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An Efficient Cloud Market Mechanism for

Computing Jobs with Soft Deadlines
Ruiting Zhou, Zongpeng Li, Chuan Wu, Zhiyi Huang

Abstract—This work studies the cloud market for computing
jobs with completion deadlines, and designs efficient online
auctions for cloud resource provisioning. A cloud user bids for
future cloud resources to execute its job. Each bid includes (a)
a utility, reflecting the amount that the user is willing to pay
for executing its job, and (b) a soft deadline, specifying the
preferred finish time of the job, as well as a penalty function
that characterizes the cost of violating the deadline. We target
cloud job auctions that executes in an online fashion, runs in
polynomial time, provides truthfulness guarantee, and achieves
optimal social welfare for the cloud ecosystem. Towards these
goals, we leverage the following classic and new auction design
techniques. First, we adapt the posted pricing auction framework
for eliciting truthful online bids. Second, we address the challenge
posed by soft deadline constraints through a new technique
of compact exponential-size LPs coupled with dual separation
oracles. Third, we develop efficient social welfare approximation
algorithms using the classic primal-dual framework based on
both LP duals and Fenchel duals. Empirical studies driven by
real-world traces verify the efficacy of our online auction design.

Index Terms—Cloud computing, Auction Mechanism, Online
Algorithm.

I. INTRODUCTION

Cloud computing has emerged as a new computing

paradigm that offers users rapid on-demand access to resources

such as CPU, RAM and disk storage, with minimal man-

agement overhead. In the past decade, two types of cloud

platforms blossomed on the Internet, including (i) large-

scale Internet data centers, exemplified by Amazon EC2 [1],

Microsoft Azure and Linode [2], [3], which organize a shared

resource pool for serving their users; and (ii) co-location

data centers, often found in metropolitan areas, where smaller

clouds from different users are physically co-located, jointly

managed and serviced by the co-location [4].

Virtualization technologies help cloud providers pack their

resources into different types of virtual machine (VM), for

allocation to cloud users. For example, Amazon EC2 [1]

currently offers 23 types of different VM types in 7 categories.

Each type of VM has its focus and forte, and a large computing
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job often requires cooperation among multiple VM instances.

For example, social games [5] and enterprise applications [6]

are often composed of a front-end web server tier, a load

balancing tier and a back-end data storage tier, each suited

for execution on a VM that is abundant in a particular type of

resource: bandwidth, CPU, or storage.

Cloud computing jobs can be categorized into two types,

depending on whether their computing need is elastic or not.

Cloud jobs such as large scale web servers utilize cloud service

as a utility, and require the rented VMs to be always active,

with possible dynamic size scaling. These jobs are similar

to the power users in a power grid who demands always-on

power supply. Other jobs such as big data analytics and Google

crawling data processing often have a batch processing nature.

They require a certain computing job to be completed without

demanding always-on VM service, and may tolerate a certain

level of delay in the job completion. These users are similar

to the energy users in a power grid who needs to draw a fixed

quantity of energy for powering a given job, but in a flexible

time window.

Existing market mechanisms for cloud computing, partic-

ularly the auction type mechanisms, have been implicitly

targeting the first type of non-elastic cloud jobs. In such one-

round [7] and online [8] cloud resource auctions, once a bid

is accepted, the service time window of the corresponding

VMs is fixed, i.e. either in the current round [8] or between

the start and finish times prescribed in the bid [9]. Such

auction algorithms do not need to consider the scheduling

of accepted jobs. In sharp contrast, a well designed market

mechanism for the second type of elastic jobs must pay close

attention to not only whether to accept a bid, but when to

schedule its execution based on its deadline information. For

example, consider a cloud user who bids for a VM bundle

tailored for human genome analysis. Its job can be processed

within 3 hours if the specified VM bundle is provisioned;

however, as long as the computing result is available within

the next 24 hours, the user is happy. This leaves ample

space for job scheduling in the temporal domain, which a

well-designed auction algorithm should judiciously exploit to

maximize resource utilization and social efficiency — for

example, scheduling a job within its tolerance window to time

slots with relatively low demand.

This work generalizes existing auction design in the cloud

market by proposing online auctions that explicitly handle

jobs with prescribed deadlines. We further allow a cloud user

to express soft deadlines, described by both a preferred job

completion time, coupled with a penalty function that encodes

how much penalty is associated with different degrees of dead-
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line violation. Compared with simple market mechanisms such

as fixed pricing, a well-designed auction provides automatic

price discovery, promptly adapts prices with the fluctuation of

supply and demand, and allocates cloud resources to jobs who

value them the most, maximizing the overall “happiness” of

everyone in the cloud ecosystem.

We simultaneously target the following goals in our cloud

auction design. First, we require the cloud auction to be

computationally efficient and executes in polynomial time.

Second, the auction should be truthful, so that bidding true

job valuation is the dominant strategy for a cloud user. Third,

the auction should maximize the social welfare of everyone

in the system including both the cloud provider and the cloud

users. Such cloud auction design is faced with a number of

challenges. First, truthfulness is a rather strong property that

comes only with a pair of carefully prepared VM allocation

and payment algorithms that work in concert with each other.

Furthermore, even if the cloud users can be assumed to be

altruistic and truthful bids are given for free, the winner

determination problem for social welfare maximization is an

integer linear program (ILP) that is NP-hard to solve. A new

challenge unique to this work is the non-traditional type of soft

deadline constraints, which is hard to model and handle with

traditional LP formulation and algorithm design. Last but not

least, we require the auction to be online, immediately making

a decision upon the arrival of each bid, without knowing future

bids in the market, yet still guaranteeing near-optimal decision

making as compared to the offline optimum.

We first consider a basic setting where resources in the cloud

are free of cost up to a known capacity limit, and that the

soft deadline can be expressed by enumerating a few hard

deadline options and their corresponding bidding prices. We

first present a natural ILP formulation of the social welfare

maximization problem. While polynomial in size, this ILP

involves both conventional constraints (capacity limits) and un-

conventional constraints (job deadlines). The latter further lead

to unconventional dual variables that are hard to interpret and

update in a primal-dual algorithm framework we will leverage.

We convert the natural ILP into a compact-exponential ILP that

has a compact formulation of conventional constraints only, at

the price of involving an exponential number of variables.

We apply the posted pricing primal-dual framework to

the compact-exponential ILP for online social welfare max-

imization. Although the dual has an exponential number of

constraints, we show fast dual oracles that can quickly update

the dual variables, which are interpreted as unit cost of cloud

resources in different time slots. We maintain carefully esti-

mated resource costs based on recently designed exponential

cost functions [10]. Upon receiving a bid, we compare the

bidding price with the estimated cost of the bid. If the bidding

price is higher, the bid is accepted and dual variables are

updated; otherwise the bid is rejected. The posted pricing

framework charges winning jobs an estimated cost that is

independent from the bidding price, and is truthful [11]. We

conduct theoretical analysis on the competitive ratio and prove

its upper-bound.

We proceed to generalize our cloud auction design by

addressing two practical concerns. First, we model the cost

of resource provisioning in data centers, using a convex cost

function that characterizes server cost with Dynamic Voltage

Frequency Scaling [12]. Second, we consider the general form

of a soft deadline, specified by (i) a preferred deadline and (ii)

a non-decreasing penalty function for deadline violation. The

new social welfare maximization problem is an integer convex

program. We resort to a new primal-dual solution framework

for well-structured convex programs based on Fenchel dual

[13], and adapt our posted pricing auction framework from

the previous scenario to this general setting.

In the rest of the paper, we discuss related work in Sec. II,

and introduce the system model in Sec. III. Design and

analysis of the online cloud auctions are presented in Sec. IV

and Sec. V. Sec. VI presents simulation studies, and Sec. VII

concludes the paper.

II. PREVIOUS RESEARCH

Market mechanism design for cloud computing, particularly

auction mechanisms for cloud resource trading, has attracted

substantial interest from the research community, with a large

number of VM auctions spawned in the past few years [7]–[9],

[14]–[16].

