

An efficient CMOS bridging fault simulator with SPICE
accuracy
Citation for published version (APA):
Di, C., & Jess, J. A. G. (1996). An efficient CMOS bridging fault simulator with SPICE accuracy. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(9), 1071-1080.
https://doi.org/10.1109/43.536713

DOI:
10.1109/43.536713

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/43.536713
https://doi.org/10.1109/43.536713
https://research.tue.nl/en/publications/a7ce7699-26a4-40a6-845f-fc4965316d1a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
__

1071

An Efficient CMOS Bridging Fault
Simulator: With SPICE Accuracv

Chennian Di and Jochen A. G. Jess zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract- This paper presents an alternative modeling and

simulation method for CMOS bridging faults. The significance
of the method is the introduction of a set of generic-bridge
tables which characterize the bridged outputs for each bridge
and a set of generic-cell tables which characterize how each
cell propagates a logically undefined input. These two sets of
tables are derived dynamically for a specific design by using a
SPICE circuit simulator. Then they can be used by any logic
fault simulator to simulate bridging faults. In this way, the
proposed method can perform very fast bridging fault simulation
yet with SPICE accuracy. The paper shows bow these two sets of
tables are derived and used in a parallel pattern fault simulator.
Experimental results on ISCASS5 benchmarks are promising.

I. MOTIVATION

N LAST DECADE, the gap between the so-called realistic I faults caused by manufacturing defects and practically used

Single Stuck-At (SSA) faults has been emphasized strongly

[l], [4], [6]-[8] for CMOS Integrated Circuits (IC). It becomes
evident that accurate modeling and efficient simulation of
defect induced faults are essential for high quality testing

of IC’s. Particularly the bridging faults, one of the most

frequently occurring faults, attract a lot of attention.

The complexity of modeling and simulating bridging faults

has been very well studied. It is widely known that one

of the difficulties of modeling a bridging fault is with the

conducting circuit created from power supply to ground. Such

a conducting circuit changes a digital circuit into one with

undefined behavior. To illustrate this, Fig. 1 shows a zero-ohm
bridge between the outputs of a complex cell and a 2-in-NAND

(the number next to each transistor indicating its size). Its

bridged output obtained by SPICE is shown in Table I. It is

seen that the output may vary from 0.63 to 4.71 V for different

inputs. These values cannot easily be accepted as logic “1” or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“0” since the propagated logic value depends on the conditions

of the following cells. Usually a node in such a state is said

to be in “undefined” state. Fig. 2 shows a possible fanout

structure of the bridge in Fig. 1. The bridged output bearing
a value 2.15 v can drive one 2-in-NAND to 0.64 v which can

be read as “0” and drives another structurally equivalent 2-in-
NAND to 3.99 V which can be read as “1.” Thus any simple

Manuscript received October 29, 1993; revised June 5, 1995 and April
4, 1996. This work was supported by the ESPRIT project 2318 entitled:
EVEREST“. This paper was recommended by Associate Editor W. Maly.

C. Di was with the Faculty of Electrical Engineering, Eindhoven University
of Technology, The Netherlands. He is now with the IBM Microelectronics
Division, Essex Junction, VT 05452 USA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. A. G. Jess is with the Faculty of Electrical Engineering, Eindhoven
University of Technology, 5600 MB, Eindhoven, The Netherlands.

Publisher Item Identifier S 0278-0070(96)06728-0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f

Fig. 1. An example of a bridge.

model, such as wired-and or wired-or, is not sufficient here. It
is obvious that the behavior of a bridge can only be accurately

modeled if following two issues can be resolved efficiently:
As it can be seen from the example that few centivolts differ-

ence in the input voltage can cause different logic outputs, thus

any approximate method is not sufficient. To guarantee correct

results, circuit-level accuracy must be considered. Obviously

a circuit simulator, such as SPICE, can accurately fulfill the

tasks. However, for large circuits, this seems computationally

intolerable.

Early solutions of using a switch level model 121, [3] have
been widely [4], [lo], [12] recognized as inadequate to model
and simulate CMOS bridging faults.

Many suggested methods attempt to improve the modeling

accuracy by using an approximate model, such as the resistive

network model [lo] or the voting model [4], 1111, [14], 1161.
These methods allow very fast logic fault simulation but

have the drawback that only the bridged outputs are analyzed

without carefully considering how the fault propagates. A case

of incorrect modeling by using such method can be illustrated
by Fig. 2. For the conducting circuit created by the inputs
shown in Fig. 2, the pull-down conductance is stronger than
the pull-up conductance. The voting model would predict

the bridged output as “0” but, in fact, it can be “1” or “0”
depending on the condition of the fanout cells as shown in
Fig. 2.

A more accurate method using mixed-level or multilevel

simulation techniques is proposed in [13]. This method

switches from normal logic simulation to circuit-level

simulation whenever a bridging fault is encountered. The

0278-0070/96$05.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1996 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

1072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO 9, SEPTEMBER 1996

TABLE I
BRIDGED OUTPUT OBTAINED BY SPICE

inputs outputs

1 0 1 1 1 0

0 0 1 1 1 1

1 1 1 1 0 0

0 1 0 1 1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 0 0 0 0 1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1.42

4.7 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
’70”
”0”
”1”
” 1 ”

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Impact of an undefined input on fanout cells.

bridge is simulated at circuit-level through its fanout cells

until the undefined signals can be safely read as logic values.

Then the simulation is switched back to logic level. This

method is very accurate. But for lengthy test patterns, a large

circuit may not be efficiently simulated. For instance, while

the bridge in Fig. 1 is simulated, the inputs abcde zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 100 111

and abcde f = 110 111 cause the same conducting circuit. In

such a case this method would invoke the expensive circuit

simulator twice while it is unnecessary. It is also not efficient to

evaluate all the bridges connecting two cells having the same

combination of cell types, such as a 2-in-NOR to a 3-in-NAND.

