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An Efficient Collaboration and Incentive Mechanism

for Internet-of-Vehicles (IoVs) with Secured

Information Exchange Based on Blockchains
Bo Yin, Yulei Wu, Tianshi Hu, Jiaqing Dong, Zexun Jiang*

Abstract—With the rapid development of Internet-of-Things
(IoT), mobile crowdsensing, i.e., outsourcing sensing tasks to
mobile devices or vehicles, has been proposed to address the
problem of data collection in the scenarios such as smart city.
Despite its benefits for a wide range of applications, mobile
crowdsensing lacks an efficient incentive mechanism, restricting
the development of IoT applications, especially for Internet-of-
Vehicles (IoV) – a typical example of IoT applications; this
is because vehicles are usually reluctant to participate these
sensing tasks. Moreover, in practice some sensing tasks may
arrive suddenly (called an emergent task) in the IoV environment,
but the resources of a single vehicle may be insufficient to
handle, and thus multi-vehicles collaboration is required. In
this case, the incentive mechanisms for the participation of
multiple vehicles and the task scheduling for their collaborations
are collectively needed. To address this important problem, we
firstly propose a new model for the scenario of two vehicles
collaboration, considering the situation of emergent appearance
of a task. In this model, for a general sensing task, we propose
a bidding mechanism to better encourage vehicles to contribute
their resources, and the tasks for those vehicles are scheduled
accordingly. Secondly, for an emergent task, a novel time-window
based method is devised to manage the tasks among vehicles
and to incent the vehicles to participate. Finally, we develop
a blockchain framework to achieve the secured information
exchange through smart contract for the proposed models in
IoV.

Index Terms—Mobile crowdsensing, Incentive mechanism, In-
ternet of Things, Internet of Vehicles, Blockchain

I. INTRODUCTION

W ITH the rapid development of smart mobile devices

and embedded sensors, Internet-of-Things (IoT) has

become an indispensable part of people’s lives. As suggested

by Gartner [1], IoT is and will still be the fastest-growing,

the largest market potential, and the most attractive emerging

economy. IoT has revolutionized a wide range of fields, and

its applications, such as Internet-of-Vehicles (IoVs) [2], in

the context of smart cities are of particular interest in the

community. IoV is an open and integrated networking system

composed of vehicles, users and networks, and a vehicle

possesses the computation, sensing and storage resources. To

better improve every aspects of people’s lives and to make
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the smart city a reality, more sophisticated data needs to be

collected through IoV.

A promising way to collect such a huge volume of data in

IoVs is through mobile crowdsensing (MCS) [3]–[11], which

outsources the sensing tasks to the sensors of vehicles. MCS

usually involves an IoT center for receiving data collection

requests and delegating the data sensing tasks to the participat-

ing devices like the vehicles in the IoV environment. It takes

advantage of the computation, sensing and communication

resources of vehicles and avoids to deploy a large number of

task-specific sensors [3]. However, vehicles may be reluctant

to contribute their resources to complete MCS tasks [12].

Thus, an effective incentive mechanism is urgently needed to

encourage vehicles to participate the data sensing so as to

promote the development of IoV and smart cities.

Many incentive mechanisms [13]–[23] have been reported

in the literature. Most of them fail to consider the situation

of an emergent sensing task in IoV. This kind of task has the

characteristic of delay-sensitive nature and needs to be handled

timely. In addition, there has not been any mechanism in IoV

to secure the information exchange for incentive mechanisms,

which is a critical issue in IoV [12], [24]. Blockchain as the

most popular distributed ledger technology [25] has enabled

vehicular applications for secured authentication [26] and

communication [27]. It is promising to integrate blockchain to

handle the information exchange of IoV in an MCS system.

Aiming at these shortcomings of the existing incentive

mechanisms and MCS task allocation problems in IoV, we

propose a new MCS incentive mechanism with regard to

timing constraints. In addition, a new model for multi-vehicles

collaboration and delay-sensitive task assignment is developed

and analyzed. The main contributions of this paper are sum-

marized as follows:

• We distinguish between a general task and a delay-

sensitive emergent task, and innovatively combine the

two types of tasks into one unified scheduling problem.

To solve the general task assignment problem, we model

the MCS task allocation as a budget constraint bidding

problem.

• To handle the delay-sensitive emergent task whilst pro-

cessing general tasks, we develop a new multi-vehicles

task assignment model. The model elaborates the at-

tributes of emergent tasks and considers the resource

limitation nature of vehicles due to the processing of gen-

eral tasks. A multi-vehicles collaboration method based

on idle time window is proposed, which can effectively
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ensure the real-time and effectiveness of multi-vehicles

resource allocation and improve the vehicle resource

utilization rate.

• To improve the efficiency and transparency of vehicle

collaborations, a blockchain framework is envisioned to

realize the bidding and secured information exchange

between vehicles and the IoT center. The novelty is that

we take into account how the participants are actually

paid with incentive mechanisms, which is largely ignored

in previous works.

• Experiment results demonstrate the advancement of the

proposed method in terms of more efficient task alloca-

tion and processing, leading to shorter task running time,

and extra profits gained due to the processing of emergent

tasks.

The rest of the paper is organized as follows. The related

work is summarized in Section II. The multi-vehicles collabo-

ration problem is described in Sections III - V. Specifically, in

Section III, we distinguish two types of tasks: the general task

and the delay-sensitive emergent task; we describe the general

task assignment problem and the emergent task assignment

problem in Sections IV and V, respectively. A time-window

based method to solve multi-vehicles collaboration issue is

proposed in Section VI. The proposed method is validated

and evaluated by extensive experiments in Section VII. Finally,

Section VIII concludes this study.

