B maintains a H3 list of tuples 〈(Mi, σi, IDi,

Ui), ri〉. On receiving a query on (Mi, σi, IDi, Ui), B first
checks if 〈(Mi, σi, IDi, Ui), ri〉 is on the H3 list, return ri.
Otherwise, B picks ri ∈R Z

∗
q and returns ri.

H4 queries: B maintains a H4 list of tuples 〈A, h1〉. On
receiving a query on A, B first checks if 〈A, h1〉 is on the
H4 list, return h1. Otherwise, B picks h1 ∈R {0, 1}n+k0 ,
adds 〈A, h1〉 to the H4 and returns h1.

H5 queries: B maintains a H5 list of tuples 〈B, h2〉. On
receiving a query on A, B first checks if 〈B, h2〉 is on the

2114 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

H5 list, return h2. Otherwise, B picks h2 ∈R {0, 1}n+k0 ,
adds 〈B, h2〉 to the H5 list and returns h2.

H6 queries: B maintains a H6 list of tuples
〈(Ui, C, D, E), h3〉. On receiving a query on (Ui, C, D, E),
B first checks if 〈(Ui, C, D, E), h3〉 is on the H6 list, return
h3. Otherwise, B picks h3 ∈R {0, 1}n+k0 and returns h3.

Phase 1: AII launches Phase 1 of its attack by making
a series of requests, each of which is either a Public Key
Request, a Private Key Extraction, a SEM-Decryption or
a USER-Decryption query.

Compute SEM-Key: AII computes the SEM-key d0i
and the partial public key (w0i, w1i, d1i) for IDi, B keeps
〈IDi, d0i, (w0i, w1i, d1i)〉 to the partial key list.

Public Key Request: B maintains a public key list of
tuples 〈IDi, (Ui, w0i, w1i, d1i), coin〉. On receiving a query
on IDi, B responds as follows:

1) If 〈IDi, (Ui, w0i, w1i, d1i), coin〉 is on the public key
list, B returns (Ui, w0i, w1i, d1i).

2) Otherwise, B picks coin ∈ {0, 1} with Pr[coin = 0] =
γ (γ will be determined later).

• In case of coin = 0, B chooses zi ∈R Z
∗
q , com-

pute Ui = gzi . Then, it searches the partial key
list to get the partial public key (w0i, w1i, d1i),
adds 〈IDi, (Ui, w0i, w1i, d1i), zi, coin〉 to the
public key list and returns (Ui, w0i, w1i, d1i).

• In case of coin = 1, B sets Ui = ga.

Then, it searches the partial key list to get
the partial public key (w0i, w1i, d1i), adds
〈IDi, (Ui, w0i, w1i, d1i), ?, coin〉 to the public key
list and returns (Ui, w0i, w1i, d1i).

Private Key Extraction: B maintains a private key
list of tuples 〈IDi, zi〉. On receiving a query on IDi, B
responds as follows:

1) If 〈IDi, zi〉 exists on the private key list, B returns zi.
2) Otherwise, B runs the simulation algorithm for pub-

lic key request by using IDi as input in order to get
a tuple 〈IDi, (Ui, w0i, w1i, d1i), zi, coin〉.

• In case of coin = 0, B returns zi.
• In case of coin = 1, B aborts.

SEM-Decryption queries: AII can request B to
decrypt partially C = (C1, C2, C3) for IDi. B runs the
simulation algorithm for public key request taking IDi
as input to get 〈IDi, (Ui, w0i, w1i, d1i), zi, coin〉. Then, B
performs the following:

1) If coin = 0, B searches the partial key list and the
private key list for a tuple 〈IDi, (d0i, zi)〉. Then, it
computes C1

d0i and C2⊕H4

(

Cd0i
1

)

. B checks whether

C3 = H6(Ui, C2 ⊕ H4

(

Cd0i
1

)

, C1, C2). If it is valid, B
returns C′

2 = C2⊕H4

(

Cd0i
1

)

. Otherwise, B outputs ⊥.
2) Otherwise, B searches the H3 list for a tuple

〈(Mi, σi, IDi, Ui), ri〉 satisfying C1 = gri , C2 =
(Mi||σi)⊕H4

(

Ui
ri
)⊕H5

(

wri
0i · yH1(IDi,w0i)·ri

)

and C3 =
H6(Ui, (Mi||σi) ⊕ H4(U

ri
i), C1, C2). B returns the cor-

responding C′
2 = (Mi||σi) ⊕ H4(Ui

ri) if such a tuple
exists. Otherwise, B outputs ⊥.

