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An Efficient CMOS Bridging Fault 
Simulator: With SPICE Accuracv 

Chennian Di and Jochen A. G. Jess zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract- This paper presents an alternative modeling and 

simulation method for CMOS bridging faults. The significance 
of the method is the introduction of a set of generic-bridge 
tables which characterize the bridged outputs for each bridge 
and a set of generic-cell tables which characterize how each 
cell propagates a logically undefined input. These two sets of 
tables are derived dynamically for a specific design by using a 
SPICE circuit simulator. Then they can be used by any logic 
fault simulator to simulate bridging faults. In this way, the 
proposed method can perform very fast bridging fault simulation 
yet with SPICE accuracy. The paper shows bow these two sets of 
tables are derived and used in a parallel pattern fault simulator. 
Experimental results on ISCASS5 benchmarks are promising. 

I. MOTIVATION 

N LAST DECADE, the gap between the so-called realistic I faults caused by manufacturing defects and practically used 

Single Stuck-At (SSA) faults has been emphasized strongly 

[l], [4], [6]-[8] for CMOS Integrated Circuits (IC). It becomes 
evident that accurate modeling and efficient simulation of 
defect induced faults are essential for high quality testing 

of IC’s. Particularly the bridging faults, one of the most 

frequently occurring faults, attract a lot of attention. 

The complexity of modeling and simulating bridging faults 

has been very well studied. It is widely known that one 

of the difficulties of modeling a bridging fault is with the 

conducting circuit created from power supply to ground. Such 

a conducting circuit changes a digital circuit into one with 

undefined behavior. To illustrate this, Fig. 1 shows a zero-ohm 
bridge between the outputs of a complex cell and a 2-in-NAND 

(the number next to each transistor indicating its size). Its 

bridged output obtained by SPICE is shown in Table I. It is 

seen that the output may vary from 0.63 to 4.71 V for different 

inputs. These values cannot easily be accepted as logic “1” or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“0” since the propagated logic value depends on the conditions 

of the following cells. Usually a node in such a state is said 

to be in “undefined” state. Fig. 2 shows a possible fanout 

structure of the bridge in Fig. 1. The bridged output bearing 
a value 2.15 v can drive one 2-in-NAND to 0.64 v which can 

be read as “0” and drives another structurally equivalent 2-in- 
NAND to 3.99 V which can be read as “1.” Thus any simple 
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Fig. 1. An example of a bridge. 

model, such as wired-and or wired-or, is not sufficient here. It 
is obvious that the behavior of a bridge can only be accurately 

modeled if following two issues can be resolved efficiently: 
As it can be seen from the example that few centivolts differ- 

ence in the input voltage can cause different logic outputs, thus 

any approximate method is not sufficient. To guarantee correct 

results, circuit-level accuracy must be considered. Obviously 

a circuit simulator, such as SPICE, can accurately fulfill the 

tasks. However, for large circuits, this seems computationally 

intolerable. 

Early solutions of using a switch level model 121, [3] have 
been widely [4], [lo], [12] recognized as inadequate to model 
and simulate CMOS bridging faults. 

Many suggested methods attempt to improve the modeling 

accuracy by using an approximate model, such as the resistive 

network model [lo] or the voting model [4], 1111, [14], 1161. 
These methods allow very fast logic fault simulation but 

have the drawback that only the bridged outputs are analyzed 

without carefully considering how the fault propagates. A case 

of incorrect modeling by using such method can be illustrated 
by Fig. 2. For the conducting circuit created by the inputs 
shown in Fig. 2, the pull-down conductance is stronger than 
the pull-up conductance. The voting model would predict 

the bridged output as “0” but, in fact, it can be “1” or “0” 
depending on the condition of the fanout cells as shown in 
Fig. 2. 

A more accurate method using mixed-level or multilevel 

simulation techniques is proposed in [13]. This method 

switches from normal logic simulation to circuit-level 

simulation whenever a bridging fault is encountered. The 

0278-0070/96$05.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1996 IEEE 
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TABLE I 
BRIDGED OUTPUT OBTAINED BY SPICE 

inputs outputs 

1 0 1 1  1 0  

0 0 1 1  1 1  

1 1 1 1  0 0  

0 1 0 1  1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 0 0 0 0  1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1.42 

4.7 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
’70” 
”0” 
”1” 
” 1 ” 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Impact of an undefined input on fanout cells. 

bridge is simulated at circuit-level through its fanout cells 

until the undefined signals can be safely read as logic values. 

Then the simulation is switched back to logic level. This 

method is very accurate. But for lengthy test patterns, a large 

circuit may not be efficiently simulated. For instance, while 

the bridge in Fig. 1 is simulated, the inputs abcde zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 100 111 

and abcde f = 110 111 cause the same conducting circuit. In 

such a case this method would invoke the expensive circuit 

simulator twice while it is unnecessary. It is also not efficient to 

evaluate all the bridges connecting two cells having the same 

combination of cell types, such as a 2-in-NOR to a 3-in-NAND. 