Some improvements [171 use so-called “precomputed tables”

derived by a circuit simulator to avoid some unnecessary
computations and use celVgate logic threshold voltages to

propagate an input voltage. However, the precomputed tables

that are derived by enumerating all the combinations of a
cell library may be both time and memory consuming. They

may contain redundant informations and make it not easy

to maintain and to use such a huge database. Furthermore

the fault propagation is still not accurate since the cell logic

threshold voltages when one signal drives more than one input

terminal of a cell are not considered. This may introduce

many errors. An improvement of the voting model [14],
[IS] is unfortunately still approximate in nature and the fault

propagation has the same shortcoming.

1) the accurate evaluation of the bridged output voltage;

2) the accurate propagation of an undefined input.

Based on our development in [19], this paper presents

a more accurate modeling and yet very fast fault simula-

tion approach. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 presents two new concepts and the

general strategy of the proposed method. Section I11 and IV

discuss some implementation issues. Section V presents some

experimental results.

11. FAULT SIMULATION USING

GENERIC-BRIDGE AND GENERIC-CELL TABLES

This paper concentrates on CMOS combinational circuits. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
CMOS circuit can be viewed as an interconnection of CMOS

cells. A CMOS cell has a network of serial-parallel PMOS

transistors as pull-up and, its dual part in terms of NMOS
transistors, as the pull-down part. The bridging faults analyzed
are nonfeedback bridges between outputs of two cells. The

feedback bridges are not treated in this paper since they show

much complex behavior and need a different treatment. For

more information of feedback bridges, we refer to the recent

advances documented in [21]. The resistance of the bridges

is assumed to be negligible. Furthermore only static analysis

is performed.

2.1. Evaluation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABridging Fault

In order to guarantee the circuit-level accuracy and yet to

obtain high efficiency, let us examine the design procedure

first. Modern digital CMOS designs are mostly based on a
standard cell library. In a specific design, the number of

instantiated cells is usually much larger than the size of the

cell library. One type of a cell may be used many times in the

design. Thus it is very likely that many bridges may connect

the same combination of the cell types in the same manner.
Such a set of bridges represents one bridge type, called a

generic-bridge. A set of generic-bridges can be derived for

all the extracted bridges in a design. Then the evaluation of
all the bridges can be restricted to the generic-bridges. Usually
the number of generi~c-bridges is far smaller than the number

of all extracted bridges. Each generic-bridge can be evaluated

by using a circuit-level simulator, such as SPICE in our case.

Then the bridged output is computed with the accuracy of

SPICE. Yet a large amount of computation is avoided.

For each generic-bridge, a generic-bridge-table is intro-

duced for the set B of all input vectors of the two bridged cells
that activate the bridge. A generic-bridge-table consists of a
set of pairs (b . d) as its entries. Let Tbrl be a set denoting all
the entries. For each (b , d) E Tbrl, b is the one of the distinct
output voltages in the presence of the bridge. The entity d

is a Boolean expression exactly covering all input vectors

of the two bridged cells generating b at the bridged output.

Obviously the expressions d, induce a partition of B. For any

two (b l , d l) and (b 2 , d z) in Tbrl, if d l is true, then d2 is not

true and vice versa. The generic-bridge-table can be viewed

as the “function” with the symbols “+” and “ .’’ interpreted

as addition and multiplication of real numbers as well

vb,, = bl . d l + . ’ . + b, ‘ d, (1)

if d, is satisfied, the Vbrl takes a voltage value b,.

obtained as

For the bridge shown in Fig. 1, its generic-bridge-table is

Vbyi = 0.00 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C @ f) . C L . b . d

+ 1 . 4 2 . (e @ f) . (a @ b) . c . d

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

DI AND JESS: CMOS BRIDGING FAULT SIMULATOR 1073

+ 2 . 1 5 . e . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf . E . b . c . d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ 2.45 . E . f . U . b . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.35. e . f . (a + - - b) . (e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACE d)

+ 5.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe e e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf + (E . b . e . d + 2.2).

representing the set of input vectors such that input terminals

1 are observablq at the output of the generic-cell. Or, in other

words, the input established by connecting together all the

inputs of the set 1 is a controlling input to the generic-cell. Let

TCen(1) denote the union of all labeled pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w, 0)l when the

terminals I are driven by the same signal

+ 2.89 . F . f . (U @ b) * C . d

(2)

The entries having boldfaced 0.00 and 5.00 indicate that

for those inputs, the bridged output voltage is actually close

enough to the potential of ground and power supply respec-

tively.

2.2. Propagation of Undejined Inputs

Let us examine how a CMOS cell transfers an input voltage.

First the logic (switch) threshold voltage of a cell is defined.

For an invertor, it is defined as the input voltage value such
that the output voltage is equal to the input voltage. It can be

defined in the similar way for a cell having more than one
input terminal. Such a cell may have several different logic

threshold voltages. For instance, a NAND with two inputs a
and b has a logic threshold voltage 1.89 V when a switches

while b = 1. Vice versa, it has a logic threshold voltage 2.20
V. When both a and b are driven by the same signal, the logic

threshold voltage is 2.60 V. In the sequel, a logic threshold

voltage when only one input terminal switches is classified as
single-input logic threshold voltage. Otherwise it is classified

as multiple-input logic threshold voltage.

In modern technology, it is known that the CMOS cell has

a very high gain around its logic threshold voltage. A small

variation at the input will yield a very big swing at the output.