USER-Decryption queries: This query should be per-
formed after SEM-Decryption query performing. AII
can request B to perform User-decryption for C1, C′

2 for
IDi. B searches the public key list taking IDi as input
to get 〈IDi, (Ui, w0i, w1i, d1i), zi, coin〉. Then B responds as
follows:

1) If coin = 0,

• B searches private key list of tuples 〈IDi, zi〉.
• B computes C1

zi and H4(C1
zi).

• B parses M′ and σ ′ fromM′||σ ′= H4(C1
zi)⊕C′

2.

• B computes r′ = H3(M′||σ ′||IDi||Ui), gr′ .
• B checks if gr′ = C1, it returns M′ = M.

Otherwise, B outputs ⊥.

2) Otherwise, B searches the H3 list for
〈(Mi, σi, IDi, Ui), ri〉 satisfying C1 = gri , C2 =
(Mi||σi) ⊕ H4

(

Ui
ri
) ⊕ H5

(

wri
0i · yH1(IDi,w0i)·ri

)

and

C3 = H6(Ui, (Mi||σi) ⊕ H4
(

Uri
i

)

, C1, C2). B returns
the corresponding Mi if such a tuple exists.
Otherwise, outputs ⊥.

Challenge Phase: AII outputs ID∗ and M0, M1 on
which it wishes to be challenged. B runs the simulation
algorithm for public key request taking ID∗ as input to
get 〈ID∗,

(

U∗, w∗
0, w∗

1, d∗
1
)

, zi, coin〉. Then B performs as
follows:

1) If coin = 0, B aborts the game.
2) Otherwise, B performs the following actions:

• B picks σ ∗ ∈R {0, 1}k0 , β ∈R {0, 1} and
C∗

2, C∗
3 ∈R {0, 1}n+k0 .

• B sets C∗
1 = gb, e∗

0 = H1(ID∗, w∗
0), b =

H3(Mβ, σ ∗, ID∗, U∗), c = H4(U∗b), H5(w∗b
0 ·

ye∗0b) = C∗
2 ⊕ (Mβ ||σ ∗) ⊕ c and H6(U∗||

(Mβ ||σ ∗) ⊕ c||C∗
1||C∗

2) = C∗
3.

• B outputs 〈C∗
1, C∗

2, C∗
3〉 as the challenge cipher-

text. According to the above construction,
C∗

2 = (Mβ ||σ ∗) ⊕ H4(U∗b) ⊕ H5

(

w∗b
0 · ye∗0b

)

=
(Mβ ||σ ∗) ⊕ H4(gab) ⊕ H5

(

w∗b
0 · ye∗0b

)

Phase 2: B continues to respond to AII ’s requests in
the same way as it did in Phase 1. AII cannot make a
Private Key Extraction queries on ID∗. For ID∗, if any
decryption query is equal to the challenge ciphertext
〈C∗

1, C∗
2, C∗

3〉, then B aborts.
Guess: Eventually, AII outputs its guess. B chooses

a random pair 〈A, h〉 from the H4 list and outputs
U∗b (= gab) as the solution to the CDH problem.

Analysis. First of all, we evaluate the simulation of
the random oracles given above. It is evident that the
simulations of H1 and H2 are perfect through the con-
structions of H1 and H2. Moreover, as long as AII does
not query (Mβ, σ ∗, ID∗, U∗) to H3 nor U∗b to H4 nor
w∗b

0 · ye∗0b to H5 nor U∗||(Mβ ||σ ∗) ⊕ c||C∗
1||C∗

2 to H6, the
simulations of H3, H4, H5 and H6 are perfect.

Let AskH∗
3 denote the event that (Mβ, σ ∗, ID∗, U∗) has

been queried to H3, AskH∗
4 denote the event that U∗b has

been queried to H4, AskH∗
5 denote the event that w∗b

0 · ye∗0b

has been queried to H5 and AskH∗
6 denote the event that

U∗||(Mβ ||σ ∗) ⊕ c||C∗
1||C∗

2 has been queried to H6.

SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2115

Fig. 4. The overall system.