II. RELATED WORK

A. Mobile Crowdsensing

Extensive studies have been carried out to investigate the

incentive mechanisms to encourage the participation of mobile

devices in MCS. They can be generally grouped into three

categories, namely, location based, social network based and

time based.

For location based incentive methods [15], [16], [18], the

location and the coverage of mobile devices are of great impor-

tance, and they become part of the constraints for optimization.

As pointed out by Huang and Tseng [28], the coverage is a

fundamental issue in wireless sensor networks to reflect how

well an area is monitored. Zheng et al. [13] utilized the idea

of coverage and considered the task allocation as a coverage

problem. The authors modeled the scenario that the service

provider publishes a number of points of interests and the data

providers bid with a pair of the task and its cost. Wang, Wei

and Qi [15] studied the vehicle MCS and took into account

not only the current location but also the future location of

vehicles when recruiting vehicles for MCS tasks. Tao and Song

[16] studied the location of tasks with regard to a clustering

effect. They only modeled the reward for data providers as the

combined cost of sensing and travelling to a certain location,

but the participatory and selfishness nature of data providers

are omitted. Ko, Pack and Leung [18] proposed a coverage

guaranteed and energy efficient participant selection model

for MCS. They modeled the sensing tasks of static users

and focused on reducing the energy consumption for devices,

and they assumed that delay is allowed so that data can be

sent in batch. For all the methods discussed above, where

only the location or coverage requirements of MCS tasks are

considered, the sensing is performed only once in a task.

However, several tasks, such as traffic monitoring in [29],

[30], require repeated sensing in an area. In addition, the time

constraint of delay-sensitive tasks is largely ignored.

As for the social network based incentive mechanisms [17],

[20]–[22], they considered social cost of participation and

utilized social platform to recruit. Jiang et al. [17] proposed a

social network based MCS model and discussed the prevention

of sybil attack after introducing the idea of social networks.

They also considered time-sensitiveness of tasks, but they

failed to consider the repeated sensing in a task. Chen et al.

[21] proposed a three-layer incentive structure involving the

social applications, so as to taking advantage of the user base

from social applications instead of finding and stimulating

users per sensing tasks. Nie et al. [20], [22] considered the

network effect, which refers to the phenomenon that public

goods or services are more valuable if it is adopted by more

users, with incentive. They modeled the interaction between

service providers and users as a game. These studies [20]–[22]

can be generally treated as platform-centric solutions where

the rationality and selfishness nature of users is ignored.

Although time-based incentive mechanisms have been pro-

posed in [14], [19], they focused only on the time constraint

aspect without considering the repeated sensing nature in a

task. Zhan et al. [14] assumed the selfishness of mobile users

and modeled the data collection process as a cooperative game

between data provider and requester. They took into account

the time constraint of a task which needs to be finished within

a limited time. Xu et al. [19] proposed a novel scenario where

the platform needs the data collection to be completed in a

requested time window. Besides, they showed that the data

collected in the time window has sufficient integrity. However,

these incentive mechanisms focus on the fact that tasks need to

be finished within a time limit; they failed to plan the sensing

tasks for several time slots, which is the case for the tasks

requiring repeated monitoring. Duan et al. [12] studied vehicle

monitoring scenarios and proposed two different modes, i.e.,

an offline mode and an online mode, with regard to the lack of

fairness, unconsciousness and randomness of mobile devices

of the current incentive mechanisms. The novelty of their work

is that they modeled the bidding with not only the demanding

price but also the location-time pair of the vehicle, so that

repeated sensing tasks can be allocated on time. However, they

omitted the resource requirements for each bidding.

In summary, the existing literature lacks the attention to

the time constraint of MCS tasks in two perspectives. On

the one hand, a number of studies failed to take the delay-

sensitive emergent tasks into account. On the other hand, for

those who considered the time constraints of a task, they

performed the sensing only once in a task. In the environment

with heterogeneous sensing requests, time-sensitive emergent

tasks should be considered on top of the fact that devices are

carrying out repeated sensing tasks. This combined framework

is not shown in any of the reviewed literatures. Moreover, for

all the works investigated above, how the payment is securely

dealt with is not considered.
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B. Blockchains

The blockchain has become a promising solution to tackle

trust and privacy issues of information sharing in MCS.

Feng and Yan [31] proposed an MCS-chain to solve privacy

and fault-tolerance of existing MCS networks. They focused

on an innovative consensus algorithm and trust evaluation,

but the execution of the bidding and information exchange

are ignored. Chatzopoulos et al. [32] studied the usage of

blockchains in MCS by proposing an effective incentive

auction. The bidding and information exchange problems are

addressed, but it is for location-based MCS and only location

privacy is preserved. Zhao et al. [33] also discussed the

blockchains in MCS focusing on preventing malicious nodes

that publish false information or intentionally not provide data

after accepting a task.

III. AN OVERVIEW OF BLOCKCHAINS

Blockchains, which are developed as the key technology

behind Bitcoin [34], have gained popularity in various areas of

applications. It is composed of blocks, and each block contains

a hash of the previous block along with a time stamp. The

blocks combined to form a distributed ledger is transparent

in a way that all the transactions made since the creation of

the blockchain can be available to check. It is tamper-proof,

meaning that the data recorded on the blockchain cannot be

modified and with no fraud [35]. It can be seen as a log whose

records are batched into time-stamped blocks [36], and it can

be used by various parties to efficiently record transactions

between each other in a verifiable and permanent way [37].