Some improvements [ 171 use so-called “precomputed tables” 

derived by a circuit simulator to avoid some unnecessary 
computations and use celVgate logic threshold voltages to 

propagate an input voltage. However, the precomputed tables 

that are derived by enumerating all the combinations of a 
cell library may be both time and memory consuming. They 

may contain redundant informations and make it not easy 

to maintain and to use such a huge database. Furthermore 

the fault propagation is still not accurate since the cell logic 

threshold voltages when one signal drives more than one input 

terminal of a cell are not considered. This may introduce 

many errors. An improvement of the voting model [14], 
[IS] is unfortunately still approximate in nature and the fault 

propagation has the same shortcoming. 

1) the accurate evaluation of the bridged output voltage; 

2) the accurate propagation of an undefined input. 

Based on our development in [19], this paper presents 

a more accurate modeling and yet very fast fault simula- 

tion approach. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 presents two new concepts and the 

general strategy of the proposed method. Section I11 and IV 

discuss some implementation issues. Section V presents some 

experimental results. 

11. FAULT SIMULATION USING 

GENERIC-BRIDGE AND GENERIC-CELL TABLES 

This paper concentrates on CMOS combinational circuits. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
CMOS circuit can be viewed as an interconnection of CMOS 

cells. A CMOS cell has a network of serial-parallel PMOS 

transistors as pull-up and, its dual part in terms of NMOS 
transistors, as the pull-down part. The bridging faults analyzed 
are nonfeedback bridges between outputs of two cells. The 

feedback bridges are not treated in this paper since they show 

much complex behavior and need a different treatment. For 

more information of feedback bridges, we refer to the recent 

advances documented in [21]. The resistance of the bridges 

is assumed to be negligible. Furthermore only static analysis 

is performed. 

2.1. Evaluation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABridging Fault 

In order to guarantee the circuit-level accuracy and yet to 

obtain high efficiency, let us examine the design procedure 

first. Modern digital CMOS designs are mostly based on a 
standard cell library. In a specific design, the number of 

instantiated cells is usually much larger than the size of the 

cell library. One type of a cell may be used many times in the 

design. Thus it is very likely that many bridges may connect 

the same combination of the cell types in the same manner. 
Such a set of bridges represents one bridge type, called a 

generic-bridge. A set of generic-bridges can be derived for 

all the extracted bridges in a design. Then the evaluation of 
all the bridges can be restricted to the generic-bridges. Usually 
the number of generi~c-bridges is far smaller than the number 

of all extracted bridges. Each generic-bridge can be evaluated 

by using a circuit-level simulator, such as SPICE in our case. 

Then the bridged output is computed with the accuracy of 

SPICE. Yet a large amount of computation is avoided. 

For each generic-bridge, a generic-bridge-table is intro- 

duced for the set B of all input vectors of the two bridged cells 
that activate the bridge. A generic-bridge-table consists of a 
set of pairs ( b .  d )  as its entries. Let Tbrl be a set denoting all 
the entries. For each (b ,  d )  E Tbrl, b is the one of the distinct 
output voltages in the presence of the bridge. The entity d 

is a Boolean expression exactly covering all input vectors 

of the two bridged cells generating b at the bridged output. 

Obviously the expressions d, induce a partition of B. For any 

two ( b l , d l )  and ( b 2 , d z )  in Tbrl, if d l  is true, then d2 is not 

true and vice versa. The generic-bridge-table can be viewed 

as the “function” with the symbols “+” and “ .’’ interpreted 

as addition and multiplication of real numbers as well 

vb,, = bl . d l  + . ’ . + b, ‘ d, (1) 

if d, is satisfied, the Vbrl takes a voltage value b,. 

obtained as 

For the bridge shown in Fig. 1, its generic-bridge-table is 

Vbyi = 0.00 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( C  @ f )  . C L .  b .  d 

+ 1 . 4 2 .  ( e  @ f )  . ( a  @ b )  . c .  d 
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+ 2 . 1 5 . e .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf . E . b . c . d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ 2.45 . E . f .  U .  b .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.35.  e .  f .  ( a  + - -  b)  . ( e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACE d )  

+ 5.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe e e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf + ( E .  b . e . d + 2.2). 

representing the set of input vectors such that input terminals 

1 are observablq at the output of the generic-cell. Or, in other 

words, the input established by connecting together all the 

inputs of the set 1 is a controlling input to the generic-cell. Let 

TCen(1) denote the union of all labeled pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w, 0)l when the 

terminals I are driven by the same signal 

+ 2.89 . F . f .  ( U  @ b )  * C .  d 

(2) 

The entries having boldfaced 0.00 and 5.00 indicate that 

for those inputs, the bridged output voltage is actually close 

enough to the potential of ground and power supply respec- 

tively. 

2.2. Propagation of Undejined Inputs 

Let us examine how a CMOS cell transfers an input voltage. 

First the logic (switch) threshold voltage of a cell is defined. 