The simulated challenge ciphertext is identically
distributed as the real one, because H3, H4, H5 and
H6 are random oracles. Now we evaluate the simu-
lation of the decryption oracle. As to the simulation
of decryption oracle, B will wrongly reject a valid
ciphertext during the simulation with probability

smaller than
qDS +qDU

q . That is, Pr[DecErr] ≤ qDS +qDU
q ,

where DecErr denotes the event that B rejects a
valid ciphertext during the simulation. Let E =
(

AskH∗
6 ∨ AskH∗

5 ∨ AskH∗
4 ∨ AskH∗

3 ∨ DecErr
) |¬Abort.

If E does not happen during the simulation, B will
not gain any advantage greater than 1/2 to guess
β, because of the randomness of the output of H4.
In other words, Pr[β ′ = β|¬E] ≤ 1/2. We obtain
Pr[β ′ = β] = Pr[β ′ = β|¬E]Pr[¬E] + Pr[β ′ = β|E]Pr[E] ≤
1
2 Pr[¬E] + Pr[E] = 1

2 + 1
2 Pr[E] By definition of

ε, we have ε ≤ 2
(

Pr[β ′ = β] − 1
2

)

≤ Pr[E] ≤
Pr[AskH∗

6]+Pr[AskH∗
5]+Pr[AskH∗

4]+Pr[AskH∗
3]+Pr[DecErr]

Pr[¬Abort] . The
probability that B does not abort during the simulation
is given by γ qpri(1 − γ). This probability is maximized at
γ = 1 − 1

qpri+1 . Therefore, we have Pr[¬Abort] ≥ 1
e(qpri+1)

,

where e denotes the base of the natural logarithm. Hence,
we obtain the following Pr[AskH∗

4] ≥ εPr[¬Abort] −
Pr[AskH∗

6] − Pr[AskH∗
5]−Pr[AskH∗

3] − Pr[DecErr]

≥ ε

e(qpri + 1)
− q6

2k0
− q5

2k0
− q3

2k0
− qDS + qDU

q
.

If AskH∗
4 happens, then AII will be able to distin-

guish the simulation from the real one. AII can tell that
the challenge ciphertext C∗ is invalid. H4(U∗b) has been
recorded on the H4 list. Then, B wins if it chooses the
correct element from the H4 list. Therefore, we obtain
the advantage for B to solve the CDH problem. ε′ ≥
1
q4

Pr[AskH∗
4] ≥ 1

q4

(
ε

e(qpri+1)
− q6

2k0
− q5

2k0
− q3

2k0
− qDS +qDU

q

)

The running time of the B who is the CDH attacker is
bounded by T < t + (q1 + q2 + q3 + q4 + q5 + q6)O(1) +
(qpub + qDS + qDU)(4texp + O(1)), where texp denotes the
time for computing exponentiation in Z

∗
p.

3 SECURE CLOUD STORAGE

In this section we provide a detailed description of our
system for privacy preserving cloud storage using our
mCL-PKE scheme.

As shown in Fig. 4, our scheme consists of three enti-
ties: data owner, cloud, and users. The data owner possesses

sensitive content that it wants to share with authorized
users by storing it in the public cloud and requesting
the cloud to partially decrypt the encrypted content when
users request the data. The cloud consists of three main
services: an encrypted content storage; a key generation
center (KGC), which generates public/private key pairs for
each user as explained in Section 2; and a security medi-
ation server (SEM), which acts as a security mediator for
each data request and partially decrypts encrypted data for
authorized users. The cloud is trusted to perform the secu-
rity mediation service and key generation correctly, but it
is not trusted for the confidentiality of the content and key
escrowing. Our approach allows one to have most of the
key generation and management functionality deployed in
the untrusted cloud as our mCL-PKE scheme does not have
the problem of key escrowing and thus the KGC is unable
to learn the full private keys of users.

Our scheme consists of four phases: (1) Cloud set up; (2)
User registration; (3) Data encryption and uploading and
(4) Data decryption. Now we describe each of these phases
in detail.

3.1 Cloud Set Up
The KGC in the cloud runs the SetUp operation of the
mCL-PKE scheme and generates the master key MK and
the system parameters params. It should be noted that this
setup operation is a one-time task.