The earliest VM auctions are simple in that they are one-

round auctions, and assume that the cloud provisions a single

type of VM, or that VM configurations are equivalent up to

linear scaling [14]. They also assume the scenario of static

VM provisioning, where the number and type of VMs to be

sold are predetermined prior to the auction start [15].

Dynamic VM provisioning, in which the cloud provider

makes decision on which VMs to assemble and how many

based on demand learned from user bid during the auction, has

been studied in the past two years [7]–[9]. Zhang et al. design

a randomized auction for dynamic resource provisioning in

cloud computing based on a convex decomposition technique,

which is truthful and guarantees a small approximation ratio

in social welfare [7]. Shi et al. further study dynamic resource

provisioning where cloud users are subject to budget con-

straints, and design online auctions where decision making

is coupled in the time domain due to fixed user budgets [8].

Online cloud auctions appear later than their one-round

counterparts. Zhang et al. is among the first to study online

cloud auction design, but they assume all VMs are of a uniform

type [16]. The work of Shi et al. [8] designs online auctions,

but does not consider the temporal correlation in decision

making due to jobs spanning multiple time slots. A recent

work of Zhang et al [9] study online cloud auctions where a

user bids into a fixed time window for job execution; hence the

scheduling dimension is non-present in their solution space.

There have been recent studies on mechanism deign for

batch jobs with deadlines. Lucier et al. study two scheduling

algorithms for jobs with deadlines in cloud computing clusters

[17]. They analyze the competitive ratio for non-committed

scheduling, which does not require to finish executing a

job that has started execution. They do not provide any

performance guarantee on the competitive ratio for committed

scheduling. Navendu et al. design a truthful allocation and

pricing mechanism for computing jobs with deadlines, but
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restrict attention to the offline setting [18]. Azar et al. con-

struct an online mechanisms for preemptive scheduling with

deadlines [19]. Their mechanism is truthful and achieves a

constant competitive ratio. All of those work consider only

one fixed deadline for each job, and fail to model the server’s

operation cost.

Compared with existing literature on cloud auctions, this

work is the first to design cloud auctions that explicitly

consider job elasticity and job execution deadlines, which are

important for practical applications to batch processing jobs.

Accordingly, we propose the compact-exponential optimiza-

tion technique that can effectively handle the new job deadline

constraints in social welfare maximization for the cloud.

The online primal dual method (see [20] for a detailed

survey) is a power algorithmic technique that that has wit-

nessed broad applications, such as solving the ski rental

problem, maximizing revenue in ad-auctions, and solving the

general packing problem. The original primal dual framework

works on linear programs, and is not used to solve problems

modelled by convex programs in our work. Rather recently,

new techniques were introduced to help apply the primal dual

framework for algorithm design to convex programs. Blum et

al. study online combinatorial auctions with production costs

using the online primal dual framework [21]. They presents

algorithms for various cost functions. Huang et al. further

investigate the same problem and propose mechanisms with

improved competitive ratio [11]. All those work don’t consider

the scheduling of jobs, and they cannot handle VM departures

and resource recycling.

III. SYSTEM MODEL AND PRELIMINARIES

We consider a cloud data center hosting a pool of K types

of resource, including CPU, RAM and disk storage that can

be dynamically assembled into different types of VMs. Let

[X] denote the integer set {1, 2, . . . , X}. There are a total

ck unit of type-k resource in this cloud. The cloud service

provider acts as the auctioneer to lease VMs to cloud users

through an auction. User’s bid arrives randomly in a large

time span 1, 2, . . . , T . Note that multiple bids can arrive

simultaneously, and would be ordered randomly. There are

I users participating in the auction, and each user requests

multiple types of VM, and specifies in its bid: (i) rki , the total

amount of type-k resource, and (ii) wi, the number of slots

required to finish the job by the designated VMs. Job execution

doesn’t need to be continuous. A user i’s job can be executed

at any time slot as long as the total execution time meets wi

before the deadline. We consider two soft deadline models

in this work: a basic model with alternative deadlines and a

general model with penalty function and server operation cost.

A. Jobs with Alternative Deadlines

We first consider a basic scenario where each user submits
J optional bids to express disjunctive deadline options. A bid
from user i consists of a list of desired types of resource rki ,
8k; the number of requested slots wi, and deadlines for job
completion dij , 8j, each with a corresponding bidding price
bij . We use Bi to denote the bidding language of user i’s bids
submitted at time ti:

Bi = {ti, {r
k
i }k2[K], wi, {dij , bij}j2[J]}.

We adopt the XOR bidding rule that assumes a user can

win at most one bid among its J optional bids [7]. Upon the

arrival of each bid, the cloud provider decides immediately

whether to accept it, and if so, which deadline to choose and

how to schedule the job. A binary xij equals 1 if user i’s jth

bid wins, and 0 otherwise. Let another binary variable yi(t)
encode the scheduling of user i’s job: yi(t) = 1 if user i’s
job is scheduled to run at time t, and 0 otherwise. The cloud

provider also calculates the payment pi for each winner i.
Let vij be the true valuation of user i’s jth bid, then the

utility of that bid with is uij(bij) = vij �pi if xij = 1, and is

0 if xij = 0. In practice, user are assumed to be selfish with

a natural goal to maximize their own utilities; they may lie

about their true valuations in the hope of a higher utility. The

cloud provider instead pursues highest social welfare possible

to make everyone in the cloud system “happy”. Thus, it is

important for the cloud provider to elicit truthful bids.

Definition 1. (Truthful Auction): A cloud auction is truthful

if the dominant strategy for each user is to report its true

valuation, which always maximizes its utility: for all bij 6= vij ,

uij(vij) � uij(bij).

Definition 2. (Social Welfare): The social welfare in the cloud

market with alternative deadlines is the aggregate user utilityP
i2[I]

P
j2[J] vijxij �

P
i2[I] pi plus the cloud provider’s

utility
P

i2[I] pi. Payments cancel themselves, and the social

welfare becomes
P

i2[I]

P
j2[J] vijxij .

B. Jobs with Penalty Function and Operation Cost

We further consider a more general model where each user
submits a single preferred deadline di, with a penalty function
gi(τi) defined over deadline violation τi:

gi(τi) =

⇢

gci(τi), if τ ∈ [0, T − di]

+∞, otherwise
(1)

where di + τi is the job completion time; bi � gi(τi) is the

bidding price, decreasing with job completion time; gci(·) is a

nondecreasing function and gci(0) = 0. User i’s bid with this

model is: Bi = {ti, {r
k
i }k2[K], wi, di, bi, gi(τi)}.

Existing studies on cloud auction design often ignore the

server operation cost of the cloud provider. It is natural to

include server cost in the computation of social welfare, albeit

the fact that it makes social welfare optimization substantially

more challenging (from linear to non-linear integer program-

ming). The operation cost in the cloud comprises mainly

of power consumption for provisioning the virtual machines,

increasing as the amount of resources used grows. Let zk(t)
be the amount of type-k resource used at time t in the cloud,

then the cost function of type-k resource is defined as:

fk(zk(t)) =

(

βkzk(t)
1+γk , if zk(t) ∈ [0, ck]

+∞, otherwise
(2)

Parameter βk is the coefficient determined by the power

consumption of each type of resource. Recent measurement

studies suggest that the power consumption of memory, disk

are significantly lower than that of CPU [22]. γk � 0
modulates the shape of the cost function, following the

the operational model of physical servers in the cloud. For
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example, Dynamic Voltage Frequency Scaling (DVFS) is a

technique widely adopted in virtualization platforms, adjusting

the frequency or voltage of CPUs to save power consumption

[12]. γk is roughly 2 if the voltage is proportional to the usage

of CPU when DVFS is enabled, and equals 0 when DVFS in

disabled [23]. The shape of RAM and disk cost function is

different from that of CPU, with γk 2 [0.5, 1] [22].

Similar to the notations in Sec. III-A, let a binary xi be an

auction decision and pi be the payment. vi� gi(τi) is the true

valuation of user i’s bid. The cloud provider’s utility equals

the aggregate user payment minus the operation cost, i.e.,P
i2[I] pi �

P
k2[K]

P
t2[T ] fk(zk(t)). The definitions of user

i’s utility, truthful auction and social welfare are omitted here

as similar ones can be found in Sec. III-A. Table I summaries

notation for ease of reference.