For an invertor, it is defined as the input voltage value such 
that the output voltage is equal to the input voltage. It can be 

defined in the similar way for a cell having more than one 
input terminal. Such a cell may have several different logic 

threshold voltages. For instance, a NAND with two inputs a 
and b has a logic threshold voltage 1.89 V when a switches 

while b = 1. Vice versa, it has a logic threshold voltage 2.20 
V. When both a and b are driven by the same signal, the logic 

threshold voltage is 2.60 V. In the sequel, a logic threshold 

voltage when only one input terminal switches is classified as 
single-input logic threshold voltage. Otherwise it is classified 

as multiple-input logic threshold voltage. 

In modern technology, it is known that the CMOS cell has 

a very high gain around its logic threshold voltage. A small 

variation at the input will yield a very big swing at the output. 

It is very likely that an input voltage lower than the input logic 

threshold voltage will be read as a logic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0” and vice versa. It 

is possible that an input voltage is equal to or very close to the 

logic threshold voltage. Then the output can be still not safely 

determined. In our experiments on the ISCAS85 benchmarks, 

we chose a margin of 0.02 V around the respective logic 
threshold voltage. Any input voltage within this range was 

considered as not safely propagated. Still such situations add 

up to only 0.2% of all the cases investigated. Therefore, to 

obtain fast fault simulation, it is sufficient to propagate a 

bridging fault just up to the outputs of its immediate fanout 

cells. Further propagation by circuit simulation to the next 

level of fanout gates does not resolve the uncertainty. 

Usually a specific design uses only a subset of cells from 

the given cell library. To be consistent with the definition of 
the generic-bridge, each cell in such a subset of a cell library 

is called a generic-cell of this design. Then for a specific 
design, only the logic threshold voltages of each generic-cell 
are required for the fault propagation. They can be computed 

accurately by a circuit-level simulator, in our case SPICE. 

Again a large amount of computations can be avoided. 
To formulate and keep the derived logic threshold voltages 

of each generic-cell, a generic-cell-table is introduced. The 

generic-cell-table of a generic-cell consists of a set of labeled 
pairs (w, 0)l as its entries. The label 1 represents some subset 

of the input terminals of the generic-cell. For each (w, 0)1, the 
entity w is the value of the threshold voltage when the inputs 
1 are all driven by the same signal. 0 is a Boolean expression 

m 

Tcell(l) = U(...%, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 ) l .  

2=1 

Then, for any two (w1,01)1 and ( w 2 , 0 2 ) 1  in TceIl(l), if 

01 is true, then 0 2  is not true and vice versa. This is because 

for an input vector such that terminals 1 are observable, the 

generic-cell cannot have two different logic threshold voltages 

simultaneously when inputs at 1 are driven by the same signal. 

Let L be a set denoting all the combinations of the input 

terminals of a generic-cell. Then the set containing all the 
entries in the generic-cell-table can be expressed as 

Tcell = U ~ c e l l ( q  (3) 
1EL 

It is not difficult to prove that any two entries of a generic- 

cell-table are also mutual exclusive. Thus the generic-cell-table 

can be viewed as the function Vcell defined by 

Vcell = c((w1 + (w2 . 0 2 ) l +  * ’ .  + (wm ’ 0 m ) l ) .  (4) 
1€L 

When specific terminals 1 are driven by the signal and 0, 
is satisfied, Vce1l takes the logic threshold voltage w,. For the 

NAND with two inputs a and b mentioned at the beginning of 

this section, its generic-cell-table can be expressed as 

Kell = (1.89 ’ b){a}(2.20 ’ a){b} + (2 .6O){a,b} .  (5 )  

2.3. Fault Simulation Strategy 

With the introduction of the generic-bridge-table and 
generic-cell-table, the whole modeling and simulation can 

be performed in the procedure illustrated in Fig. 3. Given 

the circuit layout and defect statistics, the transistor netlist 

is extracted. Simultaneously, all possible bridging faults 

are extracted. Then the circuit is further condensed to a 

model on logic-level. All the generic-bridges and generic- 

cells are extracted as well. Their tables are then computed by 

SPICE simulations. After this step, the bridging faults can be 

simulated for a given test pattern set through the manipulation 
of these two sets of tables. The fault simulations can be done 
exclusively at logic level. Consequently both high modeling 

accuracy and simulation efficiency are obtained. The following 

sections discuss how these two sets of tables are derived and 

give details about the fault simulation. 

111. DYNAMIC DERIVATION OF 

GENERIC-BRIDGE AND GENERIC-CELL TABLES 

The derivation of the generic-bridge-tables and the generic- 

cell-tables is performed by analyzing the extracted bridging 
faults for a specific design instead of exploring the given 
cell library by complete enumeration. Thus the derivation is 
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Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Modeling and simulation system overview 

dynamic to each design. The reasons of using this strategy are 

discussed below: 

1) The number of the generic-cells in a specific design is 

usually smaller than the size of a given cell library. 

Consequently the number of all possible generic-bridges 

in the design is small. Thus, the task of characterizing 

both tables for a design is easier. 

2) The occurrence of bridging faults depends highly on the 

layout topology of a specific design. It is very likely that 

a generic-bridge derived by enumerating the cell library 

may actually never occur in a design. Such information 

can only be obtained by analyzing the extracted bridging 

faults for a specific design. 