3.2 User Registration
Each user first generates its own private and public key
pair, called SK and PK, using the SetPrivateKey and
SetPublicKey operations respectively using our mCL-PKE
scheme. The user then sends its public keys and its identity
(ID) to the KGC in the cloud. The KGC in turn generates
two partial keys and a public key for the user. One par-
tial key, referred to as SEM-key, is stored at the SEM in the
cloud. The other partial key, referred to as U-key, is given to
the user. The public key, referred to as KGC-key, consists of
the user generated public key as well as the KGC generated
public key. The KGC-key is used to encrypt data. The SEM-
key, U-key, and SK are used together to decrypt encrypted
data. We denote the partial private key and the public key
for useri as SEM-keyi, U-keyi, KGC-keyi respectively.

3.3 Data Encryption and Uploading
The data owner obtains the KGC-keys of users from the
KGC in the cloud. The data owner then symmetrically
encrypts each data item for which the same access con-
trol policy applies using a random session key K and then
the data owner encrypts K using the KGC-keys of users.
The encrypted data along with the access control list is
uploaded to the cloud. The encrypted content is stored in
the storage service in the cloud and the access control list,
signed by the data owner, is stored in the SEM in the cloud.

3.4 Data Retrieval and Decryption
When a user wants to read some data, it sends a request to
the SEM to obtain the partially decrypted data. The SEM
first checks if the user is in the access control list and if the

2116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

user’s KGC-key encrypted content is available in the cloud
storage. If the verification is successful, the SEM retrieves
the encrypted content from the cloud and partially decrypts
the content using the SEM-key for the user. The partial
decryption at the SEM reduces the load on users. The user
uses its SK and U-key to fully decrypt the data.

In order to improve the efficiency of the system, once the
initial partial decryption for each user is performed, the SEM
stores back the partially decrypted data in the cloud storage.

If a user is revoked, the data owner updates the access
control list at the SEM so that future access requests by the
user are denied. If a new user is added to the system, the
data owner encrypts the data using the public key of the
user and uploads the encrypted data along with the updated
access control list to the cloud. Note that existing users are
not affected by revoking or adding users to the system.

4 IMPROVED SECURE CLOUD STORAGE

In our basic scheme, the data owner has to encrypt the
same data encryption key multiple times for each autho-
rized user. This can be a huge bottleneck at the data owner
if many users are authorized to access the same data as
the number of mCL-PKE encryptions is proportional to the
number of authorized users. We provide an extension to our
basic mCL-PKE scheme so that the data owner encrypts the
data encryption key once for a data item and provides some
additional information to the cloud so that authorized users
can decrypt the content using their private keys. The idea
is similar to Proxy Re-Encryption (PRE) where the content
encrypted using the data owner’s public key is allowed to
be decrypted by different private keys after some transfor-
mation by the cloud which acts as the proxy. However, in
our improved scheme, the cloud simply acts as a storage
for the proxy keys, referred to as intermediate keys, and
gives these keys to users at the time of data requests.

Now we give the details of the extension. Let the data
owner’s private and public key pair be zO and UO = gzO

respectively, where g is a generator of Z∗
p with order q and

zO is a random number in Z
∗
q . The following modifications

to the basic mCL-PKE scheme are performed to support
single encryption at the data owner per data item.

• Encrypt: Along with C1 = gr, where r is computed
as in the second step of Encrypt operation of the
basic mCL-PKE scheme, the data owner computes
the intermediate key INT-Keyi for each authorized
useri, {grzozi |i = 1, 2, . . . , m} and gives the keys to the
cloud. Unlike the typical PRE schemes, the transfor-
mation at the cloud does not utilize the intermediate
keys. The intermediate keys are given to authorized
users when they request for data.

• USER-Decrypt: A useri having INT-Keyi (= grzozi)
can compute UO

r using its private key, zi, as follows
and perform the decryption using this value and the
public key of the data owner.

(grzozi)1/zi = UO
r.

Notice that the knowledge of UO
r allows useri to

decrypt the message encrypted using the the data
owner’s public key following the steps in the User-
Decrypt operation in the basic mCL-PKE scheme.

Fig. 5. The overall system with immediate keys.

Fig. 5 shows the overall system with the utilization of
intermediate keys. The phases in this approach are very
similar to those of the basic approach presented in Section 3
except for the following differences.

• During the data encryption and download phases,
the data owner downloads the public keys of users
to generate the intermediate keys as shown above.
Unlike the basic approach, the data owner encrypts
each data item only once using a random symmetric
key K and then mCL-PKE encrypts K using its pub-
lic key. The data owner uploads the encrypted data
along with the intermediate keys to the cloud. The
encrypted data is stored in the storage service in the
cloud and the intermediate keys are stored at the
SEM in the cloud.