It is very likely that an input voltage lower than the input logic

threshold voltage will be read as a logic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0” and vice versa. It

is possible that an input voltage is equal to or very close to the

logic threshold voltage. Then the output can be still not safely

determined. In our experiments on the ISCAS85 benchmarks,

we chose a margin of 0.02 V around the respective logic
threshold voltage. Any input voltage within this range was

considered as not safely propagated. Still such situations add

up to only 0.2% of all the cases investigated. Therefore, to

obtain fast fault simulation, it is sufficient to propagate a

bridging fault just up to the outputs of its immediate fanout

cells. Further propagation by circuit simulation to the next

level of fanout gates does not resolve the uncertainty.

Usually a specific design uses only a subset of cells from

the given cell library. To be consistent with the definition of
the generic-bridge, each cell in such a subset of a cell library

is called a generic-cell of this design. Then for a specific
design, only the logic threshold voltages of each generic-cell
are required for the fault propagation. They can be computed

accurately by a circuit-level simulator, in our case SPICE.

Again a large amount of computations can be avoided.
To formulate and keep the derived logic threshold voltages

of each generic-cell, a generic-cell-table is introduced. The

generic-cell-table of a generic-cell consists of a set of labeled
pairs (w, 0)l as its entries. The label 1 represents some subset

of the input terminals of the generic-cell. For each (w, 0)1, the
entity w is the value of the threshold voltage when the inputs
1 are all driven by the same signal. 0 is a Boolean expression

m

Tcell(l) = U(...%, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2) l .

2=1

Then, for any two (w1,01)1 and (w 2 , 0 2) 1 in TceIl(l), if

01 is true, then 0 2 is not true and vice versa. This is because

for an input vector such that terminals 1 are observable, the

generic-cell cannot have two different logic threshold voltages

simultaneously when inputs at 1 are driven by the same signal.

Let L be a set denoting all the combinations of the input

terminals of a generic-cell. Then the set containing all the
entries in the generic-cell-table can be expressed as

Tcell = U ~ c e l l (q (3)
1EL

It is not difficult to prove that any two entries of a generic-

cell-table are also mutual exclusive. Thus the generic-cell-table

can be viewed as the function Vcell defined by

Vcell = c((w1 + (w2 . 0 2) l + * ’ . + (wm ’ 0 m) l) . (4)
1€L

When specific terminals 1 are driven by the signal and 0,
is satisfied, Vce1l takes the logic threshold voltage w,. For the

NAND with two inputs a and b mentioned at the beginning of

this section, its generic-cell-table can be expressed as

Kell = (1.89 ’ b){a}(2.20 ’ a){b} + (2 .6O){a,b} . (5)

2.3. Fault Simulation Strategy

With the introduction of the generic-bridge-table and
generic-cell-table, the whole modeling and simulation can

be performed in the procedure illustrated in Fig. 3. Given

the circuit layout and defect statistics, the transistor netlist

is extracted. Simultaneously, all possible bridging faults

are extracted. Then the circuit is further condensed to a

model on logic-level. All the generic-bridges and generic-

cells are extracted as well. Their tables are then computed by

SPICE simulations. After this step, the bridging faults can be

simulated for a given test pattern set through the manipulation
of these two sets of tables. The fault simulations can be done
exclusively at logic level. Consequently both high modeling

accuracy and simulation efficiency are obtained. The following

sections discuss how these two sets of tables are derived and

give details about the fault simulation.

111. DYNAMIC DERIVATION OF

GENERIC-BRIDGE AND GENERIC-CELL TABLES

The derivation of the generic-bridge-tables and the generic-

cell-tables is performed by analyzing the extracted bridging
faults for a specific design instead of exploring the given
cell library by complete enumeration. Thus the derivation is

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

I074 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 1996

Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Modeling and simulation system overview

dynamic to each design. The reasons of using this strategy are

discussed below:

1) The number of the generic-cells in a specific design is

usually smaller than the size of a given cell library.

Consequently the number of all possible generic-bridges

in the design is small. Thus, the task of characterizing

both tables for a design is easier.

2) The occurrence of bridging faults depends highly on the

layout topology of a specific design. It is very likely that

a generic-bridge derived by enumerating the cell library

may actually never occur in a design. Such information

can only be obtained by analyzing the extracted bridging

faults for a specific design.

3) The number of all possible multiple-input logic threshold

voltages for a set of cells is usually very large. The

actual number of multiple-input situations depends on

how many bridging faults actually connect more than

one input of a cell and how a cell is actually connected

in a design. Again such information can only be obtained

by analyzing the extracted bridging faults for a specific

design.

In a practical situation with evolving history of designs,

an .incremental strategy may be still more appropriate. That

is, all the derived genesic-bridge-tables and generic-cell-ta

bles of previous designs are kept in a database. If some
generic-bridge-tables or generic-cell-tables are not present in
the database while considering a new design, only the missing

new generic-bridges and generic-cells are analyzed on SPICE

level and the database is updated. This way, the database

evolves according to the needs of the design team and no

redundant information is computed and accumulated.

The inputs of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbridge analyzer (Fig. 3) are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa flat rep-

resentation of the transistor netlists and all possible bridging

faults. Both are extracted from the layout of a design. The
SPICE parameters for a specific fabrication process are also

taken as an input.
The first step is the extraction of all the cells. The CMOS

circuit can be represented by a connection graph G(V, E) .
Each node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘U E V represents a network node which can be the

drain, source or gate of a transistor. An undirected edge e E E
represents a transistor and has a Boolean variable (defined by

its gate input variable) and a weight representing its transistor

size associated with it. The Boolean function of a cell can be

easily extracted by exploring the pull-up and pull-down paths

in the cell. Then the set of generic-cells for this design has to

be identified. The connection graph corresponding to a cell is
relatively small. Therefore the checking of the isomorphism

of two cell graphs can be done efficiently. After all the

instantiated cells in the design are checked, then the generic-
cell set of this design is obtained. After this step, the bridging

fault list can be passed to derive the generic-bridge-tables and

generic-cell-tables.