3) The number of all possible multiple-input logic threshold 

voltages for a set of cells is usually very large. The 

actual number of multiple-input situations depends on 

how many bridging faults actually connect more than 

one input of a cell and how a cell is actually connected 

in a design. Again such information can only be obtained 

by analyzing the extracted bridging faults for a specific 

design. 

In a practical situation with evolving history of designs, 

an .incremental strategy may be still more appropriate. That 

is, all the derived genesic-bridge-tables and generic-cell-ta 

bles of previous designs are kept in a database. If some 
generic-bridge-tables or generic-cell-tables are not present in 
the database while considering a new design, only the missing 

new generic-bridges and generic-cells are analyzed on SPICE 

level and the database is updated. This way, the database 

evolves according to the needs of the design team and no 

redundant information is computed and accumulated. 

The inputs of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbridge analyzer (Fig. 3 )  are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa flat rep- 

resentation of the transistor netlists and all possible bridging 

faults. Both are extracted from the layout of a design. The 
SPICE parameters for a specific fabrication process are also 

taken as an input. 
The first step is the extraction of all the cells. The CMOS 

circuit can be represented by a connection graph G(V, E ) .  
Each node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘U E V represents a network node which can be the 

drain, source or gate of a transistor. An undirected edge e E E 
represents a transistor and has a Boolean variable (defined by 

its gate input variable) and a weight representing its transistor 

size associated with it. The Boolean function of a cell can be 

easily extracted by exploring the pull-up and pull-down paths 

in the cell. Then the set of generic-cells for this design has to 

be identified. The connection graph corresponding to a cell is 
relatively small. Therefore the checking of the isomorphism 

of two cell graphs can be done efficiently. After all the 

instantiated cells in the design are checked, then the generic- 
cell set of this design is obtained. After this step, the bridging 

fault list can be passed to derive the generic-bridge-tables and 

generic-cell-tables. 

3.1. Derivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Generic-Bridge-Table 

The derivation procedure of a generic-bridge-table is rather 

straightforward. For each identified generic-bridge, first all the 

possible input combinations of the two involved generic-cells 

that create a conducting circuit from power supply to ground 

are enumerated. The respective SPICE format input of each 
conducting circuit is accumulated in a file. Then, a SPICE 

call is invoked to compute the voltages at the bridged output. 

Upon the completion of the SPICE computation, the results 

are collected to construct the table. This procedure is repeated 

for every generic-bridge. The major cost of this procedure is 

obviously the execution of SPICE. To speed up the derivation, 

the following techniques are used. 

The first technique makes use of the fact that an output 

voltage very close to the potential of power supply or ground 

can be safely interpreted as logic value. For example, for a 
typical 5 V CMOS technology, an input above 4 V (which 
may be considered as the lowest “hard” logic “1” value V,‘,,,) 
or below 1 V (which my be considered as the highest “hard” 

logic “0” V,“,,,) can definitely be interpreted as “1” or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“O”, 
respectively. In such a case, we use an estimation method 

developed in [15] to predict the voltage range so that the 
SPICE runs can be avoided. This method uses a simplified 

transistor model to estimate the voltage. Using this model, the 

dc-characteristic of an NMOS transistor is characterized as 

1 

2 
I d ,  = kn- V g s  - %I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Vd.> V d s ,  V d s < V g s  - &n (6)  

I d s  = 0 ,  otherwise 
{ 3 

(PMOS transistors are handled analogously). Here IC ,  is 

process dependent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,, is the zero-bias transistor threshold. 

The subscripts g , d , s  indicate the gate, drain and source of 
a transistor. W / L  is the transistor width to length ratio. In 

the model, a transistor works in a linear region if it conducts, 

otherwise it is off. This is because in a conducting circuit 
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0 1 1 1 0 1  I 1.42V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t Fig. 4. The equivalent conducting circuit. 

the voltage level at any drain (source) cannot be higher than 

V& when the gate of the transistor is driven by a logic “1.” 

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv d s  < V,, - Vi, is always true. The model also neglects 

the body-effect of the MOS transistor. Using this model, any 
conducting circuit can be simplified to the one shown in Fig. 4 

with W,,/L,, and W,,/L,, as equivalent transistor sizes of 

pull-down and pull-up parts respectively. The output VF can 
be derived by solving (7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(P- qv; + 2 ( V d d  - v,, -PVtp)VF - P ( V d d  - 2 V t p ) V d d  = o  
(7) 

( P  = (~)~(w,~/L,~)/(~,(w,e/L,,)).  It is not difficult to 
prove that VF is an increasing function of P. Two values /?Aard 
and PEard corresponding to Viard and Vfard exist. Therefore 