A. Blockchain Networks

A blockchain network [38] consists of a set of nodes which

are the entry point for multiple users or devices to interact with

each other. The nodes make executions on behalf of these users

or devices, and they keep both a replicated copy of the ledger

of the blockchain, which will be updated when transaction is

made on the blockchain, and the smart contract for execution

of the transactions [39]. The transaction encompasses a variety

of data which is valuable in the blockchain network, such as

the information collected by the IoT devices [40], bitcoin, etc.

Before being recorded on a block, a transaction needs to be

signed off by a node using its private key, and its contents can

be examined by other nodes using the corresponding public

key. After the transaction is validated and accepted by nodes in

the blockchain network, the record of the new block containing

the information about this transaction will be broadcasted to

the whole network where each node updates its ledger by

adding this block.

B. Smart Contracts

Smart contract can ensure a secure, efficient and automatic

data exchange between different parties without the traditional

contracting process such as search, negotiation and commit-

ment [38]. The basic idea behind smart contracts is that many

contractual clauses (such as collateral, bonding, delineation of

property rights, etc.) can be embedded in the hardware and

software, in which case the breach of contract is expensive

[41]. A smart contract is a predefined set of rules that agreed

by multiple parties on how a transaction affects their status,

such as their account. For example, a smart contract can be

used to query a certain data on the blockchain with regard to

some kind of information, and it can also be used to move

10 certain assets from node A to node B. The execution of

a transaction will result in a status which will be recorded in

the ledger by each party in the blockchain network.

IV. MOBILE CROWDSENSING IN INTERNET-OF-VEHICLES

As classified by Ganti, Ye and Lei in [3], MCS applications

can be classified into three categories, namely, environmental,

infrastructural, and social applications.

For environmental applications like noise monitoring [42],

and infrastructure applications like traffic congestion moni-

toring [29], as well as social applications like BikeNet [43]

relying on individuals to contribute the location and bike route

quality, continuous data collection is needed. In other words,

for a single task in these applications, repeated sensing is

required. We name this type of sensing task as general sensing

tasks or general tasks in short. For safety related applications

suggested in [44], data collection is delay-sensitive, and we

term this kind of task as emergent tasks.

For a general task, e.g., noise monitoring that requires data

to be collected continuously, the IoT center will publish the

task descriptions including task name, required resource and

time constraint through smart contract to the blockchain. The

task name can be noise monitoring; required resource can

be feedback on noisy level; and time constraint can be a

time period. Then, data providers can use smart contracts to

view tasks and offer biddings if they intend to participate

the sensing task. The related bidding information including

participant ID and its bidding and resource pair will be stored

on the blockchain. Upon receiving bidding information after a

predefined period of time, smart contract will be executed on

behalf of IoT center to select an optimal vehicle set and publish

the result on blockchain. Next, the vehicles will be asked to

provide the required data to store on the blockchain when

being notified that they are selected. The IoT center retrieves

the provided data from the blockchain, and then it will offer

reward to the participants in terms of tokens through the use

of smart contract.

While the vehicles are carrying out the general tasks in

this area, suddenly, suppose an ambulance carrying a patient

plans to go through this area, which publishes the task of

inquiring the area traffic congestion onto the blockchain. The

IoT center then publishes the tasks and does the same thing

as with general tasks. In this situation, the tasks are delay-

sensitive and emergent, and the vehicles need to utilize their

idle resources such as camera and acceleration sensors to help

with the emergent tasks.

In what follows, we propose a bidding mechanism with

regard to time and resource constraints to schedule the vehicles

with general tasks in Section IV. Then, a time-window based

algorithm is proposed in Section V, to schedule the delay-

sensitive emergent tasks. All the communications between
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vehicles and the IoT center are handled by a blockchain plat-

form [25]–[27], including bidding, payment, and scheduling

information.

V. MULTI-VEHICLES GENERAL TASK ASSIGNMENT

A. Problem Description

The problem solved in this section is for the general task

scheduling in multi-vehicles collaboration environment. In this

scenario, tasks are scheduled by an IoT center through a per-

missioned blockchain [26], where all the nodes have already

been registered on it. In this phase, it is assumed that there are

M tasks, denoted by T = {T1, T2, . . . , TM}, to be scheduled

by the IoT center, and each task Ti has a requirement with the

pair (ti, di), where ti represents all the required time periods

to carry out the task and it is defined as {t1i , t
2

i , . . . , t
n
i }, and

di, defined by the quality parameters {d1i , d
2

i , . . . , d
n
i }, is the

minimum data quality requirement. For example, for a noise

monitoring task which needs the data to be collected from the

road, the sensing time can be every single hour from 7:00 to

10:00 and from 16:00 to 19:00. The data quality requirements

can be the noisy level (a vague value, e.g., OK and not noisy,

or accurate decibel which can be mapped to a certain value

representing the quality) and continuous sensing time. The IoT

center publishes tasks on the blockchain and waits for the

response from the vehicles offering biddings; the publishing

and bidding can be performed on the blockchain through a

smart contract [27]. Assume there are N vehicles, denoted by

A = {A1, A2, . . . , AN}, willing to finish the tasks in order

to gain rewards, and each vehicle Aj will offer a bidding Bj

which comprises a pair of bidding price along with their data

quality (Bj , Dij , τj). For the task Ti, the quality Dij contains

n quality parameters {D1

ij , D
2

ij , . . . , D
n
ij}, and τi contains all

the possible time periods {τ1i , τ
2

i , . . . , τ
n
i } that a vehicle is

able to contribute their resources.