3.1. Derivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Generic-Bridge-Table

The derivation procedure of a generic-bridge-table is rather

straightforward. For each identified generic-bridge, first all the

possible input combinations of the two involved generic-cells

that create a conducting circuit from power supply to ground

are enumerated. The respective SPICE format input of each
conducting circuit is accumulated in a file. Then, a SPICE

call is invoked to compute the voltages at the bridged output.

Upon the completion of the SPICE computation, the results

are collected to construct the table. This procedure is repeated

for every generic-bridge. The major cost of this procedure is

obviously the execution of SPICE. To speed up the derivation,

the following techniques are used.

The first technique makes use of the fact that an output

voltage very close to the potential of power supply or ground

can be safely interpreted as logic value. For example, for a
typical 5 V CMOS technology, an input above 4 V (which
may be considered as the lowest “hard” logic “1” value V,‘,,,)
or below 1 V (which my be considered as the highest “hard”

logic “0” V,“,,,) can definitely be interpreted as “1” or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“O”,
respectively. In such a case, we use an estimation method

developed in [15] to predict the voltage range so that the
SPICE runs can be avoided. This method uses a simplified

transistor model to estimate the voltage. Using this model, the

dc-characteristic of an NMOS transistor is characterized as

1

2
I d , = kn- V g s - %I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Vd.> V d s , V d s < V g s - &n (6)

I d s = 0 , otherwise
{ 3

(PMOS transistors are handled analogously). Here IC , is

process dependent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,, is the zero-bias transistor threshold.

The subscripts g , d , s indicate the gate, drain and source of
a transistor. W / L is the transistor width to length ratio. In

the model, a transistor works in a linear region if it conducts,

otherwise it is off. This is because in a conducting circuit

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

DI AND JESS: CMOS BRIDGING FAULT SIMULATOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1075 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbridged output

0 1 1 1 0 1 I 1.42V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t Fig. 4. The equivalent conducting circuit.

the voltage level at any drain (source) cannot be higher than

V& when the gate of the transistor is driven by a logic “1.”

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv d s < V,, - Vi, is always true. The model also neglects

the body-effect of the MOS transistor. Using this model, any
conducting circuit can be simplified to the one shown in Fig. 4

with W,,/L,, and W,,/L,, as equivalent transistor sizes of

pull-down and pull-up parts respectively. The output VF can
be derived by solving (7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(P- qv; + 2 (V d d - v,, -PVtp)VF - P (V d d - 2 V t p) V d d = o
(7)

(P = (~)~(w,~/L,~)/(~,(w,e/L,,)). It is not difficult to
prove that VF is an increasing function of P. Two values /?Aard
and PEard corresponding to Viard and Vfard exist. Therefore

(+ denoting implication) holds which implies that, for a

specific technology, it is not even necessary to actually solve

all equations for the output voltage. Only the equivalent

P is needed. Consequently the estimation is very fast. The

computation of the equivalent P grows linearly with the

number of transistors in a cell and can be very fast. For

the cases considered, this estimation method appears accurate

enough [15].
The second reduction technique is based on equivalent

structures. For a bridge, many conducting circuits from power
supply to ground activated by a different combination of input
excitations have the same structure. Consequently, the bridged

output voltage for these different excitations is the same. The

conducting circuits are then said to be “structurally equivalent”

for these inputs. For instance, with the bridge in Fig. 1, the

four different input combinations shown in Fig. 5(a) imply

the same conducting circuit as shown in Fig. 5(b) with the

bridged output being 1.42 V. For those structurally equivalent
conducting circuits, there is no need to repeat the SPICE
simulation. In the course of analyzing a bridging fault, all the

conducting circuits for which the output voltages are already

obtained by simulation, are kept in a temporary set. During the

enumeration of conducting circuits, if a new conducting circuit

is found to be equivalent to one already in the temporary set,

the SPICE simulation is skipped. Only its input condition is

merged with the corresponding one in the temporary set.
It will be shown by experimental results that the above two

techniques are every effective.

3.2. Derivation of Generic-Cell-Table

A generic-cell-table is constructed in two steps. In first

step, the single-input logic threshold voltages of each generic-

Fig. 5. Illustration of structural equivalence.

cell are derived. The derivation procedure is straightforward.

For each input terminal, all possible generic-cell configura-

tions which may lead to different logic threshold voltages

are enumerated. Their respective SPICE input formats are

generated in a file. Then a SPICE call is invoked to compute

the logic threshold voltages. Upon the completion, the results

are collected to construct the table. This procedure is repeated

for each input terminal of every generic-cell. Note that generic-

cell table is restricted for single output cells. For a multiple

output cell, the circuit can be partitioned according to each

output cone. The generic-cell table for each output terminal

can be derived as for a single output cell.

It seems that other methods did not pay enough attention

to the phenomenon that a cell may have many different logic

threshold voltages when a single input terminal switches. To

demonstrate this effect, Fig. 6(a) shows a generic-cell which

has three different logic threshold voltages when input a
switches. Their values are listed in Table 11. Assume the input

voltage of a is 2.15 V, then it can be propagated as a “0” (the

threshold is 2.08 V), undefined (the threshold is 2.15 V) or

“1” (the threshold is 2.17 V) to the output. Thus those effects

cannot be ignored.