(+ denoting implication) holds which implies that, for a 

specific technology, it is not even necessary to actually solve 

all equations for the output voltage. Only the equivalent 

P is needed. Consequently the estimation is very fast. The 

computation of the equivalent P grows linearly with the 

number of transistors in a cell and can be very fast. For 

the cases considered, this estimation method appears accurate 

enough [15]. 
The second reduction technique is based on equivalent 

structures. For a bridge, many conducting circuits from power 
supply to ground activated by a different combination of input 
excitations have the same structure. Consequently, the bridged 

output voltage for these different excitations is the same. The 

conducting circuits are then said to be “structurally equivalent” 

for these inputs. For instance, with the bridge in Fig. 1, the 

four different input combinations shown in Fig. 5(a) imply 

the same conducting circuit as shown in Fig. 5(b) with the 

bridged output being 1.42 V. For those structurally equivalent 
conducting circuits, there is no need to repeat the SPICE 
simulation. In the course of analyzing a bridging fault, all the 

conducting circuits for which the output voltages are already 

obtained by simulation, are kept in a temporary set. During the 

enumeration of conducting circuits, if a new conducting circuit 

is found to be equivalent to one already in the temporary set, 

the SPICE simulation is skipped. Only its input condition is 

merged with the corresponding one in the temporary set. 
It will be shown by experimental results that the above two 

techniques are every effective. 

3.2. Derivation of Generic-Cell-Table 

A generic-cell-table is constructed in two steps. In first 

step, the single-input logic threshold voltages of each generic- 

Fig. 5. Illustration of structural equivalence. 

cell are derived. The derivation procedure is straightforward. 

For each input terminal, all possible generic-cell configura- 

tions which may lead to different logic threshold voltages 

are enumerated. Their respective SPICE input formats are 

generated in a file. Then a SPICE call is invoked to compute 

the logic threshold voltages. Upon the completion, the results 

are collected to construct the table. This procedure is repeated 

for each input terminal of every generic-cell. Note that generic- 

cell table is restricted for single output cells. For a multiple 

output cell, the circuit can be partitioned according to each 

output cone. The generic-cell table for each output terminal 

can be derived as for a single output cell. 

It seems that other methods did not pay enough attention 

to the phenomenon that a cell may have many different logic 

threshold voltages when a single input terminal switches. To 

demonstrate this effect, Fig. 6(a) shows a generic-cell which 

has three different logic threshold voltages when input a 
switches. Their values are listed in Table 11. Assume the input 

voltage of a is 2.15 V, then it can be propagated as a “0” (the 

threshold is 2.08 V), undefined (the threshold is 2.15 V) or 

“1” (the threshold is 2.17 V) to the output. Thus those effects 

cannot be ignored. 

In a second step, the multiple-input logic threshold voltages 

of each generic-cell are derived. To illustrate the situation 

where the multiple-input logic threshold voltages are needed, 

Fig. 6(b) shows a possible use of the cell in Fig. 6(a) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan 
actual design. It can be seen that one signal can drive two 
inputs (a  and b in the original cell). Assume that a bridge 

between a and c in Fig. 6(b) occurs. Then one signal can 

drive three inputs (a ,  b,  and c in the original cell). Table I1 also 
lists the logic threshold voltages for those situations. The table 
shows clearly that ignoring the dependencies between various 

inputs can be very deceptive. Thus it is essential to know 
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input a 

Vthreshold( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

input a & b input a & b & c 

Vthresholdl c d Vthreshold I d 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 

2.08V 11 0 1 I 1.89V I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 8 I 1.58V I 1 
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 

2.15V l l O O l  2.11V 1 0 1 1  2.44V I O  
I I I I I 

2.17V 100 1 I 2.62V I O  0 I 

- 
a 

b - 

Fig. 6. 

(a) (b) 

(a) A complex cell. (b) Illustration of multiple-input thresholds. 

the multiple-input threshold voltages in order to propagate the 

input correctly. 

The derivation is computed while the bridging faults are 
analyzed. In the course of the analysis, each multiple-input 
case is individually identified. If more than one input in the 

fanout cell is bridged or one signal drives more than one 
input terminal of a cell, then all the possible configurations 

are enumerated. Their logic threshold voltages are computed 

by SPICE and the generic-cell-table is updated. The procedure 

is repeated for every bridge. Eventually all the necessary 

multiple-input logic threshold voltages are obtained in the 

tables. 
The effects of multiple-input logic threshold voltages are not 

considered by the methods in [ 171 and [ 181. Instead, the single- 

input logic threshold voltage is used for the fault propagation. 

This can easily lead to a wrong decision. For instance, the 

two inputs of a 2-in-NAND are bridged together. This NAND 

has two single-input logic thresholds 1.89 and 2.20 V and 

a multiple-input logic threshold 2.60 V. If the input voltage 
is 2.47 V, using the multiple-input logic threshold voltage 
2.60 V, the input is propagated as “1” to the output which 

is consistent with the real value 4.13 V. But if the single-input 
logic threshold voltage, either 1.86 V or 2.20 V, is used, then 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0’ would be propagated to the output which is incorrect. 

3.3. Boolean Function Representations 

During the analysis and the derivation of the two sets of 

tables, the Boolean function of each generic-cell and each table 

entry involves symbolic Boolean expressions and manipula- 

tions. The results need to be stored for the simulations. This 

seems not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan important issue since it is claimed before that 

the number of generic-bridges and generic-cells for a design 

t v 1 0  

0 : negated function. 