For the tasks to be scheduled, the IoT center chooses the

vehicle, considering its own budget limit and the combined

data quality provided by the vehicle. Next, the IoT center

schedules the tasks and waits for the data to be collected from

the vehicle which will be rewarded with their corresponding

bidding and task completion. These processes are recorded and

are also performed on the blockchain through a smart contract.

We consider the token as the monetary reward in this study,

and the processes are shown in Fig. 1.

In the blockchain network, the devices from data providers

and IoT center are both peer nodes, and they can execute smart

contracts to store or retrieve information from the blockchain

of their network.

B. Basic Assumptions

1) Resource Awareness: The vehicles are aware of the con-

sumption of their resources such as battery and computation

capability when finishing the allocated tasks, so they can bid

with a price higher than the cost of the resources they need to

spend out for their own interest [12], [17].

Fig. 1. The senario of vehicles mobile crowdsensing: bidding and selecting
processes

2) Quality and Value: A value function V (d1i , d
2

i , . . . , d
n
i )

is proposed to compute the value of the provided data, and it

satisfies Equation (1).

∂V (d1i , d
2

i , . . . , d
n
i )

∂dki
≥ 0 (1)

The above equation shows that the value of data will increase

with the value of data quality. Therefore, the higher data

quality per quality parameter is needed, the higher value of

the data is for the IoT center. We can simply represent the

value of data by combining the quality parameters.

3) Malicious Bidding: Vehicle nodes could bid with un-

reasonable price and false data quality. For the high price,

the IoT center can ignore bidding requests, because it has a

budget limit and is for the benefit of itself; it selects a set of

vehicles with lowest price and highest data quality. For the

nodes reporting false data quality parameters, when their data

is gathered by the IoT center during data collection phase, the

IoT center will spot the difference between the real data quality

and the reported one. Then, these nodes will no longer be able

to participate data collection and have no reward. This can be

done by removing these nodes from the network. However,

vehicles will not maliciously use their resources to attack other

vehicles [45], [46].

C. Quality Requirement

To finish a task Ti, all the parameters of its quality require-

ments must be satisfied by:

dai ≥
m
∑

j=1

Da
ij , ∀a ∈ {1, 2, . . . , n} (2)

where Da
ij is provided by the vehicle Aj belonging to the

selected set of vehicles. All the quality parameters ranging

from 1 to n must be satisfied.

D. Budget Requirement

The IoT center has a budget limit b which means the

combined bidding price of the selected vehicles must satisfy:

b ≥
m
∑

j=1

Bj (3)
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where Bj is the bidding price of vehicle Aj . Therefore, for

those malicious nodes who bid with unreasonable price, their

bid will not be accepted by the IoT center when other nodes,

with similar resources, bid with reasonable price due to the

price limit of the IoT center.

E. Time Availability

For a bidding vehicle Ai, the time availability variable

Li = {L
1

i , L
2

i , . . . , L
n
i } is formed by comparing the bidding

contribution time of the vehicle and the task requirement time.

For the value of Lα
i = 1 where the vehicle can participate in

the required time, the vehicle can continuously contribute to

sensing data; Lα
i = 0, is for the situation that the vehicle

cannot participate during that period of time.

F. Optimal Set Selection

Combining with Equations (1) and (2), the optimal set for

the general tasks is selected for the maximal benefit of the IoT

center:

max

∑K

t=1

∑N

j=1

∑n

k=1
Dk

ijLt
∑m

j=1
Bj

(4)

where N vehicles are selected for the set with the n quality

parameters of M satisfied tasks, and K is the number of time

slots.

VI. MULTI-VEHICLES EMERGENT TASK ASSIGNMENT

A. Problem Description

The problem to be solved in this section is for real-time

scheduling of the burst of tasks in multi-vehicles collaboration

environment. Because the tasks to be dealt with are emergent

tasks, meeting the task resource requirement is of great impor-

tance. Thus, the data quality can be ignored, while ensuring

the idle resources of vehicles. The bidding process can be

omitted, and the IoT center makes vehicles cooperate and

rewards the selected optimal set after the tasks are completed.

Because of the time constraint, the emergent tasks have both

resource attribute and time attribute. In this problem, we take

the time requirement as X-axis and the resource demand as

Y-axis. We consider a typical scenario that there are M tasks

T = {T1, T2, . . . , TM} in the range Q = [0, s]× [0, s], where

each task is represented by a pair of resource requirement and

time attribute. Here, the time attribute is the duration of the

time needed to be taken for processing the task. The type and

quantity of resources required to process Ti are expressed as

Ri = {R
1

i , R
2

i , . . . , R
m
i }, where Rk

i represents the demand for

the k-th resource for handling the emergent task Ti. The N

types of heterogeneous vehicles A = {A1, A2, . . . , AN} are

used to indicate the running vehicles in the current area Q,

and the vehicles in the area where the current burst of tasks

are located can cooperate to complete the task processing.

Corresponding to the attribute requirements in the target task,

the remaining resources Rj = {R1

j , R
2

j , . . . , R
n
j } of different

types of vehicles are different.