IV. ONLINE AUCTION MECHANISM FOR JOBS WITH

ALTERNATIVE DEADLINES

In this section, we focus on the scenario where each user’s

job has J alternative deadlines. Sec. IV-A presents the social

welfare maximization problem and the framework to handle

such deadline problems. We design an online auction in

Sec. IV-B and conduct theoretical analysis in Sec. IV-C.

A. Social Welfare Maximization Problem

Under the assumption of truthful bidding (bij = vij), the so-
cial welfare maximization problem with alternative deadlines
can be formulated into the following ILP:

maximize
X

i2[I]

X

j2[J]

bijxij (3)

subject to: yi(t)t ≤
X

j2[J]

dijxij , ∀t ∈ [T ], ∀i ∈ [I] : ti ≤ t, (3a)

X

j2[J]

wixij ≤
X

t2[T ]:tit

yi(t), ∀i ∈ [I], (3b)

X

i2[I]:tit

rki yi(t) ≤ ck, ∀k ∈ [K[, ∀t ∈ [T ], (3c)

X

j2[J]

xij ≤ 1, ∀i ∈ [I], (3d)

xij , yi(t) ∈ {0, 1}, ∀i ∈ [I], ∀t ∈ [T ], ∀j ∈ [J ]. (3e)

Note that the following constraint is redundant, and is not

explicitly included in the ILP above: yi(t) ≤
P

j2[J] xij , ∀i ∈

[I], ∀t ∈ [T ]. Constraint (3a) ensures that a job is scheduled

to run between its arrival time and deadline. Constraint (3b)

guarantees that the number of allocated slots is sufficient for

serving a successful bid. The capacity limit of each type of

resource is expressed in constraint (3c), and the alternative

deadlines are modelled with the XOR bidding rule by (3d).
Even in the offline setting, ILP (3) without constraints

(3a) and (3b) is still a NP-hard combinatorial optimization
problem, equivalent to the classic knapsack problem. The
challenge further escalates when we involve the jobs’ dead-
lines and pursue online decision making. To address these
challenges, we resort to the primal-dual algorithm design
technique. In preparation, we first design a new framework to
handle the unconventional constraints for deadline modelling.
More specifically, we reformulate the original ILP (3) into a

TABLE I: Summary of Notations

I # of users [X] integer set {1, . . . , X}
T # of time slots J # of bids per user
f cost function f⇤ convex conjugate of f
g penalty function ti user i’s arrival time
pi user i’s payment ui user i’s utlity

rki demand of type-k resource by user i
wi # slots requested by user i
τi # slots that passes the deadline for user i
dij(di) deadline of user i’s jth (user i’s) bid
bij(bi) bidding price of user i’s jth (user i’s) bid
vij(vi) true valuation of user i’s jth (user i’s) bid
xij(xi) user i’s jth (user i’s) bid wins (1) or not (0)
yi(t) whether or not to allocate user i’s job in slot t
ck capacity of type-k resource
pk(t) marginal price of type-k resource at time t
zk(t) amount of allocated type-k resource at time t
Uk(Lk) maximum (minimum) value per unit

of type-k resource per unit of time

θk max{2, (1 + γk)
1
γk }

ρk max{ θk
ck

γk,
θk

ck(θk�1)
ln(

U0

k

βk(1+γk)c
γk
k

)}

α1(α2) competitive ratio of Aonline1 (Aonline2)

simplified compact-exponential ILP with a packing structure,
at the price of involving an exponential number of variables:

maximize
X

i2[I]

X

l2ζi

bilxil (4)

subject to:
X

i2[I]

X

l:t2l

rki xil ≤ ck, ∀k ∈ [K], ∀t ∈ [T ], (4a)

X

l2ζi

xil ≤ 1, ∀i ∈ [I], (4b)

xil ∈ {0, 1}, ∀i ∈ [I], ∀l ∈ ζi. (4c)

Constraints (4a) and (4b) are equivalent to (3c) and (3d).
ζi is the set of time schedules that satisfy constraints (3a)
and (3b) for user i. The value of bil is based on schedule
l, and equals the corresponding bij . We relax the integrality
constraints of xil to xil � 0 and formulate the dual problem.
By introducing dual variables pk(t) and ui to constraints (4a)
and (4b) respectively, the dual LP of the relaxed (4) is:

minimize
X

i2[i]

ui +
X

t2[T ]

X

k2[K]

ckpk(t) (5)

subject to: ui ≥ bil −
X

k2[K]

X

t2l

rki pk(t), ∀i ∈ [I], ∀l ∈ ζi, (5a)

pk(t), ui ≥ 0, ∀i ∈ [I], ∀k ∈ [K], ∀t ∈ [T ].
(5b)

As we can observe, a feasible solution to ILP (4) has a

corresponding feasible solution in ILP (3), and the optimal

objective value of (4) is equal to that of (3). The number of

variables in ILP (4) is exponential as the number of possible

time schedules for user i is exponential in size. We next design

an efficient primal-dual allocation scheme that only updates a

polynomial number of variables, and can simultaneously solve

optimization problems (3), (4) and (5).

B. Online Auction Design

In the auction algorithm, the cloud provider needs to deicide
whether to accept a user i’s job and if so, how to schedule
its job to meet its deadline. If user i’s jth bid with schedule
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l is accepted, then let xij = 1, and update the variable yi(t)
according to schedule l. To solve ILP (3), we adopt the primal-
dual technique to the compact-exponential ILP (4) and its
dual (5). For each primal variable xil in (4), there is a dual
constraint associated to it. Complementary slackness indicates
the update of the primal variable is based on its dual constraint.
xil is zero unless its associated dual constraint (5a) is tight.
Because the dual variable ui � 0, we let ui be the maximum
of 0 and the right hand side (RHS) of (5a),

ui = max{0,max
l2ζi

{bil −
X

t2l

X

k2[K]

rki pk(t)}}. (6)

Accordingly, the cloud provider accepts user i if ui > 0, and

serves user i’s job according to the schedule that maximizes

RHS of constraint (5a); if ui  0, the bid is rejected.

Algorithm 1 A Primal-dual Online Auction Aonline1

Input: bidding language {Bi}, {ck}

1: Define function pk(zk(t)) according to (7);

2: Initialize xij = 0, yi(t) = 0, zk(t) = 0, ui = 0, pk(t) =

0, ∀i ∈ [I], ∀j ∈ [J ], ∀k ∈ [K], ∀t ∈ [T ]; Let xil = 0, ∀i ∈

[I], ∀l ∈ ζi, by default;

3: Upon the arrival of the ith user

4:
�

xij , {yi(t)}, pi, {pk(t)}, {zk(t)}
�

= Acore1

�

Bi, {ck},

{pk(t)}, {zk(t)}
�

;

5: if 9j 2 [J ], xij = 1 then

6: Accept user i’s jth bid and allocated resources accord-

ing to yi(t); Charge pi for user i;
7: else

8: Reject user i.
9: end if

Algorithm 2 A Scheduling Algorithm Acore1

Input: bidding language {Bi}, {ck}, {pk(t)}, {zk(t)}
Output: xil, pi, {pk(t)}, {zk(t)}

1: c(t) =
P

k2[K] r
k
i pk(t), 8t 2 [T ]; // price per slot

2: for all j 2 [J ] do

3: Select wi slots with minimum (c(t)) and zk(t)+ rki 

ck, 8k 2 [K] within [ti, dij ], save the schedule in lj ;

4: pij =
P

t2lj
c(t);uij = bij � pij ;

5: end for

6: j⇤ = argmaxj2[J]{uij};
7: if uij⇤ > 0 then

8: xij⇤ = 1; yi(t) = 1, 8t 2 lj⇤ , pi = pij⇤ ;

9: xilj⇤ = 1;
10: ui = uij⇤ ; zk(t) = zk(t) + rki , 8k 2 [K], t 2 lj⇤ ;
11: pk(t) = pk(zk(t)), 8k 2 [K], t 2 lj⇤ ;
12: end if

13: Return xij⇤ , {yi(t)}, pi, {pk(t)}, {zk(t)}

If we interpret dual variable pk(t) as the marginal price per

unit of type-k resource at time t, then
P

t2l

P
k2[K] r

k
i pk(t) is

the total charge that user i should pay when its job is assigned

according to schedule l. The RHS of (5a) becomes the utility

of bid i with schedule l. Thus, the assignment of ui in (6)

effectively maximizes user i’s utility. This is a key step towards

achieving social welfare maximization and truthfulness.