(4 (b) 

Flg. 7 .  (a) Example bridges. (b) Illustration of compact storage. 

is small. However, if the issue is not properly handled, it may 

still cost unnecessary memory. To be efficient, ROBDD data 

structures [9] are used. It is not difficult to observe that the 

Boolean expression in each entry of a generic-bridge-table is 

established by a pull-up term of one generic-cell and a pull- 

down term of another generic-cell. Let each of them be stored 

separately. Then the canonical property of the ROBDD can 
result in a very compact representation. 

To illustrate this, Fig. 7(a) shows a generic-cell B involved 

with two generic-bridges (they are not supposed both to occur 

simultaneously). After analysis, all the pull-down (fl  = a b )  
and pull-up terms ( f 2  = E 3 b )  of B are 
required to construct the tables. Their ROBDD representations 

are shown in Fig. 7(b). The generic-bridge-tables are obtained 

as: 

and f 3  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa . b  

V,r,~ = 1.35 . E .  f l  + 1.57. e . f3 + 3.39 . e . f 2  (9) 

(10) 

Here, g 1  = e .  d is the pull-down term of C and g2 = c . d 
and ,93 = c . d  + C d are the pull-up terms of C. 

During the whole process, the generic-cell B is only needed 

to be processed once to create f l  , f i  and f 3 ) .  They are shared 

by both the generic-bridge-tables. The 9 1 ,  g 2  and g3 are also 

created once. fl  and 91 are also shared inside Vb,..a. Thus in 

theory, the upper bound of the memory requirement for all the 

tables is the number of the different pull-up and pull-down 

terms of all the generic-cells in a design. Consequently the 

memory required grows linearly with the number of generic- 
bridges and generic-cells. 

Vbr12 = 1.45 . Q3 . fi + 2.67. 9 2  . f i  + 1.89 . 9 1  . f3  

+ 3.45. g1 . f 2 .  

IV FAULT SIMULATION 

With the introduction of the generic-bridge-table and 
generic-cell-table, bridging faults can be simulated by the 
procedure described below: 

1) after fault free simulation, for each bridge, find its 

respective generic-bridge-table. Evaluate the table for 

the applied input pattern. If no entry is satisfied, stop. 

Otherwise obtain the respective output voltage value. 

2) for each fanout cell of the bridged outputs, find its 

generic-cell-table. For the applied input, evaluate the 

entries labeled with the inputs that are connected with 

the bridged outputs. If one entry is satisfied, obtain 
the logic threshold voltage value; compare the bridged 
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Fig. 8. Illustration of a bridging fault propagation procedure. 

output voltage with the logic threshold voltage and 

interpret it as logic value at the output. 
3) after all the fanout cells are processed, start the normal 

logic fault simulation from these fanout cells carrying 

faulty values. 

In the above procedure, except for the evaluation at the 

fanout cells from a bridged output, the bridging fault simu- 

lation works essentially like any other logic fault simulator. 

Thus any efficient technique can be applied. In this paper, 

the well-known parallel pattern and single fault propagation 

(PPSFP) [5] technique is adapted. The first two steps of 

the fault simulation can be executed as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  That is, in 

the forward traversal, the fault free simulation is carried out 

for applied patterns in parallel. In the backward traversal, 
the observability of each node is determined for the applied 
patterns in parallel as well. Then the detectability of each 

bridging fault is determined. In many cases, a voltage value at 

a bridged output can be propagated as a set of different faulty 

values to different fanout cells. The fanout branches carrying 

faulty values may reconverge later at some point. That is, 

regarding the fault propagation, a nonreconvergent node may 

behave like a reconvergent node. Therefore the detectability 

of a bridging fault should be determined by explicit fault 

simulation. To carry out this procedure for parallel patterns, 

it is essential to characterize the Boolean function of each 
fanout cell from the bridged outputs. Such a Boolean function 

characterizing the faulty behavior of a fanout cell should be 

derived from the respective generic-bridge-table and generic- 

cell-tab le symbolically so that its evaluation can be done via 

bit-vector operation for parallel patterns. Below it is shown 

how a faulty Boolean function at a fanout cell from the bridged 

output is derived. 

First, let us examine how a faulty Boolean function is 

constructed. A cell is said having a faulty-on behavior if the 
fault free value is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“0” but in case of a bridge is “1”. A cell 
is said having a faulty-off behavior in the opposite case. For 

ease of the discussion, a generic-bridge between B and C and 

one of the fanout cell A as depicted in Fig. 8(a) are used for 

illustration. 

Let FB and FC be the fault free functions of B and C,  
respectively. The input spaces I ,  J ,  and K are independent of 
each other. The fault free function of A can be viewed as a 

function of I and J as 

FA = {z E ( I  + J)IA is “on”}. (1 1) 

Due to the bridge, A becomes a function of inputs I ,  J and 

K .  Let B = I + J + K. Then, the Boolean function FA of A 

in the presence of the bridging fault is defined as 

PA = {z E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIA is “on”}. (12) 

The faulty-on set and the faulty-off set of A are defined as 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x E B ~ F A  A PA} and fi = {x E B ~ F A  A FA}. 
(13) 

- 
The complement of f j  is then obtained as f j  = {x E 

The set B is then split into three parts: f;, fi, and the rest 

of the inputs. On the other hand, obviously B can also be 

viewed as the union of FA and FA considering the inputs in 
K as “don’t cares”. Fig. 8(b) illustrates the relation of fi and 

f j  with respect to FA and F A .  With the above definitions, 

the following theorem holds. 
Theorem: Assume a cell with its fault free function as FA 

is affected by a bridge. Let fi and fi be the faulty-on set and 

faulty-off set of the cell. Then 

B ~ F A  A PA}. 