• During the data retrieval and decryption phases,
upon successful authorization, the SEM partially
decrypts the data encrypted using the data owner’s
public key as input to the SEM-decryption operation
of the basic mCL-PKE scheme, and gives the partially
decrypted data along with the intermediate keys.
The intermediate keys along with private keys allow
users to fully decrypt the partially decrypted data
using User-Decrypt operation of the basic mCL-PKE
scheme.

5 EXPERIMENTAL RESULTS

In this section, we first present the experimental results
for our mCL-PKE scheme. We then compare the basic
approach with the improved approach. Finally we compare
our approach with Lei et al.’s scheme[16]. The experiments
were performed on a machine running 32 bits GNU Linux
kernel version 3.2.0-30 with an Intel R©Core TMi5-2430 CPU
@ 2.40GHZ and 8 GBytes memory. Our prototype sys-
tem is implemented in C/C++. We use V. Shoup’s NTL
library [24] version 5.5.2 for big number calculation and
field arithmetic. The NTL library is compiled along with
the GMP library [12] in order to improve the performance
of computations involving large numbers. We construct the
hash function required for the mCL-PKE scheme based on
SHA1.

For the hash functions, we use SHA1 as the elemen-
tary operation. However, SHA1 can easily be replaced with
other cryptographic hash functions such as SHA2. The basic
idea of the hash function construction is as follows. Based

SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2117

Fig. 6. Basic encryption.

on the field of the hash function output, we break the input
into multiple blocks, and the block number is dynamically
adjusted. For each block, we execute SHA1, convert the
output into decimal numbers, say a1, a2, . . . , an. If the out-
put field is Z

∗
q , then we compute (a1||a2||a3|| · · · ||an) mod q,

where || denotes the concatenation operation, to get the
final result of the hash function. This operation is very effi-
cient even if other hash functions are used. According to
our experimental results, it takes less than 1 ms to do this
operation for a message of size 16KB.

Fig. 6 shows the time required to perform the encryption
operation in the mCL-PKE scheme for different message
sizes. Since our scheme does not use pairing operations,
it performs encryption efficiently. As can be seen from the
graph, the encryption time increases linearly as the mes-
sage size increases. As the bit length of q increases, the
cost increases non-linearly since the encryption algorithm
performs exponentiation operations. A similar observation
applies to the the SEM decryption and user decryption.

We also implemented the improved scheme where the
data owner performs only one encryption per data item
and creates a set of intermediate keys that allows autho-
rized users to decrypt the data, as described in Section 4.
In Fig. 7, we compare the time to perform encryption and
decryption in the basic scheme and the improved scheme as
the number of users who can access the same data increases
from 10 to 50. We fixed the length of q to 1, 024 bits and
the message size to 16KB. It is evident from the graph that
as more users are allowed to access the same data item,
the better the improved scheme performs compared to the
basic scheme. The cost of the basic scheme is high since the
encryption algorithm is executed for each user.

Finally we implemented Lei et al. [16]’s CL-PRE scheme
based on pairing. According to the results reported in their
paper, proxy-encryption takes 7-8ms to encrypt a message
with length 3K bits. We reimplemented their scheme using
the PBC-library [17]. Our implementation of their scheme
is actually more efficient and the time for encrypting a
message of 8K Bytes is about 3ms. We then compared
our scheme with their scheme for encryption. Even with
the improved implementation, as shown in Fig. 8, our
encryption algorithm is more efficient than their algorithm

Fig. 7. Improved scheme.

Fig. 8. Comparison of encryption.

for message sizes above 16K bytes. A similar observation is
made for the decryption algorithm, as shown in Fig. 9. This
observation is consistent with the fact that our scheme uses
an efficient hash function and XOR operations to perform
encryption and decryption whereas their scheme uses more
expensive constructs.