For the burst of tasks to be processed, the goal of multi-

vehicles collaborative task processing includes two aspects: a)

within the range Q, allocate vehicle resources to maximize the

benefits of task processing for both the IoT center and vehicles,

where vehicles can gain more profits by bidding with higher

price than the original cost, and the IoT center can have their

tasks finished; b) for a burst of tasks, it is necessary to respond

to and process the task request in time, and process as many

tasks as possible within the shortest time, which can improve

the efficiency of overall task processing.

B. Resource Requirements

The vehicle task assignment module performs the initial task

assignment for the tasks within the range Q, and multiple types

of vehicles perform the assigned tasks; we have discussed this

in the previous section, i.e., Section V. During the period when

a vehicle has idle resources, if a new task Tj arrives, the

vehicle processes it with the following two scenarios:

Scenario 1: The vehicle is constrained by its own resource

limit. There is a situation where the resources of a single

vehicle are not enough to handle a new task, as shown in

Equation (5):

xk
ijr

k
i ≤ Rk

i , ∀k ∈ {1, 2, . . . ,m} (5)

where xk
ij indicates whether the k-th attribute of the vehicle i

satisfies the resource requirement corresponding to the target

task Tj , and rki represents the amount of the k-th resource of

a vehicle i. xk
ij = 1 indicates that the task is assigned to the

vehicle i for processing, otherwise, xk
ij = 0.

Scenario 2: The vehicle may not be constrained by its own

resource limit, and thus Equation (5) does not need to be

satisfied.

In both scenarios, in order to complete the processing of the

task Tj , it is necessary to form a multi-vehicle set IA together

with the other vehicle Ai possessing the idle resources. The

total resources of IA must meet the resource requirements of

the target Tj , and thus the Equation (6) holds.
∑

Ai∈IA

xk
ijr

k
i ≥ Rk

i , ∀k ∈ {1, 2, . . . ,m} (6)

C. Execution Profit

To encourage more vehicles to participate the data collection

process for emergent tasks, the IoT center rewards the vehicles

with execution profit based on the contribution that each

vehicle makes. The vehicle gains the execution profit after

processing a task. Firstly, the task execution profit function

is defined as follow. When a vehicle processes the target

task, different types of tasks are processed, and thus different

benefits are obtained. Therefore, when the vehicle Ai is

allocated to process the task Tj , the net income that can be

obtained is expressed as

Ck
ij =

I
∑

k=1

Gk
ij − I(XD

ij = 0), I = 1 iff XD
ij = 0 (7)

where Gk
ij denotes the profit gained by the vehicle Ai from

processing the task Tj .

Gk
ij = pkijV

k
j , (pkij = fk

i

Rk
i

Rk
j

) (8)
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Fig. 2. The task processing sequence of a vehicle

where pkij represents the completion probability of assigning

the vehicle Ai to process the task Tj . fk
i denotes the proba-

bility that the vehicle Ai can satisfy the k-th resource demand

of Tj . For each resource provided by a vehicle, the profit V k
j

is a constant which is set by the IoT center.

Given the profits described above, the total profit of a multi-

vehicles task assignment problem can be expressed as:

CA =

n
∑

i=1

m
∑

k=1

xk
ijC

k
ij (9)

where xk
ij denotes whether the k-th resource of vehicle Ai can

process the task Tj .

D. Task Processing Time

When multiple vehicles are working with their assigned

tasks, due to the occurrence of emergent tasks, the running

vehicles which have the available remaining resources and

time of each resource will collaborate to process the emergent

task. In this case, a multi-vehicle alliance is formed to jointly

complete the processing of an emergent task. When the multi-

vehicles jointly process a task, it is required that the vehicles

in the respective vehicle alliance can achieve the same idle

time and meet the resource requirements of the emergent task.

That is to say, each vehicle has appropriate idle resources in

the current time period, which can meet the task requirements.

Due to the current operating state of a vehicle, and the devices

may be heterogeneous, the remaining resources and time

attributes of the vehicles and devices that make up the alliance

are different. This requires the time and resource coordination

for each vehicle and device. Therefore, the vehicles with

matching resources will have a waiting time, and when the

resources and time meet the conditions, the vehicle alliance

will be formed to coordinate the tasks.

In what follows, we explain the multi-vehicles cooperation

problem from the time dimension. As shown in Fig. 2, each

vehicle has a time sequence to process tasks. Each task in

vehicles is processed sequentially. We assume (tj−1,i, tj,0) is

the adjustment time the vehicle resets to process the task Tj

from the previous task Tj−1, and (tj,1, tj,2) is the processing

time of the next task Tj . Then, the idle time window of a

vehicle is (tj,0, tj,1), i.e., the vehicle is available between task

tj,0 and task tj,1.

Let us first illustrate the process of collaborative task

processing for multiple vehicles using the idle time window.

Fig. 3. The task processing sequence of a vehicle with idle time window

Fig. 4. The type of the starting time of a vehicle

As shown in Fig. 3, we insert task T3 before task T0, and insert

task T4 between task T1 and T2. Then, we can see that multi-

vehicles in IoV can process more tasks than the one shown in

Fig. 2

Let us define, at the moment, the new task that the vehicle

can process is t
f
k , which is the starting time of an idle time

window. According to different situations of vehicles, there

are three types of starting time of an idle time window, as

shown in Fig. 4. Let T0 denote the next processing task, Tj

be the new arrival task, and θ represent the current situation of

vehicles. As shown in Fig. 4(a), when there is no previous task

assigned to the current vehicle, we can assign the emergent

task Tj to it. The starting time of task Tj is shown in Equation

10:

t
j
k = t

cur−j
k + tcur (10)

where tcur denotes the current time, t
cur−j
k represents the

waiting time that the vehicle Ak is assigned to process task

Tj .