Note that although the calculation of ui seems to take

exponential time as the size of dual constraint (5a) is expo-

nential, we design a dual oracle that selects only a polyno-

mial number of dual constraints. We fix a set of schedules

Li with polynomial size through the dual oracle, and set

ui = max{0,maxl2Li
{bil �

P
t2l

P
k2[K] r

k
i pk(t)}}. Then

xil is updated to 1 when ui > 0. The dual oracle works as

follow. For each deadline dij of user i’s job, we select wi

slots with the minimum price for t 2 [ti, dij ], and let lj be the

corresponding schedule, and add lj to set Li. The schedule

that maximizes user i’s utility is the one with the minimum

price in set Li.
We next discuss the update of the dual variable pk(t). Recall

that pk(t) represents the marginal price per unit of type-k
resource at time t. We define a new variable zk(t) as the
amount of allocated type-k resource at time t, and let the
marginal price be a function of zk(t). pk(t) is increasing
with the growth of zk. Let Uk and Lk be the maximum and
minimum values per unit of type-k resource per unit of time,
respectively. pk(t) starts at Lk and exponentially increases
when zk(t) is close to the capacity ck. It reaches Uk when
zk(t) = ck because in this case, the cloud provider will never
allocate any type-k resource to any user. In summary, pk(t) is
defined as a function on zk(t) as following:

pk(zk(t)) = Lk

✓

Uk

Lk

◆

zk(t)

ck

(7)

Where Uk ≤ maxi2[I],j2]J]
bij

wir
k
i

and Lk ≥

mini2[I],j2]J]
bij

P
k2[K] wir

k
i

.

Aonline1 in Alg. 1 with the schedule algorithm Acore1

running for each user in Alg. 2 is the online auction. Aonline1

first defines the price function and initializes the primal and

dual variables in lines 1-2. Upon the arrival of each user i,
we select the bid j⇤ with schedule lj⇤ that maximizes user

i’s utility through the dual oracle (lines 2-5). If user i obtains

positive utility, primal variables xij⇤ and yi(t) are updated

according to schedule j⇤ (line 8). We then increase the usage

for different resources (zk(t)) and update the price (pk(t)) for

t 2 lj⇤ (lines 10-11).

Z1(1)=2

p1(1)=1.2

C1=10

Slot 1

Z1(2)=2

p1(2)=1.2

Slot 2

Z1(3)=2

p1(3)=1.2

Slot 3

Z1(4)=0

p1(4)=0

Slot 4

Z1(5)=0

p1(5)=0

Slot 5

User i arrives at time 2

2 units    bid 1: deadline 3, $6  

2 slots     bid 2: deadline 4, $4{

Z1(1)=2

p1(1)=1.2

Slot 1

Z1(2)=2

p1(2)=1.2

Slot 2

Z1(3)=4

p1(3)=1.32

Slot 3

Z1(4)=2

p1(4)=1.148

Slot 4

Z1(5)=0

p1(5)=0

Slot 5

Accept bid 2. User i’s job 

is processed at time slots 3 and 4

Fig. 1: An Example of the process in Aonline1.

We next use an example to illustrate the winner determi-

nation process in Aonline1, as shown in Fig. 1. Suppose the

online system spans 5 time slots. A cloud data center hosts

only one type of resource and the capacity is 10, i.e., c1 = 10.

Assume L1 = 1 and U1 = 2. Before the arrival of user i,
assume the marginal price per unit of resource at time t is

p1(1) = p1(2) = p1(3) = 1.2; p1(4) = p1(5) = 0. The

amount of allocated resource at time t is z1(1) = z1(2) =
z1(3) = 2; z1(4) = z1(5) = 0. User i arrives at time 2,
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requiring 2 units of resource and 2 time slots to execute its job.

It submits two optional bids: it is willing to pay $6 if its job

is completed before time 3 or $4 if its job is finished before

time 4. The bidding price of the user i can be expressed as

Bi = {2, 2, 2, {3, $6}, {4, $4}}. Upon the arrival of the user

i, Acore1 is executed to deicide whether to accept it and if so,

how to schedule the job. The price per slot is calculated at line

1 in Acore1 and c(1) = c(2) = c(3) = 2.4; c(4) = c(5) = 0.

For the first bid of user i, lines 3-4 in Acore1 compute the

schedule, payment and utility of it: l1 = [2, 3], p11 = 4.8
and u11 = 1.2. For the second bid of user 1, l2 = [3, 4],
p12 = 2.4 and u12 = 1.6. Now user i’s maximum utility is

larger than 0, i.e., u12 > 0, primal and dual variables are

updated accordingly at lines 8-11 in Acore1. Here z1(t) and

p1(t) at slots 3 and 4 are updated, i.e., z1(3) = 4, z1(4) = 2
and p1(3) = 1 · 2

4
10 ⇡ 1.32, p1(4) = 1 · 2

2
10 ⇡ 1.148. User i’s

second bid is accepted and its job is processed at time slots 3
and 4. The cloud provider charges $2.4 for user i. This process

is repeated until the last user’s job is handled.

C. Theoretical Analysis

i) Correctness, Polynomial Time, and Truthfulness.

Theorem 1. Aonline1 computes a feasible solution to ILP (3),

ILP (4) and LP (5) in polynomial time.

Proof: (Correctness): Aonline1 outputs a feasible solution for

ILP (3) because line 3 in Acore1 guarantees that the schedule

lj for user i’s jth bid satisfies constraints (3a), (3b) and (3c).

Constraint (3d) holds as only one bid per user can be accepted

by Acore1 in line 6. Furthermore, the corresponding relation

between xij and xil implies xil is a feasible solution for ILP

(4). For the dual problem (5), Acore1 assigns 0 to ui if bil P
k2[K]

P
t2l r

k
i pk(t), and bil �

P
k2[K]

P
t2l r

k
i pk(t) to ui

otherwise, ensuring the feasibility of Aonline1.

(Polynomial running time): Lines 1-2 can be executed in

linear time for the initialization of the cost function, primal and

dual variables. Upon the arrival of user i, Algorithm Acore1

first takes T steps to calculate the price of each slot. The

for loop iterates J times to select the best slots for each bid.

Line 3 in Alg. 2 takes O(TK) time to schedule the job and

check the capacity limit. Line 4 can be done in O(1) steps.

Thus, the running time of the for loop in Alg. 2 is O(JKT ).
Then line 6 records the bid with the maximum utility in J
steps. The body of the if statement (line 8-11) takes O(KT )
time to update the primal and dual variables and compute the

payment. To sum up, the running time of Acore1 is O(JKT ).
The last step of Aonline1 (lines 5-9) is to announce the auction

decision, which can be done in constant time. In conclusion,

Aonline1 runs in polynomial time (O(IJKT )).

Theorem 2. The online auction Aonline1 is truthful.

Proof: Our auction Aonline1 belongs to the family of posted

pricing mechanisms [11]. Upon the arrival of user i, the

payment that user i needs to pay to the cloud provider if

it wins, depends only on the amount of resource that has

been sold, and user i’s demand. It is independent of user

i’s bidding price. Consequently, user i cannot improve its

utility by lying about its bidding price as its utility equals

its valuation minus the payment, i.e., uij = vij � pi.
Furthermore, Aonline1 always selects the schedule with the

maximum utility among all possible schedules for user i.
Hence, truthful bidding guarantees that each user obtains its

maximum utility in Aonline1.

ii) Competitive Ratio.