Prooj Equation (12) can be partitioned into two parts 

FA = {x E B(FA A PA} U {X E B(FA A FA}. (15) 

The first part is exactly the faulty-on set fi. In the part 
containing original “on” set FA, except for the inputs in fi, 
the output A is still “on”. Thus the second subset in (15) should 

be the original “on” set FA minus the faulty-off set fi (the 

shaded part in Fig. 8(b)). Therefore, = FA . fl: + fi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 
The above theorem implies that once the faulty-on and the 

faulty-off set of a fanout cell are obtained, they are sufficient 

to characterize the faulty behavior of this cell. Below it will be 

shown how the faulty-on and the faulty-off set of a fanout cell 

are derived from the generic-bridge and generic-cell tables. 
For the bridge in Fig. 8(a), let all entries of its generic- 

bridge-table be represented by a set Tbrl. For the fanout cell 

A in Fig. 8(a), let all the entries of its generic-cell-table labeled 

with a be represented by a set Tc,ll(a). 

The generic-bridge-table Tbrl can be partitioned into two 

parts Tfrl and T& 

T:rl={(b,d) E T b r 1 l d + F ~ A d + F c }  (16) 
Tlr1 = { (b ,  d )  E Tb,,ld * FB A d + F c } .  (17) 

For any ( b ,  d )  E T:rl, it is known that the fault free value of 

B is “0” ( a  = 0). Suppose a is observable at the output of A 
in the presence of the bridge. Obviously the input voltage at a 
should be higher than the logic threshold voltage of A for the 

propagation of the bridging fault. Let the Boolean expression 

representing all the input vectors generating the bridged output 

higher than a value w be expressed as 

(18) c d .  C“w) = 

(b ,4ET,0r , (w)lb > w 

Then for any (w ,  O)(,J E Tcell(a), a is observable if 0 is 
satisfied. Thus a faulty-off behavior is caused at A for any 
input vector satisfying CO ( w )  . O .  
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TABLE 111 
SOME C~RCUIT DATA AND RESULTS OF BRIDGE ANALYSIS 

CPU(sec) 

circuit 

c432 

GC: Generic-Cell; GB : Generic-Bridge. 

##trans. I ##cell I#GC 1 #bridge I#GB Isize(Kb)ltime(s) 

728 I 152 I 18 I 1025 I 6 8  I 34 I 7.3 

TABLE IV 
REDUCTION OF SPICE SIMULATIONS 

c1908 

c2670 

c3540 

I , I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

cl355 I 317 I 569 144.3% I 28 I 58 lSl.7% 1 _ _  - -. 

845 1861 84.6% 52 178 70.8% 

2414 6420 62.4% 82 274 70.1% 

2173 6788 68.0% 107 246 56.5% 

c6288 

c7552 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I c5315 13589 I 12223 170.6% I 131 I 446 170.6% I 
139 224 38.0% 4 12 66.7% 

3369 10110 66.7% 155 368 57.9% 

By complementary reasoning, let the Boolean expression 

representing all the input vectors that generate the bridged 

output lower than a value w be expressed as 

Then for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( w ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO)(,> E Tcell(a), if any input vector satisfies 

C’(w) . 0. a faulty-on behavior is caused at A. 
Consider A has more than one logic threshold voltage when 

a switches, then the final faulty-off and faulty-on sets of A 
are obtained as 

.f; = C “ W ) ’ O  

That is, if any input satisfies (20), then the output A 
has a faulty value “0.” Vice versa any input satisfying (21) 
introduces a faulty “1” at the output A. Therefore, according 

A 3 5 4 0  1 
‘$-8&&!L #tables 

0 W’SO 120 160 200 240 280 320 360 

(‘4 

c5315 

180 

(b) 

Fig. 9. 
versus size of tables. 

(a) Analysis time versus size of tables. (b) Memory requirement 

to the above theorem, the faulty behavior of A is characterized 

as FA = FA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.E+ f i  with f j  and f i  derived from (20) and 

(21). 
For the case that more than one input of a fanout cell is 

connected together, the propagation procedure is very similar. 

The function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFA of each fanout cell can be evaluated. After 

all the fanout cells are processed, the logic fault simulation 

can be started from the fanout cells carrying faulty values. 

It is not difficult to observe that above formulas can be 

evaluated for patterns in parallel via bit-vector operations. 
Thus the whole procedure can be done for parallel patterns. 