In Fig. 4(b), the initial waiting time of a vehicle to process a

task is T0, i.e., the vehicle can process Tj before T0. Then, the

task T0 is assigned to the vehicle before the task Tj is in the

initial waiting time. The starting time of task Tj is the same

as Equation (10). The starting time of T0 is changed because

of inserting the task Tj before it, and it is shown in Equation

(11).

t0
′

k = t
jwait

k + t
j−0

k + t
j
k (11)

where t
jwait

k is the waiting time of a vehicle processing task

Tj , and t
j−0

k denotes the adjustment time of processing task

Tj to task T0.

In Fig. 4(c), the waiting time of a vehicle is T0, and the

processing time of the task Tj is longer than the current
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Fig. 5. Idle time window of multi-vehicles collaboration

waiting time. Then, the starting time of a vehicle to process

task Tj is shown in Equation (12):

t
j
k = tcur−0

k + t0wait

k + t
0−j
k + tcur (12)

Let us define the waiting time between the finish time of

task Tj and the new task as the termination time of the idle

time window. Let t
0process

k be the initial appointment time of

assigning the vehicle to task T0. Then, the finish time of the

idle time window t
j′

k is shown in Equation (13):

t
j′

k = t
0process

k − t
j−0

k (13)

With Equations (10) - (13), we can calculate the start time

and termination time of processing an emergent task. Each

vehicle decides if inserting an emergent task to the current

task list according to the time constraint shown as follows.

When the k-th vehicle is assigned a new task Tj , the starting

time of this new task, t
j
k , needs to satisfy Equation (14) :

t
pre
k + t

pre−j
k ≤ t

j
k ≤ t

follow
k − t

j−follow
k (14)

where t
pre
k and t

follow
k are the starting time of the previous

task and the following task, with respect to the new task Tj .

When multiple vehicles collaborate to process an emergent

task, the idle time window of multi-vehicles and the resource

demand of the emergent task should be satisfied. As shown

in Fig. 5, the multiple vehicles with the idle time window

overlapped can be collaborated to process the emergent task.

Let us use wi to denote the idle time window of multi-vehicles

collaboration Ai. The idle time window should satisfy the

following constraint shown in Equation (15).

∀Ai, Aj ∈ IA, wi ∩ wj 6= ∅ (15)

E. Multi-vehicles Collaboration Model

After modelling the multi-vehicles collaboration of task pro-

cessing issues mentioned above, we evaluate the multi-vehicles

collaboration in three aspects: a) maximizing the total profit

of processing tasks by multi-vehicles, b) when an emergent

task occurs, the real-time requirement is another evaluation

parameter, and c) minimizing the number of vehicles in multi-

vehicles collaboration. In other words, using less number of

vehicles in multi-vehicles collaboration, there will be more

concentrations on the resources of the involved vehicles, which

will be more conducive to improving resource utilization.

Because the starting time of multi-vehicles collaboration is

determined by the start time of previous idle time window

T ′

A, and the total number of vehicles in the multi-vehicles

collaboration NA, we use the total waiting time of multi-

vehicles collaboration and the total number of vehicles in

the collaboration to indicate the timeliness of task processing.

With regard to the Scenario 1 of Section VI.B, where the

vehicle is constrained by its own resource limit, combined

with the total profit of processing tasks, the objective function

of multi-vehicles task assignment collaboration is shown by

Equation (16).

max
∑n

i=1

∑m
k=1

xk
ijC

k
ij∑

n
i=1

xk
ijvTA

s.t.























xk
ijr

k
ij ≤ Rk

l , ∀k ∈ {1, 2, . . . ,m},
∑n

i=1
xk
ijr

k
i ≥ Rk

j , ∀k ∈ {1, 2, . . . ,m},

wA =
n
⋂

i=1

wi 6= ∅, ∀Ai ∈ IA,

TA = sup(minwA)

(16)

As for the Scenario 2 of Section VI.B, where the vehicle

is not constrained by its own resource limit, the objective

function of multi-vehicles task assignment collaboration is

shown by Equation (17).

max
∑n

i=1

∑m
k=1

xk
ijC

k
ij∑

n
i=1

xk
ijvTA

s.t.















∑n

i=1
xk
ijr

k
i ≥ Rk

j , ∀k ∈ {1, 2, . . . ,m},

wA =
n
⋂

i=1

wi 6= ∅, ∀Ai ∈ IA,

TA = sup(minwA)

(17)

Since the time window constraint has been introduced,

the existing integer programming method is not suitable for

solving the model. In what follows, a new method is designed

to solve the above model.