We next examine the competitive ratio of our online auction.

The competitive ratio is the upper-bound ratio of the social

welfare achieved by the optimal solution of ILP (3) to the

social welfare achieved by our online auction Aonline1. We

first introduce the primal-dual analysis framework in Lemma

1, which guides the final proof of the competitive ratio.

Let OPT1 and OPT2 denote the optimal objective values of

ILP (3) and (4), respectively. We know that OPT1 = OPT2.

Let Pi and Di be the objective value of primal problem (4)

and that of dual problem (5) returned by an algorithm after

processing user i’s bids. Let P0 = D0 = 0 be the initial values.

Then PI and DI are the final primal and dual objective values

achieved by the algorithm.

Lemma 1. If there exists a constant α1 � 1 such that Pi �

Pi�1 � 1
α1

(Di � Di�1) for all i, then the algorithm is α1-

competitive in social welfare.

Proof: When we sum up the inequalities for each i, we

have PI =
P

i
(Pi − Pi�1) ≥ 1

α1

P

i
(Di − Di�1) = 1

α1
DI .

According to weak duality [24], DI � OPT2, therefore

PI � 1
α1

OPT2 = 1
α1

OPT1. So we can conclude that the

algorithm is α1 competitive.

Aonline1 guarantees P0=D0=0. We next define an

Allocation-Price Relationship and show that if it holds for a

given α1, then the primal and dual objective values achieved

by Aonline1 satisfy the inequality in Lemma 1. pik(t) denotes

the price of type-k resource after handling user i. zik(t) is the

amount of allocated type-k resource after processing i’s job.

Definition 3. The Allocation-Price Relationship for Aonline1

with α1 � 1 is pi�1
k (t)(zik(t)−zi�1

k (t)) ≥ 1
α1

ck(p
i
k(t)−pi�1

k (t)),

∀i ∈ [I], ∀k ∈ [K], ∀t ∈ l.

Lemma 2. If the Allocation-Price Relationship holds for a

given α1 � 1, then Aonline1 guarantees Pi�Pi�1 � 1
α1

(Di�

Di�1) for all i 2 [I].

Proof: If user i is rejected, then Pi �Pi�1 = Di �Di�1 = 0.

In the following analysis, we assume that user i’s jth bid

is accepted, and let l be the schedule of user i’s job. The

increment of the primal objective value is: Pi � Pi�1 = bil.
Note that Aonline1 makes the constraint (5a) tight when

bid bij with schedule l is accepted. Thus, bil = ui +
P

k2[K]

P

t2l
pi�1
k (t)(zik(t)− zi�1

k (t)).

The increase of the dual objective value is: Di − Di�1 =

ui +
P

k2[K]

P

t2l
ck(p

i
k(t) − pi�1

k (t)). By summing up the

Allocation-Price Relationship over all k 2 [K] and t 2 l, we

can obtain: Pi−Pi�1 ≥ ui+
1
α1

(Di−Di�1−ui). Since ui � 0
and α1 � 1, it is obvious that Pi−Pi�1 ≥ 1

α1
(Di−Di�1).

The Allocation-Price Relationship involves only the vari-

ables for type-k resource, we next try to find the corresponding

α1,k for each resource k that satisfies the Allocation-Price

Relationship. The value of the approximation ratio α1 is just

the maximum value among all α1,k. In order to compute α1,k,



7

we assume that rki ⌧ ck, then zik(t)�zi�1
k (t) can be expressed

as dzk(t). The derivative of the Allocation-Price Relationship

under the above assumption is:

Definition 4. The Differential Allocation-Price Relationship

for Aonline1 with α1,k � 1 is pk(t)dzk(t) ≥
ck

α1,k
dpk(t), ∀i, k, t.

Lemma 3. α1,k = ln Uk

Lk
and the marginal price defined in (7)

satisfies the Differential Allocation-Price Relationship.
Proof: The derivative of the marginal price function is:

dpk(t) = p0k(zk(t)) = Lk(Uk/Lk)
zk(t)

ck ln(Uk/Lk)
1
ck . The

Differential Allocation-Price Relationship is:

Lk

✓

Uk

Lk

◆

zk(t)

ck

dzk(t) ≥
ck
α1,k

Lk

✓

Uk

Lk

◆

zk(t)

ck 1

ck
ln

Uk

Lk

dzk(t)

⇒ α1,k ≥ ln
Uk

Lk

.

Therefore this lemma holds for α1,k = ln Uk

Lk
.

Theorem 3. The online auction Aonline1 in Alg. 1 is α1-

competitive in social welfare with α1 = maxk2[K] ln
Uk

Lk
.

Proof: According to the proof in Lemma 3, α1 =
maxk2[K] ln

Uk

Lk
satisfies the Differential Allocation-Price Re-

lationship. Under the assumption that dzk(t) = zik(t) �

zi�1
k (t)) is much smaller than the capacity of type-k resource

(ck), we have dpk(t) = p0k(zk(t))dzk(t) = pik(t) � pi�1
k (t).

As a result, we can obtain the Allocation-Price Relationship

holds for α1 = maxk2[K] ln
Uk

Lk
. Then, combining Lemma 1

and Lemma 2 we finish the proof.

V. ONLINE AUCTION DESIGN FOR THE GENERAL MODEL

WITH PENALTY FUNCTION AND OPERATION COST

In this section, we present the online auction design for the

general model that includes a penalty function and operation

cost. We focus on the more challenging case of superlinear

cost function with γk > 0. The auction design for linear cost

with γk = 0 is similar and is omitted here.

A. Social Welfare Maximization Problem

Under the assumption of truthful bidding, the social welfare
maximization problem in the general model is:

maximize
X

i2[I]

(bixi − gi(τi))−
X

t2[T ]

X

k2[K]

fk(zk(t)) (8)

subject to: yi(t)t ≤ di + τi, ∀t ∈ [T ], ∀i ∈ [I] : ti ≤ t, (8a)

wixi ≤
X

t2[T ]:tit

yi(t), ∀i ∈ [I], (8b)

X

i2[I]:tit

yi(t)r
k
i ≤ zk(t), ∀k ∈ [K[, ∀t ∈ [T ], (8c)

τi, zk(t) ≥ 0, xi, yi(t) ∈ {0, 1},

∀i ∈ [I],∀t ∈ [T ], ∀k ∈ [K]. (8d)

Again, constraint yi(t)  xi, 8i, t is redundant and is implied

by the other constraints. Recall the definition of the cost

function in (2) (fk(zk(t)) = +1 if zk(t) > ck), constraint

(8c) guarantees that the amount of allocated resource never

exceeds its capacity.
Let ζi be the set of time schedules that satisfy constraints

(8a) and (8b) for user i, we adopt the same framework to

reformulate the above convex optimization to the following
compact-exponential convex problem:

maximize
X

i2[I]

X

l2ζi

bilxil −
X

t2[T ]

X

k2[K]

fk(zk(t)) (9)

subject to:
X

i2[I]

X

l:t2l

rki xil ≤ zk(t), ∀k ∈ [K], ∀t ∈ [T ], (9a)

X

l2ζi

xil ≤ 1, ∀i ∈ [I], (9b)

xil ∈ {0, 1}, zk(t) ≥ 0, ∀i ∈ [I], ∀l ∈ ζi, ∀k ∈ [K], ∀t ∈ [T ].
(9c)

We introduce dual variables pk(t) and ui to (9a) and (9b).
The Fenchel dual [13] of the relaxed convex problem (9) is:

minimize
X

i2[i]

ui +
X

t2[T ]

X

k2[K]

f⇤
k (pk(t)) (10)

subject to: ui ≥ bil −
X

k2[K]

X

t2l

rki pk(t), ∀i ∈ [I], ∀l ∈ ζi, (10a)

pk(t), ui ≥ 0, ∀i ∈ [I], ∀k ∈ [K], ∀t ∈ [T ].
(10b)

Where f⇤

k (pk(t)) is the convex conjugate [25] of the cost
function fk(·), defined as: f⇤

k (pk(t)) = supzk(t)�0{pk(t)zk(t)−
fk(zk(t))}. The explicit expression of the conjugate is as
following:

f⇤
k (pk(t)) =

8

>

>

<

>

>

:

⇣ pk(t)

1 + γk

⌘

1+γk
γk ·

γk

β
1
γk
k

, z0k(t) ≤ ck

ckpk(t)− βkc
1+γk

k , z0k(t) > ck

(11)

where z0k(t) = ( pk(t)
βk(1+γk)

)
1
γk .