6 RELATED WORK

6.1 Security Mediated CL-PKE
In 2003, Al-Riyami and Paterson [2] introduced a
Certificateless Public Key Cryptography (CL-PKC). Since
each user holds a combination of KGC produced par-
tial private key and an additional user-chosen secret, the
key escrow problem can be resolved. As the structure of
CL-PKC guarantees the validity of the user’s public key
without the certificate, it removes the certificate manage-
ment problem. Since the advent of CL-PKC [2], many
CL-PKE schemes have been proposed based on bilinear
pairings. The computational cost required for pairing is still
considerably high compared to standard operations such
as modular exponentiation in finite fields. To improve effi-
ciency, Sun et al. [25] presented a strongly secure CL-PKE
without pairing operations. However, previous CL-PKE
schemes could not solve the key revocation problem. In
public key cryptography, we should consider scenarios
where some private keys are compromised. If the private
keys are compromised, then it is no longer secure to use
the corresponding public keys. To address this problem,
Boneh et al. [6] proposed the concept of mediated cryptog-
raphy to support immediate revocation. The basic concept
of the mediated cryptography is to utilize a security medi-
ator (SEM) which can control security capabilities for every
transaction. Once the SEM is notified that a user’s public
key should be revoked, it can immediately stop the user’s
participation in a transaction. Chow et al. [9] introduced
the notion of security-mediated certificateless cryptogra-
phy and presented a mediated CL-PKE relying on pairing
operations. Yang et al. [26] first proposed a mediated CL-
PKE without pairings. Unfortunately, Yang et al.’s scheme
was found to be insecure against partial decryption attack,
since their security model did not consider the capabilities

Fig. 9. Comparison of decryption.

2118 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

of the adversary in requesting partial decryptions. Thus, a
secure mediated CL-PKE without pairings is needed. Our
proposed pairing-free mediated CL-PKE scheme is secure
against the partial decryption attack.

6.2 Functional Encryption
Functional encryption allows one to encode an arbitrary
complex access control policy with the encrypted message.
The message can then be decrypted only by the users
satisfying the encoded policy. In predicate encryption with
public index, the policy under which the encryption is
performed is public. Unlike public key cryptosystems, the
public key is not a random string but some publicly known
values such as ID that bind to users. Attribute based
encryption (ABE) introduced by Sahai and Waters [22] is a
more expressive predicate encryption with a public index.
It can be considered as a generalization of IBE. In ABE,
the public keys of a user are described by a set of identity
attributes the user has. Key Policy ABE (KP-ABE) [13] and
Ciphertext Policy ABE (CP-ABE) [5] are two popular exten-
sions of ABE. An ABE based approach supports expressive
Access Control Policies (ACPS). However, such approach
suffers from some major drawbacks. Whenever the group
dynamic changes, the rekeying operation requires to update
the private keys given to existing members in order to pro-
vide backward/forward secrecy. Further, the ABE scheme
suffers from the key escrow problem. Predicate encryption
schemes without public index such as Anonymous IBE [1],
[14], Hidden Vector Encryption [7], and Inner product pred-
icate [15] preserve the privacy of the access control policies.
Even though they preserve the privacy of the policy, they
have limited expressibility compared to the former schemes
and also suffer from the same limitations as the former
schemes.

6.3 Symmetric Key Based Systems
In push-based approaches [4], [19] data items are encrypted
with different keys, which are provided to users at the
beginning. The encrypted data is then broadcast to all users.
However, such approaches require that all [4] or some [19]
keys be distributed in advance during user registration
phase. This requirement makes it difficult to assure forward
and backward key secrecy when user groups are dynamic
or the ACPS change. Further, the rekey process is not trans-
parent, thus shifting the burden of acquiring new keys to
users. Shang et al. [23] proposed an approach to solve such
problem. It lays the foundation to make rekey transparent
to users and protect the privacy of the users who access
the content. However, it does not support expressive access
control policies. In order to address such limitations, Nabeel
et al. [20] recently proposed a more expressive attribute
based group key management scheme that can be utilized
to support fine-grained encryption based access control to
data uploaded to public clouds. While such approaches
solve the key management problem and provide expres-
sive access control, they still suffer from the key escrow
problem.

6.4 Secure Cloud Storage
Some recent research efforts [8], [10] have been pro-
posed to build privacy preserving access control systems

by combining oblivious transfer and anonymous creden-
tials. The goal of such work is similar to ours but we
identify the following limitations. Each transfer protocol
allows one to access only one record from the database,
whereas our approach does not have any limitation on
the number of records that can be accessed at once since
we separate the access control from the authorization. Yu
et al. [27] proposed an approach based on ABE utiliz-
ing PRE (Proxy Re-Encryption) to handle the revocation
problem of ABE. The approach still does not solve the
key escrow and revocation problems. Further, it is based
on pairing based cryptography whereas we avoid pairing
operations.