VII. THE PROPOSED MULTI-VEHICLES COLLABORATION

METHOD

We propose a multi-vehicle time-coordinated task assign-

ment method to solve the above-mentioned time window-

based multi-vehicles task assignment problem model. First,

when a vehicle among multiple vehicles finds an emergent

task, it immediately broadcasts the set of tasks and the

previously assigned tokens within the current vehicles. The

role of the token is to determine that the vehicle in the

network reserves the token, and the vehicle that does not

want to be networked automatically discards the token and

broadcast information. The purpose of this is to ensure that the

competition of multi-vehicle resources is avoided on the basis

of task broadcast in the whole network, avoiding the deadlock

situation of resources and the waste of resources. After the

vehicle Ai gets a token and obtains the team qualification, the

task Tj is auctioned in the format Rj = {Aj , Tj}. Then, the

other vehicles in the IoV calculate the time window wj =
{w1

j , w
2

j , . . . , w
m
j } after inserting the task Tj into the current

task list Ej = {E
1

j , E
2

j , . . . , E
m
j } according to Equations (12)

- (16). Then, we calculate the profit Cj = {C
1

j , C
2

j , . . . , C
m
j }
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after processing the task Tj using Equations (7) - (9). After

that, we provide the time window and profit results to vehicle

Ai. The vehicle Ai calculates the best collaboration, based on

Equation (16), to process task Tj . It then sends the message to

the vehicles of this collaboration. They insert task Tj to their

task lists and process it accordingly.

The task request initiator adopts the time window based

multi-vehicles collaboration method to form a set of vehicles

to process tasks. In order to eliminate the influence of time

window overlap on the problem solving, the task request

initiator first sorts the vehicles in ascending order according to

the start time of the vehicle’s idle time window to form a set of

candidate vehicles. Then, the requirements of the resources are

matched according to the task. Once the resources required by

the current task are met, the candidate vehicle set is formed. It

is then possible to determine the earliest start time of a vehicle

in this set to perform the task processing. Therefore, the time

window constraint in the objective function is removed, and

the model is transformed into a standard integer programming

problem. The optimal set of vehicle candidates can be then

readily solved.

Let di denote the resource contribution degree of a vehicle.

The vehicle, in the candidate set, with the biggest contribution

is selected using a greedy algorithm according to di, thereby

forming a final task processing set. di can be expressed by the

contribution ratio of the resources that a vehicle i can provide

to process the target task.

dj =

l
∑

j=0

wj D
j
i

R
j
A

(18)

where wj represents the weight of the j-th resource, R
j
A

denotes the number of j-th resources that the candidate set

is still missing under the condition that the existing vehicle

has been added, and D
j
i is the j-th resource of the vehicle i

to contribute to task processing.

D
j
i =

{

R
j
i , R

j
i ≤ R

j
A

R
j
A, otherwise

(19)

When optimizing the solution, we need to keep the last

vehicle in the candidate set added. Otherwise, the final task

collaboration will not meet the resources required by the target

task.

VIII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed solution is validated through

extensive experiments using a simulator developed in MAT-

LAB. To show the merit of our method of adding critical

resource constraints as discussed in Section V, we compare

it with the related work in [12]. In addition, the efficiency of

the proposed time window based mechanism is validated and

evaluated.

A. Simulation Setup

Initially, the vehicle number, task number and resource types

are initialized. In the default scenario there are 5 types of

resource types, and the number of vehicles ranges from 100

Algorithm 1 The TWA time-window based algorithm

Input: Candidate vehicle set IA
Output: Multi-vehicles collaboration task processing set IC

1: Initial candidate vehicle set IB ← ∅
2: if wi < wj , ∀Ak ∈ IA then

3: select Aj to form the preparation set IB
4: delete Aj from IA
5: end if

6: calculate vn the number of vehicles in IA
7: for in = 1 to vn do

8: if
∑n

i=1
xk
ijr

k
i ≥ Rk

j , ∀k ∈ {1, 2, . . . ,m} then

9: break

10: end if

11: if wa < wk, ∀Ak ∈ IA then

12: if ∀Aj ∈ IA,Wk ∩Wj 6= ∅ then

13: add Aa to preparation set IB
14: end if

15: end if

16: end for

17: if IB contains only Aj or
∑n

i=1
xk
ijr

k
i ≤ Rk

j , ∀k ∈
{1, 2, . . . ,m} then

18: the collaboration fails

19: a new vehicle is added to IA
20: goto 7

21: end if

22: initialize the task collaboration set IC ← ∅
23: select last added Aj in IB to task set IC
24: if

∑n

i=1
xk
ijr

k
i ≥ Rk

j , ∀k ∈ {1, 2, . . . ,m} then

25: goto 33

26: else

27: while
∑n

i=1
xk
ijr

k
i ≤ Rk

j , ∀k ∈ {1, 2, . . . ,m} do

28: if da < dk, ∀Aa ∈ IB then

29: add Aa to task set IC
30: end if

31: end while

32: end if

33: return IC

to 1000 as compared to [12], while we study the effect of

the number of vehicles, the number of tasks, and the benefits

introduced by our model. It is worth noting that the number of

tasks indicates the number of tasks allocated in a general task

scheduling. Then, an emergent task is assigned to vehicles

at the time duration with no task occupying, according to

Equations (6) - (10). The tasks are represented by a tuple

with its start time and duration. After assigning all the tasks to

vehicles using Equations (2) - (4), if an emergent task appears,

we assign it to the vehicles. The resources for each individual

vehicle follow a uniform distribution in [1, 20]. Besides,

whether the resources of each vehicle can satisfy a certain

resource requirement is generated. We randomly generate an

emergent task represented by its start time, finish time and

resource demand. Then, we use the proposed algorithm to find

the optimal vehicle set.

Each experiment is obtained by repeatedly running 500

times and being averaged. The upper limit of each treatment

time is 1000. The unit processing speed of a vehicle type
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Fig. 6. The percentage of time advance with regard to the number of vehicles
and the number of tasks

is the value uniformly distributed within the range of [10,

90], and the processing speed of each vehicle is different. In

addition, the resource requirements and time points of each

vehicle and each emergent task are randomly generated, and

the generation curves of the respective resource demand are

subject to a normal distribution.