Proof:

f⇤
k (pk(t)) = sup

zk(t)�0

(

pk(t)zk(t)− βkzk(t)
1+γk , zk(t) ∈ [0, ck]

pk(t)zk(t)−∞, zk(t) > ck

We observe that pk(t)zk(t)�1 = �1 when zk(t) > ck, thus

we only need to obtain the conjugate of f when zk(t) 2 [0, ck],
Let ψk(zk(t)) = pk(t)zk(t) � βkzk(t)

1+γk . The derivative
of ψk(zk(t)) with respect to zk(t) is :

ψk(zk(t))
0 = pk(t)− βk(1 + γk)zk(t)

γk .

When we let ψk(z
0
k(t))

0 = 0, the local maximum happens at

the point z0k(t) and z0k(t) = ( pk(t)
βk(1+γk)

)
1
γk .

Note that the domain of zk(t) is within the range [0, ck],
therefore the supremum of ψk(zk(t)) is z0k(t) only if z0k(t) 2
[0, ck]. Otherwise, when z0k(t) > ck, we can obtain that

ψk(zk(t))
0 > 0, which means ψk(zk(t)) monotonically in-

creases with the increment of zk(t) and the supremum happens

at zk(t) = ck.

To sum up, we derive the conjugate of the cost function as

shown in (11).

B. Online Auction Design

We adopt the same posted pricing primal-dual framework

from Sec. IV to solve the convex problem (8). Similarly, the

primal-dual technique is applied to its compact-exponential

problem (9) and its dual (10): the primal variable xil remains

zero unless its dual constraint (10a) becomes tight. The

assignment of ui is the same as that in (6).
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Although there are an exponential size of dual constraints

in the computation of ui, we design a dual oracle based

on dynamic programming to output a polynomial size of

schedules, then only dual constraints associated to this set of

schedules need to be considered.

The basic idea of the dual oracle is as follows. We fix the

completion time of user i’s job to be tc (tc 2 [ti+wi�1, T ]),
and construct the best schedule lj with the minimum price

in this case. The set that includes all such lj has polynomial

size, and is the output of the dual oracle. The construction

of lj is based on the dynamic programming method. The

base case is the schedule l0 with t 2 [ti, ti + wi � 1]. We

move the completion time one slot forward each time. Let

c(t) =
P

k2[K] r
k
i pk(t) be the price of user i’s job running

at time t. If the completion time tc passes the deadline

di, the corresponding penalty is added to the price, i.e.,

c(t) =
P

k2[K] r
k
i pk(t)+g(tc�di). When the old competition

time is replaced with the new one, we only need to compare

the price of the old competition time and wi�1 slots before the

old competition time. For example, if user i arrives at time 1
with wi = 4, then the basic case is l0 = {1, 2, 3, 4}. Assume

that argmaxt2{1,2,3} c(t) = 2. We next fix the completion

time to 5, the best schedule is then {1, 4, 3, 5} if c(4) < c(2)
and {1, 2, 3, 5} otherwise. The process is repeated until the

completion time reaches T .
The marginal price pk(t) per unit of type-k resource at time

t can be defined as the derivative of the cost function, i.e.,
fk

0(ẑk(t)) if the overall demand of resource k at t (ẑk(t)) is
known. But in the online setting, it is impossible for the cloud
provider to acquire the complete knowledge of the system.
The cloud provider predicts the final demand at future slots
as θk(θk > 1) times of the current demand at those slots if
the predicted final demand is below the capacity, and set the
marginal price to fk

0(θkzk(t)) where zk(t) is the amount of
current allocated resource k at t. Let U 0

k be the maximum value
per unit of type-k resource per unit of time. The marginal price
grows exponentially when the predicted demand is larger than
the capacity, and reaches U 0

k if zk(t) = ck. More specifically,
the marginal price function is defined as:

pk(zk(t)) =

8

>

<

>

:

f 0
k(θkzk(t)), zk(t) ≤

ck
θk

f 0
k(ck)e

ρk(zk(t)�
ck
θk

)
, zk(t) >

ck
θk

(12)

with parameters θk = max{2, (1 + γk)
1
γk },

ρk = max{
θk

ck
γk,

θk

ck(θk − 1)
ln(

U 0
k

βk(1 + γk)c
γk

k

)},

where U 0
k ≤ maxi2[I]

bi
wir

k
i

.

The online auction Aonline2 for the general model is pre-

sented in Alg. 3. Upon the arrival of the ith user, Aonline2

calls Acore2 in Alg. 4 to make decision. Acore2 computes the

best schedule for user i through the dual oracle (lines 1-10)

to maximize its utility ui. If ui > 0, the corresponding primal

and dual variables are updated in lines 14-17.

C. Theoretical Analysis

i) Correctness, Polynomial Time, and Truthfulness.

Lemma 4. The running time of Acore2 is O(KT + T 2).

Algorithm 3 A Primal-dual Online Auction Aonline2

Input: bidding language {Bi}, {ck}, {βk, γk}

1: Define cost function fk(zk(t)) according to (2);

2: Define function pk(zk(t)) according to (12);

3: Initialize xi = 0, yi(t) = 0, zk(t) = 0, τi = 0, ui = 0, pk(t) =

0, ∀i ∈ [I], ∀k ∈ [K], ∀t ∈ [T ]; Let xil = 0, ∀i ∈ [I], ∀l ∈ ζi,

by default;

4: Upon the arrival of the ith user

5:
�

xi, {yi(t)}, pi, {pk(t)}, {zk(t)}
�

= Acore2

�

Bi, {ck},

{pk(t)}, {zk(t)}
�

;

6: if xi = 1 then

7: Accept user i’s bid and allocated resources according

to yi(t); Charge pi for user i;
8: else

9: Reject user i.
10: end if

Algorithm 4 A Scheduling Algorithm Acore2.

Input: Bi, {ck}, {pk(t)}, {zk(t)}
Output: xi, {yi(t)}, pi, {pk(t)}, {zk(t)}

1: Add slot t 2 [ti, T ] to set T if zk(t)+ rki  ck, 8k 2 [K];
2: Let schedule l0 include the first wi slots (t1, t2, . . . , twi

)

in T ; Define j = 1;

3: while wi + j  |T | do

4: lj = lj�1;

5: Let tc is the (wi + j)th slot in T ;

6: c(t) =
P

k2[K] r
k
i pk(t), 8t 2 {t1, t2, . . . , twi

, tc};

7: If tc > di, c(tc) = c(tc) + g(tc � di);
8: tm = argmaxt2{t1,...,twi�1} c(t);
9: If c(twi

) < c(tm), for schedule lj , replace the slot tm
with twi

and save tc into twi
;

10: Pj =
P

t2lj
c(t); j = j + 1;

11: end while

12: j⇤ = argminj{Pj};
13: if bi � Pj⇤ > 0 then

14: xi = 1; yi(t) = 1, 8t 2 lj⇤ ; xilj⇤ = 1;
15: ui = bi � Pj⇤ ; pi =

P
k2[K]

P
t2lj⇤

rki pk(t);

16: zk(t) = zk(t) + rki , 8k 2 [K], t 2 lj⇤ ;
17: pk(t) = pk(zk(t)), 8k 2 [K], t 2 lj⇤ ;
18: end if

19: Return xi, {yi(t)}, pi, {pk(t)}, {zk(t)}

Proof: Line 1 initializes a feasible slot set T in O(KT ) steps.