Recently, Lei et al. [16] proposed the CL-PRE
(Certificateless Proxy Re-Encryption) scheme for pub-
lic cloud computing environments. While Lei et al.’s
CL-PRE scheme solves the key escrow problem and
certificate management, it utilizes expensive pairing oper-
ations. Further, their scheme only achieves CPA (Chosen
Plaintext Attack) security which is not sufficient to protect
real-world applications. They do not establish a strong
security model with two types of adversaries. In CPA, the
ability of the adversary is limited to obtaining ciphertexts
of plaintexts of their choice. Therefore CPA is too weak
to be considered viable for real-world applications. In
contrast with Lei et al.’s scheme, our proposed scheme
achieves CCA (Chosen Ciphertext Attack) security. Under
CCA, the ability of an adversary is more powerful than
the ability of the adversary under CPA. In addition to the
public key, the adversary under CCA is given access to a
“decryption oracle" which decrypts arbitrary ciphertexts at
the adversary’s request, returning the plaintext. Moreover,
our scheme does not utilize bilinear pairings to improve
efficiency.

7 CONCLUSION

In this paper we have proposed the first mCL-PKE scheme
without pairing operations and provided its formal secu-
rity. Our mCL-PKE solves the key escrow problem and
revocation problem. Using the mCL-PKE scheme as a key
building block, we proposed an improved approach to
securely share sensitive data in public clouds. Our approach
supports immediate revocation and assures the confiden-
tiality of the data stored in an untrusted public cloud
while enforcing the access control policies of the data
owner. Our experimental results show the efficiency of basic
mCL-PKE scheme and improved approach for the public
cloud. Further, for multiple users satisfying the same access
control policies, our improved approach performs only a
single encryption of each data item and reduces the overall
overhead at the data owner.

REFERENCES

[1] M. Abdalla et al., “Searchable encryption revisited: Consistency
properties, relation to anonymousibe, and extensions,” J. Cryptol.,
vol. 21, no. 3, pp. 350–391, Mar. 2008.

[2] S. Al-Riyami and K. Paterson, “Certificateless public key cryptog-
raphy,” in Proc. ASIACRYPT 2003, C.-S. Laih, Ed. Berlin, Germany:
Springer, LNCS 2894, pp. 452–473.

SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2119

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations
among notions of security for public-key encryption schemes,”
in Proc. Crypto ’98, H. Krawczyk Ed. Springer-Verlag, LNCS
1462.

[4] E. Bertino and E. Ferrari. “Secure and selective dissemination of
XML documents,” ACM TISSEC, vol. 5, no. 3, pp. 290–331, 2002.

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. 2007 IEEE Symp. SP,
Taormina, Italy, pp. 321–334.

[6] D. Boneh, X. Ding, and G. Tsudik, “Fine-grained control of
security capabilities,” ACM Trans. Internet Technol., vol. 4, no. 1,
pp. 60–82, Feb. 2004.

[7] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proc. 4th TCC, Amsterdam, The
Netherlands, 2007, pp. 535–554.

[8] J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious trans-
fer with access control,” in Proc. 16th ACM Conf. CCS, New York,
NY, USA, 2009, pp. 131–140.

[9] S. S. M. Chow, C. Boyd, and J. M. G. Nieto, “Security-
mediated certificateless cryptography,” in Proc. 9th Int.
Conf. Theory Practice PKC, New York, NY, USA, 2006,
pp. 508–524.

[10] S. Coull, M. Green, and S. Hohenberger, “Controlling access to
an oblivious database using stateful anonymous credentials,” in
Irvine: Proc. 12th Int. Conf. Practice and Theory in PKC, Chicago, IL,
USA, 2009, pp. 501–520.

[11] I. Dropbox. Dropbox [Online]. Available:
https://www.dropbox.com/

[12] The gnu multiple precision arithmetic library [Online]. Available:
http://gmplib.org/

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proc. 13th ACM Conf. CCS, New York, NY, USA, 2006,
pp. 89–98.

[14] C. Gu, Y. Zhu, and H. Pan, “Information security and cryptology,”
in 4th Int. Conf. Inscrypt, Beijing, China, 2008, pp. 372–383.

[15] J. Katz, A. Sahai, and B. Waters, “Predicate encryption
supporting disjunctions, polynomial equations, and inner
products,” in Proc. EUROCRYPT, Berlin, Germany, 2008.
pp. 146–162.