In a second step, the multiple-input logic threshold voltages

of each generic-cell are derived. To illustrate the situation

where the multiple-input logic threshold voltages are needed,

Fig. 6(b) shows a possible use of the cell in Fig. 6(a) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan
actual design. It can be seen that one signal can drive two
inputs (a and b in the original cell). Assume that a bridge

between a and c in Fig. 6(b) occurs. Then one signal can

drive three inputs (a , b, and c in the original cell). Table I1 also
lists the logic threshold voltages for those situations. The table
shows clearly that ignoring the dependencies between various

inputs can be very deceptive. Thus it is essential to know

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

1076 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTlONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 1996

input a

Vthreshold(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd

input a & b input a & b & c

Vthresholdl c d Vthreshold I d
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I

2.08V 11 0 1 I 1.89V I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 8 I 1.58V I 1
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I

2.15V l l O O l 2.11V 1 0 1 1 2.44V I O
I I I I I

2.17V 100 1 I 2.62V I O 0 I

-
a

b -

Fig. 6.

(a) (b)

(a) A complex cell. (b) Illustration of multiple-input thresholds.

the multiple-input threshold voltages in order to propagate the

input correctly.

The derivation is computed while the bridging faults are
analyzed. In the course of the analysis, each multiple-input
case is individually identified. If more than one input in the

fanout cell is bridged or one signal drives more than one
input terminal of a cell, then all the possible configurations

are enumerated. Their logic threshold voltages are computed

by SPICE and the generic-cell-table is updated. The procedure

is repeated for every bridge. Eventually all the necessary

multiple-input logic threshold voltages are obtained in the

tables.
The effects of multiple-input logic threshold voltages are not

considered by the methods in [171 and [181. Instead, the single-

input logic threshold voltage is used for the fault propagation.

This can easily lead to a wrong decision. For instance, the

two inputs of a 2-in-NAND are bridged together. This NAND

has two single-input logic thresholds 1.89 and 2.20 V and

a multiple-input logic threshold 2.60 V. If the input voltage
is 2.47 V, using the multiple-input logic threshold voltage
2.60 V, the input is propagated as “1” to the output which

is consistent with the real value 4.13 V. But if the single-input
logic threshold voltage, either 1.86 V or 2.20 V, is used, then
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0’ would be propagated to the output which is incorrect.

3.3. Boolean Function Representations

During the analysis and the derivation of the two sets of

tables, the Boolean function of each generic-cell and each table

entry involves symbolic Boolean expressions and manipula-

tions. The results need to be stored for the simulations. This

seems not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan important issue since it is claimed before that

the number of generic-bridges and generic-cells for a design

t v 1 0

0 : negated function.

(4 (b)

Flg. 7 . (a) Example bridges. (b) Illustration of compact storage.

is small. However, if the issue is not properly handled, it may

still cost unnecessary memory. To be efficient, ROBDD data

structures [9] are used. It is not difficult to observe that the

Boolean expression in each entry of a generic-bridge-table is

established by a pull-up term of one generic-cell and a pull-

down term of another generic-cell. Let each of them be stored

separately. Then the canonical property of the ROBDD can
result in a very compact representation.

To illustrate this, Fig. 7(a) shows a generic-cell B involved

with two generic-bridges (they are not supposed both to occur

simultaneously). After analysis, all the pull-down (fl = a b)
and pull-up terms (f 2 = E 3 b) of B are
required to construct the tables. Their ROBDD representations

are shown in Fig. 7(b). The generic-bridge-tables are obtained

as:

and f 3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa . b

V,r,~ = 1.35 . E . f l + 1.57. e . f3 + 3.39 . e . f 2 (9)

(10)

Here, g 1 = e . d is the pull-down term of C and g2 = c . d
and ,93 = c . d + C d are the pull-up terms of C.

During the whole process, the generic-cell B is only needed

to be processed once to create f l , f i and f 3) . They are shared

by both the generic-bridge-tables. The 9 1 , g 2 and g3 are also

created once. fl and 91 are also shared inside Vb,..a. Thus in

theory, the upper bound of the memory requirement for all the

tables is the number of the different pull-up and pull-down

terms of all the generic-cells in a design. Consequently the

memory required grows linearly with the number of generic-
bridges and generic-cells.

Vbr12 = 1.45 . Q3 . fi + 2.67. 9 2 . f i + 1.89 . 9 1 . f3

+ 3.45. g1 . f 2 .

IV FAULT SIMULATION

With the introduction of the generic-bridge-table and
generic-cell-table, bridging faults can be simulated by the
procedure described below:

1) after fault free simulation, for each bridge, find its

respective generic-bridge-table. Evaluate the table for

the applied input pattern. If no entry is satisfied, stop.

Otherwise obtain the respective output voltage value.

2) for each fanout cell of the bridged outputs, find its

generic-cell-table. For the applied input, evaluate the

entries labeled with the inputs that are connected with

the bridged outputs. If one entry is satisfied, obtain
the logic threshold voltage value; compare the bridged

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

DI AND JESS: CMOS BRIDGING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFAULT SIMULATOR 1077 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 = = r + J + K

(a) (b)

Fig. 8. Illustration of a bridging fault propagation procedure.

output voltage with the logic threshold voltage and

interpret it as logic value at the output.
3) after all the fanout cells are processed, start the normal

logic fault simulation from these fanout cells carrying

faulty values.

In the above procedure, except for the evaluation at the

fanout cells from a bridged output, the bridging fault simu-

lation works essentially like any other logic fault simulator.

Thus any efficient technique can be applied. In this paper,

the well-known parallel pattern and single fault propagation

(PPSFP) [5] technique is adapted. The first two steps of

the fault simulation can be executed as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] . That is, in

the forward traversal, the fault free simulation is carried out

for applied patterns in parallel. In the backward traversal,
the observability of each node is determined for the applied
patterns in parallel as well. Then the detectability of each

bridging fault is determined. In many cases, a voltage value at

a bridged output can be propagated as a set of different faulty

values to different fanout cells. The fanout branches carrying

faulty values may reconverge later at some point. That is,

regarding the fault propagation, a nonreconvergent node may

behave like a reconvergent node. Therefore the detectability

of a bridging fault should be determined by explicit fault

simulation. To carry out this procedure for parallel patterns,

it is essential to characterize the Boolean function of each
fanout cell from the bridged outputs. Such a Boolean function

characterizing the faulty behavior of a fanout cell should be

derived from the respective generic-bridge-table and generic-

cell-tab le symbolically so that its evaluation can be done via

bit-vector operation for parallel patterns. Below it is shown

how a faulty Boolean function at a fanout cell from the bridged

output is derived.