Line 2 takes wi steps to define a schedule lo The while loop

(lines 3-11) is to compute the best schedule lj if the completion

time is fixed, will iterate at most T � wi times. Within the

while loop body, lines 4-7 takes O(wi + 1) steps to update

c(t). The running time of finding the maximum price in line 8

is linear to wi. Lines 9-10 takes constant time for the compar-

ison and addition. Thus, the while loop can be executed in

O((T �wi)wi) steps. Line 12 can be done in O(T �wi) steps

to find the schedule with the minimum price. The running time

to execute the if body is O(KT ). In summary, the running

time of Acore2 is O(KT +wi(T �wi))  O(KT +T 2).

Theorem 4. Aonline2 in Alg. 3 is a truthful auction that returns
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feasible solutions for convex problems (8), (9) and (10) in

polynomial running time.

Proof: (Polynomial running time:) The running time of the

initialization process in lines 1-3 is linear. By Lemma 4, Acore2

in line 5 processes each user in O(KT + T 2) time. The If

statement in lines 6-10 can be done within constant time.

Therefore, after handling the last user, the overall running time

of Aonline2 is O(I(KT + T 2)).

(Correctness and Truthfulness:) We omit the proof here as

similar proofs can be found in Theorem 1 and Theorem 2.

ii) Competitive Ratio.

The proof follows the same structure as that in Sec. IV-C.

Let Pi and Di be the primal (9) and dual (10) objective

values achieved by Aonline2 after handling user i’s request. By

Lemma 1, Aonline2 is α2-competitive in social welfare if there

is a constant a2 � 1 such that Pi � Pi�1 � 1
α2

(Di �Di�1)
for all i. We next define the Allocation-Price Relationship for

Aonline2, and show that if the Allocation-Price Relationship

holds for a given α2, then Pi � Pi�1 � 1
α2

(Di �Di�1) also

holds. The last step is to define the differential version of the

Allocation-Price Relationship and prove there exists a α2,k that

satisfies this relationship. By setting α2 = maxk2[K]{α2,k},

we can obtain the competitive ratio of Aonline2.

Definition 5. The Allocation-Price Relationship for Aonline2

with α2≥1 is pi�1
k (t)

�

zik(t) − zi�1
k (t)

�

−
�

fk(z
i
k(t)) −

fk(z
i�1
k (t))

�

≥ 1
α2

�

f⇤
k (p

i
k(t))− f⇤

k (p
i�1
k (t))

�

, ∀i, ∀k, ∀t ∈ l.

Lemma 5. If the Allocation-Price Relationship for Aonline2

holds with a given α2 � 1, then Aonline2 guarantees Pi −

Pi�1 ≥ 1
α2

(Di −Di�1) for all i 2 [I].
Proof: If user i is rejected, then Pi �Pi�1 = Di �Di�1 = 0.
In the next analysis, we assume that user i is accepted, and let
l be the schedule of user i’s job. The increment of the primal
objective value is:

Pi − Pi�1 = bil −
X

t2l

X

k2[K]

�

fk(z
i
k(t))− fk(z

i�1
k (t))

�

= ui +
X

k2[K]

X

t2l

pi�1
k (t)

�

zik(t)− zi�1
k (t)

�

−
X

t2l

X

k2[K]

�

fk(z
i
k(t))− fk(z

i�1
k (t))

�

.

The second equality holds because Aonline2 update the value
of dual variables such that dual constraint becomes tight and
rki = zik(t)� zi�1

k (t). Then the increase of the dual objective
value is:

Di −Di�1 = ui +
X

t2l

X

k2[K]

�

f⇤
k (p

i
k(t))− f⇤

k (p
i�1
k (t))

�

By summing up the Allocation-Price Relationship for
Aonline2 over all k 2 [K] and t 2 l, we can obtain:

Pi − Pi�1 ≥ ui +
1

α2
(Di −Di�1 − ui).

Since ui � 0 and α1 � 0, it is obvious that Pi � Pi�1 �
1
α2

(Di �Di�1).

Definition 6. The Differential Allocation-Price Relationship

for Aonline2 with α2,k � 1 is: pk(t)dzk(t)− f 0
k(zk(t))dzk(t) ≥

1
α2,k

f⇤
k
0(pk(t))dpk(t), ∀i, ∀k, ∀t ∈ l.

Lemma 6. α2,k = max{4(1 + γk),
2(1+γk)

γk
ln(

U 0

k

βk(1+γk)c
γk
k

)}

and the marginal price function defined in (12) satisfy the

Differential Allocation-Price Relationship.
Proof: We first write down the explicit expressions for the
differentials of the cost function (2) and its convex conjugate
(11):

f 0
k(zk(t)) =

⇢

βk(1 + γk)zk(t)
γk , if zk(t) ∈ [0, ck]

+∞, otherwise

f⇤
k
0
(zk(t)) =

8

<

:

⇣ pk(t)

βk(1 + γk)

⌘ 1
γk , pk(t) ≤ βk(1 + γk)c

γk

k

ck, pk(t) > βk(1 + γk)c
γk

k

When the amount of allocated type-k resource reaches the
capacity, i.e., zk(t) = ck, according to the definition of
marginal price in (12),

pk(t) = βk(1 + γk)c
γk

k e
ρk(ck�

ck
θk

)
≥ U 0

k.

Recall that U 0

k is the maximum value per unit of resource k
per unit of time. It is clear when the marginal price is larger

than U 0

k, no bids can win. Thus, we may assume zk(t)  ck
in the rest of the proof, and f 0

k(zk(t)) = βk(1 + γk)zk(t)
γk .

Next, we divide our proof into two cases:
Case 1: zk(t) 

ck
θk

: Because pk(t) = f 0(θkzk(t)) = βk(1 +
γk)(θkzk(t))

γk  βk(1 + γk)c
γk

k , the Differential Allocation-
Price Relationship can be rewritten as:

(βk(1 + γk)(θkzk(t))
γk − βk(1 + γk)zk(t)

γk )dzk(t)

≥
1

α2,k

⇣ pk(t)

βk(1 + γk)

⌘ 1
γk βk(1 + γk)θ

γk

k γkzk(t)
γk�1dzk(t). (13)

Cancelling the common term on both sides, (13) becomes
(θγk

k � 1) � 1
α2,k

γkθ
γk+1. i) If γk � 1, θk = max{2, (1 +

γk)
1
γk } = 2, we can obtain

γkθ
γk+1
k

θ
γ
k − 1

=
γk2 · 2

γk

2γ − 1
=

γk(4 · 2
γk − 2 · 2γk )

2γk − 1

≤
4γk(2

γk − 1)

2γk − 1
≤ 4γk < α2,k

ii) If γk < 1, then θk = (1 + γk)
1
γk < e, and

γkθ
γk+1
k

θ
γ
k − 1

= θk(1 + γk) < e(1 + γk) < α2,k.

Case 2: zk(t) >
ck
θk

: In this case, the marginal price zk(t) is:

pk(t) = βk(1 + γk)c
γk

k e
ρk(zk(t)�

ck
θk

)
.

Note that dpk(t) = ρkpk(t)dzk(t), then the Differential
Allocation-Price Relationship is:

(pk(t)− f 0
k(zk(t)))dzk(t) ≥

1

α2,k
ckρkpk(t)dzk(t). (14)

By Lemma 7, we can obtain pk(t) � f 0

k(zk(t)) � pk(t) �
1

1+γk
pk(t) �

γk

1+γk
pk(t), thus to prove (14), it is sufficient to

prove:

γk

1 + γk
pk(t)dzk(t) ≥

1

α2,k
ckρkpk(t)dzk(t) ⇒ ρk ≤

γk

ck(1 + γk)
α2,k.

By the value of ρk, either i)

ρk =
θk

ck
γk ≤

e

ck
γk

=
γk

ck(1 + γk)
e(1 + γk) ≤

γk

ck(1 + γk)
α2,k.
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Or ii) ρk =
θk

ck(θk − 1)
ln(

U 0
k

βk(1 + γk)c
γk

k

)

≤
2

ck
ln(

U 0
k

βk(1 + γk)c
γk

k

)

=
γk

ck(1 + γk)

2(1 + γk)

γk
ln(

U 0
k

βk(1 + γk)c
γk

k

)

≤
γk

ck(1 + γk)
α2,k.