[16] X. W. Lei Xu and X. Zhang, “CL-PKE: A certificateless proxy re-
encryption scheme for secure data sharing with public cloud,” in
ACM Symp. Inform. Comput. Commun. Security, 2012.

[17] B. Lynn. Pairing-based cryptography [Online]. Available:
http://crypto.stanford.edu/pbc

[18] Microsoft Co. Ltd. Microsoft skydrive [Online]. Available:
https://skydrive.live.com/

[19] G. Miklau and D. Suciu, “Controlling access to published data
using cryptography,” in Proc. 29th Int. Conf. VLDB, Berlin,
Germany, 2003, pp. 898–909.

[20] M. Nabeel, N. Shang, and E. Bertino, “Privacy preserving policy
based content sharing in public clouds,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 11, pp. 2602–2614, Sept. 2012.

[21] D. Pointcheval and J. Stern, “Security arguments for digital
signatures and blind signatures,” J. Cryptology, vol. 13, no. 3,
pp. 361–396, 2000.

[22] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” LNCS
3494 in Proc. EUROCRYPT, Aarhus, Denmark, 2005, pp. 457–473.

[23] N. Shang, M. Nabeel, F. Paci, and E. Bertino,“A privacy-
preserving approach to policy-based content dissemination,” in
Proc. 2010 IEEE 26th ICDE, Long Beach, CA, USA, pp. 944–955.

[24] V. Shoup. NTL library for doing number theory [Online]. Available:
http://www.shoup.net/ntl/.

[25] Y. Sun, F. Zhang, and J. Baek, “Strongly secure certificateless pub-
lic key encryption without pairing,” in Proc. 6th Int. Conf. CANS,
Singapore, 2007, pp. 194–208.

[26] C. Yang, F. Wang, and X. Wang,“Efficient mediated certificates
public key encryption scheme without pairings,” in AINAW,
Niagara Falls, ON, May. 2007, pp. 109–112.

[27] S. Yu, C. Wang, K. Ren, and W. Lou,“Attribute based data sharing
with attribute revocation,” in Proc. 5th ASIACCS, New York, NY,
USA, 2010, pp. 261–270.

Seung-Hyun Seo is a Post-Doctoral Researcher
of computer science at Purdue University since
2012 and has been a Senior Researcher at
KISA (Korea Internet and Security Agency)
since 2010. Before joining KISA, she was a
Researcher for 3 years with FSA (Financial
Security Agency), Korea. She received the BS,
MS, and PhD degrees from Ewha Womans
University, Korea in 2000, 2002, and 2006,
respectively. Her current research interests
include cryptography, mobile security, secure

cloud computing, and malicious code analysis. She is a member of the
IEEE.

Mohamed Nabeel is a Post-Doctoral
Researcher of computer science at Purdue
University and a Fulbright Alumnus from Sri
Lanka. He received the PhD degree in 2012
from Purdue University. His current research
interests include distributed systems security
and applied cryptography. He is a member of the
IEEE.

Xiaoyu Ding is a PhD candidate in the
Department of Computer Science, Purdue
University, West Lafayette, IN, USA. He received
the BE degree from Wuhan University, China in
2011. He joined the Department of Computer
Science at Purdue University in 2011. His cur-
rent research interests include cryptography and
access control. He is a student member of the
IEEE.

Elisa Bertino is a Professor of computer science
at Purdue University and serves as Director of
Purdue Cyber Center (Discovery Park) and as
Research Director of CERIAS. Previously, she
was a Faculty Member with the Department of
Computer Science and Communication in the
University of Milan. Her current research inter-
ests include security, privacy, digital identity man-
agement systems, database systems, distributed
systems, and multimedia systems. She is a fel-
low of the IEEE and ACM. She received the

2002 IEEE Computer Society Technical Achievement Award for out-
standing contributions to database systems and database security and
advanced data management systems and the 2005 IEEE Computer
Society Tsutomu Kanai Award for pioneering and innovative research
contributions to secure distributed systems.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

	Purdue University
	Purdue e-Pubs
	9-2014

	An Efficient Certificateless Encryption for Secure Data Sharing in Public Clouds
	Seung-Hyun Seo
	Mohamed Yoosuf Mohamed Nabeel
	Xiaoyu Ding
	Elisa Bertino

	tmp.1418401153.pdf.AKDlF