First, let us examine how a faulty Boolean function is

constructed. A cell is said having a faulty-on behavior if the
fault free value is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0” but in case of a bridge is “1”. A cell
is said having a faulty-off behavior in the opposite case. For

ease of the discussion, a generic-bridge between B and C and

one of the fanout cell A as depicted in Fig. 8(a) are used for

illustration.

Let FB and FC be the fault free functions of B and C,
respectively. The input spaces I , J , and K are independent of
each other. The fault free function of A can be viewed as a

function of I and J as

FA = {z E (I + J)IA is “on”}. (1 1)

Due to the bridge, A becomes a function of inputs I , J and

K . Let B = I + J + K. Then, the Boolean function FA of A

in the presence of the bridging fault is defined as

PA = {z E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIA is “on”}. (12)

The faulty-on set and the faulty-off set of A are defined as
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x E B ~ F A A PA} and fi = {x E B ~ F A A FA}.
(13)

-
The complement of f j is then obtained as f j = {x E

The set B is then split into three parts: f;, fi, and the rest

of the inputs. On the other hand, obviously B can also be

viewed as the union of FA and FA considering the inputs in
K as “don’t cares”. Fig. 8(b) illustrates the relation of fi and

f j with respect to FA and F A . With the above definitions,

the following theorem holds.
Theorem: Assume a cell with its fault free function as FA

is affected by a bridge. Let fi and fi be the faulty-on set and

faulty-off set of the cell. Then

B ~ F A A PA}.

Prooj Equation (12) can be partitioned into two parts

FA = {x E B(FA A PA} U {X E B(FA A FA}. (15)

The first part is exactly the faulty-on set fi. In the part
containing original “on” set FA, except for the inputs in fi,
the output A is still “on”. Thus the second subset in (15) should

be the original “on” set FA minus the faulty-off set fi (the

shaded part in Fig. 8(b)). Therefore, = FA . fl: + fi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17
The above theorem implies that once the faulty-on and the

faulty-off set of a fanout cell are obtained, they are sufficient

to characterize the faulty behavior of this cell. Below it will be

shown how the faulty-on and the faulty-off set of a fanout cell

are derived from the generic-bridge and generic-cell tables.
For the bridge in Fig. 8(a), let all entries of its generic-

bridge-table be represented by a set Tbrl. For the fanout cell

A in Fig. 8(a), let all the entries of its generic-cell-table labeled

with a be represented by a set Tc,ll(a).

The generic-bridge-table Tbrl can be partitioned into two

parts Tfrl and T&

T:rl={(b,d) E T b r 1 l d + F ~ A d + F c } (16)
Tlr1 = { (b , d) E Tb,,ld * FB A d + F c } . (17)

For any (b , d) E T:rl, it is known that the fault free value of

B is “0” (a = 0). Suppose a is observable at the output of A
in the presence of the bridge. Obviously the input voltage at a
should be higher than the logic threshold voltage of A for the

propagation of the bridging fault. Let the Boolean expression

representing all the input vectors generating the bridged output

higher than a value w be expressed as

(18) c d . C“w) =

(b ,4ET,0r , (w)lb > w

Then for any (w , O)(,J E Tcell(a), a is observable if 0 is
satisfied. Thus a faulty-off behavior is caused at A for any
input vector satisfying CO (w) . O .

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

1078 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF lNTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
90
80
70
60
50
40
30
20

TABLE 111
SOME C~RCUIT DATA AND RESULTS OF BRIDGE ANALYSIS

CPU(sec)

circuit

c432

GC: Generic-Cell; GB : Generic-Bridge.

##trans. I ##cell I#GC 1 #bridge I#GB Isize(Kb)ltime(s)

728 I 152 I 18 I 1025 I 6 8 I 34 I 7.3

TABLE IV
REDUCTION OF SPICE SIMULATIONS

c1908

c2670

c3540

I , I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

cl355 I 317 I 569 144.3% I 28 I 58 lSl.7% 1 _ _ - -.

845 1861 84.6% 52 178 70.8%

2414 6420 62.4% 82 274 70.1%

2173 6788 68.0% 107 246 56.5%

c6288

c7552 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I c5315 13589 I 12223 170.6% I 131 I 446 170.6% I
139 224 38.0% 4 12 66.7%

3369 10110 66.7% 155 368 57.9%

By complementary reasoning, let the Boolean expression

representing all the input vectors that generate the bridged

output lower than a value w be expressed as

Then for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO)(,> E Tcell(a), if any input vector satisfies

C’(w) . 0. a faulty-on behavior is caused at A.
Consider A has more than one logic threshold voltage when

a switches, then the final faulty-off and faulty-on sets of A
are obtained as

.f; = C “ W) ’ O

That is, if any input satisfies (20), then the output A
has a faulty value “0.” Vice versa any input satisfying (21)
introduces a faulty “1” at the output A. Therefore, according

A 3 5 4 0 1
‘$-8&&!L #tables

0 W’SO 120 160 200 240 280 320 360

(‘4

c5315

180

(b)

Fig. 9.
versus size of tables.

(a) Analysis time versus size of tables. (b) Memory requirement

to the above theorem, the faulty behavior of A is characterized

as FA = FA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.E+ f i with f j and f i derived from (20) and

(21).
For the case that more than one input of a fanout cell is

connected together, the propagation procedure is very similar.