V. EXPERIMENTAL RESULTS 

The whole system is implemented in C on a HP-9000/755 

workstation. For experiments, the ISCAS85 benchmark cir- 

cuits are used. They are implemented in a standard cell design 
approach for a 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApm CMOS technology at MCNC (Microelec- 

ctronics Center of North Carolina’s). The cell library consists 

of both simple (such NAND and NOR) and complex (such as 

A01 and OAI) cells. The bridging faults are extracted from 
the circuit layout by using a system described in [20]. For the 

SPICE simulator, the level 3 MOS SPICE model is used for 

the analysis. 
Table I11 summarizes some circuit data and the analysis 

results for the bridging faults. In general, the number of 

generic-cells in each circuit is far less than the actual cell 

library. The circuit c6288 having 1848 instantiated cells has 
only 7 generic-cells. The actual number of generic-bridge 
tables derived from the extracted bridging faults is also far less 
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SSA% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ 99.7 

1 99.5 

98.7 

~ 99.4 

94.5 

87.7 

98.0 

99.9 

99.9 

TABLE V 
RESULTS OF PPSFP SIMULATION 

bridge% time(s) 

97.2 0.6 

98.9 0.6 

99.2 1.1 

99.2 0.9 

96.4 1.8 

96.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3 
99.2 7.3 

98.9 8.8 
99.9 22.7 

I I SSA test pattern set 121x32 random patterns 

than the number of extracted bridges. It is even less than the 

number of combinations of the generic-cells for each design. 

For instance, the circuit c7552 has 51 773 possible bridges but 
only 309 generic-bridges are derived. The circuit exhibits 31 
generic-cells and the number of pairs of those would already 
amount to 465. 

Table IV shows the effectiveness of using the techniques 
described in Section 111. The table shows the total number of 

conducting circuits caused by the set of generic-bridges in 

each design. They have to be analyzed by SPICE to compute 

generic-bridge-tables. The actual number of them after using 

the reduction techniques in Section 3-1 is also shown. On 

average 65% of the SPICE computations are bypassed. The 

dynamic derivation of multiple-input logic threshold voltages 

also bypasses on average about 65% of the SPICE simulations 

compared to exhaustive analysis of the set of generic-cells in 

each design. The table clearly exposes the economy of our 
methods. 

The times listed in Table I11 are the actual CPU times 

in seconds used for the complete analysis for each circuit. 

In Table I11 the total size of the tables containing both the 

generic-bridges and the generic-cells is listed for each circuit. 

Only up to about 240 kbytes are required for the largest 

circuit. Those numbers are significant for the assessment of 
the cost incurred by assembling the fault model information 

from the library data. Both the CPU time and the memory 

requirement exhibit an almost linear relation with the number 
of generic-bridges and generic-cells as shown in Fig. 9(a) and 

The fault simulation results are shown in Table V. The 

bridges are simulated for the test pattern sets generated for 

single stuck-at faults. These test pattern sets are obtained 

from MCNC. The fault simulation is performed in one run 

for both stuck-at and bridging faults. The fault coverage for 

bridging faults is the percentage of detected bridging faults 
divided by the number of all simulated bridging faults. In 
general, the bridging fault coverages are slightly lower than the 
respective single stuck-at fault coverages. The simulation time 
is very short. The column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerrors% indicates the possible false 

interpretation percentages during the whole fault simulation. 

(b) . 

92.9 I 98.6 I 12.7 
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That is, the percentage of the situations where the input is the 

same as or very close to the cell logic threshold voltage. We 

choose 

l k p u t  - Vogicthresholdl 5 0.02 v 

is the input voltage value and T/iogicthreshold is the 

logic threshold voltage. This error is not a substantial problem 
for this set of benchmarks. The above margin value 0.02 V 

is chosen hypothetically. In a computational experiment, we 

choose the margin value as 0.5 V without observing a dramatic 

decrease of the fault coverage (less than 3%). The simulation 

time remains almost the same. In practice, the margin value 

can be chosen according to the actual process parameters. 

A set of 21x 32 randomly generated test patterns are also 

simulated for the bridging faults. The results are shown in 

Table V as well. The results may indicate that the random 

testability of the bridging faults is rather good. 

VI. CONCLUDING REMARKS 

It is hard to make a comparison with other methods since 

most of those methods do not include the time and memory 

use of the fault modeling process. The way of selecting the 

bridging faults, the test pattern sets, design approach and 

process parameters (SPICE parameters) can make a lot of 

difference as well. Nevertheless, with the introduction of two 
new concepts, the generic-bridge and the generic-cell, the 
paper demonstrates an accurate, fast and memory efficient 

modeling and simulation method for CMOS bridging faults. 

Since a SPICE simulator is used and the multiple-input logic 

threshold voltages are considered, the method is much more 

accurate than any other approximation method. The idea can 

be easily used for intracell bridging faults. 

This paper does not include the analysis of feedback bridg- 

ing faults. This kind of bridging fault may cause a circuit 
to oscillate. In this situation, it is difficult to decide if a 
bridge is actually observable. Our recent work [21] shows 
that feedback bridging faults may or may not oscillate under 
certain input conditions. An approach has been developed to 
identify oscillatory and nonoscillatory situations and resolve 
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the modeling problem by using generic-bridge and generic-cell 

tables. This approach again has circuit-level accuracy and can 

lead to reliable simulation results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Clear docuiment of the 

associated theory, however, requires more space. For more 

detail, we refer to [21]. 
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