In conclusion, we have finished the proof for both cases.

Lemma 7. When zk(t) > ck
θk

, the marginal price pk(t) is

larger than the marginal cost by a factor of at least 1 + γk:

pk(t) � (1 + γk)f
0

k(zk(t)).

Proof: When zk(t) >
ck
θk

, pk(t) = βk(1+γk)c
γk

k e
ρk(zk(t)�

ck
θk

)
.

So Lemma 7 is equivalent to verify

eρkzk(t)

zk(t)γk
�

(1 + γk)e
ρkck
θk

cγk

k

(15)

We first show that the inequality (15) holds when zk(t) =
ck
θk

.

If zk(t) takes the value of ck
θk

, (15) becomes θ
γk

k � 1 + γk
which is obviously true.

Next, it suffices to show the left side of (15) is non-

decreeing as zk(t) increases. Let L(zk(t)) denote the left hand

of (15). The derivative of L(zk(t)) is

L0(zk(t)) =
eρkzk(t)(ρkzk(t)� γk)

zk(t)1+γk
.

Because ρk � θk
ck
γk and zk(t) >

ck
θk

, then ρkzk(t) � γk � 0
and the derivative L0(zk(t)) is nonnegative. Consequently, the

lemma follows.

Theorem 5. The online auction Aonline2 in Alg. 3 is α2-

competitive in social welfare with α2 = maxk2[K] α2,k.
Proof: Because α2 is the maximum number among all α2,k,

then Differential Allocation-Price Relationship also holds with

α2. We assume that dzk(t) = zik(t)� zi�1
k (t) is much smaller

than the capacity of type-k resource (ck), then

fk(z
i
k(t))− fk(z

i�1
k (t)) = f 0

k(z
i�1
k (t))(zik(t)− zi�1

k (t)),

f⇤
k (p

i
k(t))− f⇤

k (p
i�1
k (t)) = f⇤

k
0
(pi�1

k (t))(pik(t)− pi�1
k (t)).

Therefore, the Allocation-Price Relationship holds with α2.

Combinng Lemma 1 and Lemma 5, we finish the proof.
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Fig. 2: An illustration of the competitive ratio of Aonline2 (α2)

under different settings.

We plot the value of α2 in Fig. 2 when we vary the value

of γk, βk, ck and U 0

k [22], [23]. We can observe that if we

normalize ck to 1, the competitive ratio of Aonline2 is close

to 6 with a small U 0

k and γk, as demonstrated in the left

figure. The right figure shows that if ck is a large number,

the competitive ratio is determined by γk and increases with

the increment of γk.

VI. PERFORMANCE EVALUATION

We evaluate our online auctions Aonline1 and Aonline2

through trace-driven simulation studies. We exploit the trace

version 1 in Google Cluster Data [26], which contains the

information for each job including the start time, execution

duration, and resource demands (CPU and RAM). We translate

each job into a bid, arriving sequentially in 18 hours. We

assume that each user’s job consumes [1, 12] slots and each

time slot is 5 minutes [26]. User’s job deadline is generated

uniformly at random between its arrival time and the system

end time. The bidding price of each job equals its overall

resource demand times unit prices randomly picked in the

range [Lk, Uk]. By default, Lk = 1 and U 0
k = Uk = 50. The

demand for CPU and RAM units is normalized so that the

maximum capacity is 1. For the cost function, βk is set within

[0.4, 0.6] for CPU and within [0.005, 0.02] for RAM [22]. γk
is set within [1.7, 2.2] for CPU and within [0.5, 1] for RAM

[23].

Performance of Aonline1. We examine the performance of

Aonline1 in terms of the competitive ratio, social welfare and

user satisfaction.

Fig. 3 shows the competitive ratio of Aonline1 with different

number of users (I) and bids per user (J). The observed

competitive ratio is much better than the theoretical bound

and remains at a low level (< 2). It fluctuates with the

increase of the number of users and sightly decreases when

the number of bids per user grows. This is because when each

user provides a larger number of optimal bids, Aonline1 is

more likely to optimize the schedule of its job, leading to a

better performance. In Aonline1, the marginal price function

is defined based on the real value of Uk and Lk. We vary

the value of Uk/Lk, and use the estimated values of Uk

as the input of Aonline1, to examine the performance. As

shown in Fig. 4, there is a downward trend as the value of

Uk/Lk decreases, while there is no large difference with either

underestimation and overestimation. The observation confirms

the analysis in Theorem 3 that the value of Uk/Lk determines

the competitive ratio. Underestimation is more desirable than

the overestimation, as compared to that achieved by the real Uk

(labelled by 100%). Overestimation makes the price rise more

rapidly, filtering out users that are supposed to be accepted.

We next study the social welfare achieved by Aonline1 in

Fig. 5 and Fig. 6. The 3d figure in Fig. 5 plots the social

welfare under different number of users and bids per user. Our

online auction Aonline1 achieves a higher social welfare when

there is larger number of users participating the auction. The

change of bids per user doesn’t have major influence on the

social welfare. When the number of users grows, the number

of bids with larger bidding price also increases. As a result,

Aonline returns a larger social welfare. The social welfare

under different number of slots and Uk/Lk is illustrated in
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Fig. 3: Competitive ratio of Aonline1

with different number of users and J .
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k

Fig. 6. Both the number of slots and the value of Uk/Lk

influence the social welfare. Aonline1 is able to allocate more

jobs when the length of the system increases. Furthermore,

the bidding price rises with the increase of Uk/Lk, thus high

value bids lead to a higher social welfare.

User satisfaction which is measured by the percentage of

winners is demonstrated in Fig. 7. A higher fraction of users

are accepted with a small number of users. This is because the

number of winners is almost fixed due to the capacity limit.

We also obverse that the value of Uk/Lk doesn’t influence the

percentage as the winner determination process is not affected

by the change of Uk/Lk.

Performance of Aonline2.

We first examine the competitive ratio of Aonline2. We use

CVX with the Gurobi Optimizer to solve the convex problem

(8) exactly, and compute the competitive ratio by dividing

the optimal social welfare by the social welfare returned by

Aonline2. However, CVX fails to solve in 24 hours even with

a medium-size input. Thus, we reduce the input size and only

consider 10-20 users. Fig. 8 shows the competitive ratio of

Aonline2 under different number of users and U 0

k. It becomes

larger with the increase of U 0

k. The change of the number of

users doesn’t have much impact on the competitive ratio. As

indicated in Theorem 5, a larger U 0

k negatively influences the

competitive ratio when we set ck to 1. We can also observe

that the competitive ratio is still less than 5 with a large U 0

k,

which is much better than the theoretical bound.

We next study the performance of Aonline2 in the aspects

of social welfare and user satisfaction. Fig. 9 shows the social

welfare and cloud provider’s revenue with different number of

users when we vary the value of U 0

k. We can obverse that both

the social welfare and revenue increase with the increment of

number of users and U 0

k. The reason for it has been explained
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Fig. 9: Social welfare and cloud provider’s revenue in Aonline2

with I and U 0

k.
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Fig. 7: Percentage of winners inFig. 10: Percentage of winners in Aonline2

when we evaluate the performance of Aonline1 and is omitted

here, as the design of Aonline2 follows the same primal-dual

technique. Fig. 10 reflects the percentage of winners gradually

rises when the number of slots increases. The possibility of

wining becomes higher when the system spans a long period

as there are more slots available for scheduling. In addition, a

small number of users leads to higher user satisfaction.

VII. CONCLUSIONS

We studied the auction design for cloud computing jobs that

have soft completion deadlines. Our main contribution is an

online cloud job auction that is truthful and computationally

efficient, and achieves a good competitive ratio in social
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welfare. Techniques used in the auction design include the

posted pricing framework for truthful online auctions, a new

LP formulation and solution method for handling soft deadline

constraints, as well as approximation algorithms based on LP

dual and Fenchel dual. Our method for handling soft deadline

constraints may be applicable to other auction design problems

where deadline is involved, for example, in demand response

auctions in a smart grid.
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