The function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFA of each fanout cell can be evaluated. After

all the fanout cells are processed, the logic fault simulation

can be started from the fanout cells carrying faulty values.

It is not difficult to observe that above formulas can be

evaluated for patterns in parallel via bit-vector operations.
Thus the whole procedure can be done for parallel patterns.

V. EXPERIMENTAL RESULTS

The whole system is implemented in C on a HP-9000/755

workstation. For experiments, the ISCAS85 benchmark cir-

cuits are used. They are implemented in a standard cell design
approach for a 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm CMOS technology at MCNC (Microelec-

ctronics Center of North Carolina’s). The cell library consists

of both simple (such NAND and NOR) and complex (such as

A01 and OAI) cells. The bridging faults are extracted from
the circuit layout by using a system described in [20]. For the

SPICE simulator, the level 3 MOS SPICE model is used for

the analysis.
Table I11 summarizes some circuit data and the analysis

results for the bridging faults. In general, the number of

generic-cells in each circuit is far less than the actual cell

library. The circuit c6288 having 1848 instantiated cells has
only 7 generic-cells. The actual number of generic-bridge
tables derived from the extracted bridging faults is also far less

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

DI AND JESS: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMOS BRIDGING FAULT SIMULATOR

SSA% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ 99.7

1 99.5

98.7

~ 99.4

94.5

87.7

98.0

99.9

99.9

TABLE V
RESULTS OF PPSFP SIMULATION

bridge% time(s)

97.2 0.6

98.9 0.6

99.2 1.1

99.2 0.9

96.4 1.8

96.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3
99.2 7.3

98.9 8.8
99.9 22.7

I I SSA test pattern set 121x32 random patterns

than the number of extracted bridges. It is even less than the

number of combinations of the generic-cells for each design.

For instance, the circuit c7552 has 51 773 possible bridges but
only 309 generic-bridges are derived. The circuit exhibits 31
generic-cells and the number of pairs of those would already
amount to 465.

Table IV shows the effectiveness of using the techniques
described in Section 111. The table shows the total number of

conducting circuits caused by the set of generic-bridges in

each design. They have to be analyzed by SPICE to compute

generic-bridge-tables. The actual number of them after using

the reduction techniques in Section 3-1 is also shown. On

average 65% of the SPICE computations are bypassed. The

dynamic derivation of multiple-input logic threshold voltages

also bypasses on average about 65% of the SPICE simulations

compared to exhaustive analysis of the set of generic-cells in

each design. The table clearly exposes the economy of our
methods.

The times listed in Table I11 are the actual CPU times

in seconds used for the complete analysis for each circuit.

In Table I11 the total size of the tables containing both the

generic-bridges and the generic-cells is listed for each circuit.

Only up to about 240 kbytes are required for the largest

circuit. Those numbers are significant for the assessment of
the cost incurred by assembling the fault model information

from the library data. Both the CPU time and the memory

requirement exhibit an almost linear relation with the number
of generic-bridges and generic-cells as shown in Fig. 9(a) and

The fault simulation results are shown in Table V. The

bridges are simulated for the test pattern sets generated for

single stuck-at faults. These test pattern sets are obtained

from MCNC. The fault simulation is performed in one run

for both stuck-at and bridging faults. The fault coverage for

bridging faults is the percentage of detected bridging faults
divided by the number of all simulated bridging faults. In
general, the bridging fault coverages are slightly lower than the
respective single stuck-at fault coverages. The simulation time
is very short. The column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerrors% indicates the possible false

interpretation percentages during the whole fault simulation.

(b) .

92.9 I 98.6 I 12.7

1079

That is, the percentage of the situations where the input is the

same as or very close to the cell logic threshold voltage. We

choose

l k p u t - Vogicthresholdl 5 0.02 v

is the input voltage value and T/iogicthreshold is the

logic threshold voltage. This error is not a substantial problem
for this set of benchmarks. The above margin value 0.02 V

is chosen hypothetically. In a computational experiment, we

choose the margin value as 0.5 V without observing a dramatic

decrease of the fault coverage (less than 3%). The simulation

time remains almost the same. In practice, the margin value

can be chosen according to the actual process parameters.

A set of 21x 32 randomly generated test patterns are also

simulated for the bridging faults. The results are shown in

Table V as well. The results may indicate that the random

testability of the bridging faults is rather good.

VI. CONCLUDING REMARKS

It is hard to make a comparison with other methods since

most of those methods do not include the time and memory

use of the fault modeling process. The way of selecting the

bridging faults, the test pattern sets, design approach and

process parameters (SPICE parameters) can make a lot of

difference as well. Nevertheless, with the introduction of two
new concepts, the generic-bridge and the generic-cell, the
paper demonstrates an accurate, fast and memory efficient

modeling and simulation method for CMOS bridging faults.

Since a SPICE simulator is used and the multiple-input logic

threshold voltages are considered, the method is much more

accurate than any other approximation method. The idea can

be easily used for intracell bridging faults.

This paper does not include the analysis of feedback bridg-

ing faults. This kind of bridging fault may cause a circuit
to oscillate. In this situation, it is difficult to decide if a
bridge is actually observable. Our recent work [21] shows
that feedback bridging faults may or may not oscillate under
certain input conditions. An approach has been developed to
identify oscillatory and nonoscillatory situations and resolve

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

1080 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO 9, SEPTEMBER 1996

the modeling problem by using generic-bridge and generic-cell

tables. This approach again has circuit-level accuracy and can

lead to reliable simulation results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Clear docuiment of the

associated theory, however, requires more space. For more

detail, we refer to [21].

[19] C. Di and J. Jess, “On the development of a fast and accurate bridging
fault simulator,” Tech. Res. Rep. EUT Rep. 93-E-277, ISBN 90-6144-
277-1, 1993.

[20] H. Xue, c. Di, and J. A. G. Jess, “A net-oriented method for realistic
fault analysis,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE/ACM Proc. Int. Con$ Computer-Aided Design,
Nov. 1993, pp. 78-83.

[21] C. Di and J. Jess, “On accurate and reliable testing of CMOS bridg-
ing faults,” Tech. Rep., Design Automation Section, Eindhoven Univ.

REFERENCES Technol., 1995.

[l] Y. K. Malaiya and S. Y. H. Su, “A new fault model and testing technique
for CMOS devices,” in Proc. h t . Test Conf, 1982, pp. 25-34.

121 R. E. Bryant and M. D. Schuster, “Fault simulation of IMOS circuits,”

[61

[71

VLSI Design, vol. 4, no. 6, pp. 24-30, Oct. 1983.
D. Saab and I. Hajj, “Parallel and concurrent fault simulation of MOS
circuits,” in Proc. Int. Con$ Comput. Design, pp. 752-7.56, 1984.
J. M. Acken, “Driving accurate fault models,” Compat. Syst. Lab.,

Standford Univ., pp. CSL-TR-88-365, Oct. 1985.
J. A. Waicukauski, E. B. Eichelberger, D. 0. Forlenza, E. Lindbloom,
and Th. McCarthy, “Fault simulation for structured VLSI,” VLSI Syst.
Design, pp. 20-32, Dec. 1985.
W. Maly, “Realistic fault modeling for VLSI testing,” in Proc. 24th zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Design Automatic Con$, 1987, pp. 173-180.
F. J. Ferguson, and J. P. Shen, “A CMOS fault extractor for induc-
tive fault analysis,” IEEE Trans. Computer-Aided Design, vol. 7 , pp.
1181-1194. Nov. 1988. Currently, his focus is

Chennian Di was horn in Xi’an, China. He re-
ceived the B.S. degree in information engineering
from Xidian University, China, the M.S. degree in
electrical engineering, and the Ph.D. degree from
Eindhoven University of Technology, The Nether-
lands, in 1985, 1988. and 1995, respectively.

Since 1989, he was a Research Assistant with the
Design Automation group, Eindhoven University of
Technology. He is now with IBM Microelectronics
Division. He is interested in various aspects of
computer-aided design and testing of VLSI circuits.

on microprocessor testing and diagnosis.

[SI J. M. Soden and C. F. Hawkins, “Electrical properties and detection
methods for CMOS IC,defects,” in Proc. Euro. Test Con$, 1989, pp.

191 K. S. Bracs. R. L. Rudell. and R. E. Brvant. “Efficient imulementation of
159-167.

. _
a BDD package,” in Proc. 27th ACMLEEE Design Aubnation Con$,
1990, pp. 4045.

[IO] T. M. Storey and W. Maly, “CMOS bridging fault detection,” in Proc.
Int. Test Conf., 1990, pp. 842-851.

[111 S. D. Millman, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. P. Garvey, “An accurate bridging fault test pattern
generation,” in Proc. Int. Test Conf., 1991, pp. 411418.

[12] F. J. Ferguson and T. Larrahee, “Test pattern generation for realistic
bridge faults in CMOS IC’s,” in Proc. Int. Test Conf., 1991, pp. 492499.

[13] G. S. Greenstein and J. H. Patel, “E-PROOFS: A CMOS bridging fault
simulator,” in Proc. Int. Con$ Cornput.-Aided Design, pp. 1992.

[14] J. M. Acken and S. T. Millman, “Fault model evolution for diagnosis:
Accuracy vs precision,” in Proc. Custom Intefirat. Circuits Conf , 1992,
pp. 13.4.1-15.4.4.

[151 C. Di and J. Jess, “On CMOS bridge fault modeling and test Dattern ~.

evaluation,” in Proc. 11th IEEE VLS? Test Symp., 1993, lip. 1161119.
[16] B. Chess and T. Larrabee, “Bridge fault simulation strategies for CMOS

integrated circuits,” in Proc. 30th ACMIIEEE Design Auttsmation Cont.
1993, pp. 1503-1507

1171 J. Rearick and J. H. Patel, “Fault and accurate CMOS bridging fault . .

simulation,” in Proc. Int. Test Con$, 1993, pp. 54-62.
[18] P. C. Maxwell and R. Aitken, “Biased voting: A method for simulating

CMOS bridging faults in the presence of variable gate logic thresholds,”
in Proc. Int. Test Con$, 1993, pp. 63-72.

Jochen A. G. Jess was born on April 13, 1935
in Dortmund, Germany. He received the M.S.
degree from the Rheinish-Westfalische Technische
Hochschule Aachen, Germany, in 1960, and the
Ph.D. degree from the Aachen University of
Technology, Germany, in 1963.

From 1963 to 1968, he was a Research Staff
Member with the Institute Fur Nachrichtensystem,
Karlsruhe University of Technology. From 1968
to 1969, he was a Visiting Professor with the
Department of Electrical Engineering. University

of Maryland. From 1969 to-1971, he was a Senior Staff MeGher with the
Karlruhe University of Technology. Since 1971, he has been the Professor
and Head of the Design Automation Section with the Department of
Electrical Engineering, Eindhoven University of Technology, Eindhoven,
The Netherlands. His current interests are in the design and automation
of integrated circuits, in particular layout design, logic design, design of
architectures, and formal verification. He is the coauthor of more than 75
papers.

Dr. Jess is a member of the Board of the European Design and (Design)
Automation Association (EDAA) and he has served as a Program and General
Chair for ICCAD’93 and ICCAD’94.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:05:49 UTC from IEEE Xplore. Restrictions apply.