B. Experimental Results and Analysis

1) Time Advance: We evaluate the effectiveness of our

collaboration mechanism in two ways. Firstly, we demonstrate

that the proposed method can save time comparing to the

scheduling mechanisms proposed in [12], [17], [19]. With their

models, the emergent task can only be added to the end of the

task queue because their models either can only process a

complete task or do not consider the case of idle resources

while carrying out a general task. The time saved can be

measured with regard to how much time earlier an emergent

task can be handled by the proposed mechanism. We use an

index l called the percentage of time advance as shown in

Equation (20), where temergentStart is the start processing

time of an emergent task, and tfinish is the finish time of

the last task for each vehicle, so that we can measure how

much time saved.

l =
temergentStart

tfinish
(20)

As shown in Fig. 6, regardless of the number of tasks,

the percentage of time advance is decreasing as the number

of vehicles increases. This is because for a fixed number

of tasks, if there are more vehicles, due to the setting that

tasks are assigned randomly to vehicles, each vehicle has

fewer tasks in a fixed time interval. When each vehicle has

only a relatively small number of tasks, the attribute of an

emergent task is dimmed, which means that the task is no

longer urgent because there is a large probability that the

starting time of the emergent task is located in the idle time

duration of a vehicle. On the contrary, if the number of tasks

Fig. 7. The percentage of time advance of collaboration and non-collaboration
vehicles

is fixed, for a small number of vehicles, each vehicle has

a larger number of general tasks assigned. Therefore, if the

collaboration mechanism is not used, the vehicle has to wait

until all their tasks finish in order to process this task, which

takes longer time, so the percentage of advance is significant.

We can also obtain that when the number of vehicles is

fixed, the more tasks there are, the more effective that this

mechanism proves to be in the sense that the more time is

saved. The reason is similar to the explanation above. For a

fixed number of vehicles, if there are less tasks, an emergent

task will no longer be urgent, and the time advance is less

significant. It is worthy to be noted that when the vehicles are

heavily loaded with tasks (e.g., 100 vehicles and 500 tasks),

the time advance is nearly 90% which shows that the vehicles

make full use of the idle time window.

We also compare the percentage of time advance in collab-

oration and non-collaboration scenarios, as shown in Fig. 7.

The non-collaboration represents that the vehicles’ resources

are not constrained, and it is possible that the resource of a

single vehicle can meet the requirement.

We can intuitively make a conclusion from Fig. 7 of whether

vehicles need to collaborate to meet the resource requirement,

given that the percentage of time advance is almost the same.

This is because even if one vehicle’s resource is enough for the

requirement, part of the resource may not satisfy the need of

the task as explained in Equation (5); there is a parameter xij
k

which is randomly generated in the experiment to simulate the

real-world situation. In addition, the final objective function

takes into consideration that the time window needs to be as

small as possible, while the time window of a single vehicle

processing the task is not necessarily smaller than that of

multi-vehicles collaboration.

2) Profit Gain: Secondly, we show that our proposed mech-

anism is effective because it can bring profits. If an emergent

task is handled within a required time interval, the vehicle

which has contributed its resources will be rewarded a profit.

The profit index shows the profit defined in Equation (8).

As shown in Fig. 8, the profit is increasing when the
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Fig. 8. The profit of different number of vehicles and tasks

Fig. 9. The profit index of non-collaboration and collaboration vehicles

number of vehicles increase regardless of the number of tasks.

However, the changing of the slope of profit with regard to

the changes of the number of vehicles is different for different

number of tasks. The reason is that the profit increases with

the increasing number of vehicles; given a number of tasks,

when there are more vehicles, more combinations of vehicles

can be formed to the candidate set, because more vehicles will

be in an idle state when an emergent task comes.

In Fig. 9, it can be seen that the profit made by ve-

hicles is also irrelevant to whether the vehicle’s resources

are constrained, and the profit increases as the number of

vehicles goes up. The reason is the same as explained above

in the percentage of advance between collaboration and non-

collaboration vehicles.

3) Successful Rate: We also investigate the success rate

of our time-window based algorithm. We make 500 times of

random resource generation, and when the number of tasks and

the number of vehicles are set to 300 and 500, respectively, in

the collaboration scenario we obtain the success rate as shown

in Fig. 10. Given that the resources of each vehicle is uni-

Fig. 10. The success rate of allocating a task

formly distributed in [1, 20], and assume that each individual

vehicle’s resources cannot satisfy the resource requirement, we

choose 4 different ranges of resource requirements. The result

is expected, as indicated by the figure, and when the range

increases, the success rate decreases. That means it is harder

to find a set of vehicles that not only have a relatively high

profit but also a small time-window.

4) Performance Improvement: Apart from the aforemen-

tioned advantages of using our time-window based method,

we compare the efficiency of our model with the online

model proposed in [12] in terms of running time. Specifically,

we implement their online incentive mechanisms with our

experimental settings, where an emergent task appears when

the vehicles are carrying out general tasks. The comparison

results are shown in Fig. 11.

From the figure 11, we can observe that the running time

decreases with the increasing number of vehicles. This is

because more vehicles can provide more resources, and it is

easier to find idle time window from a larger pool of par-

ticipants. Besides, our proposed method runs faster because,

their methods do not consider the use of idle resources of

vehicles, so it is harder for their models to find optimal

vehicles to allocate emergent tasks. In addition, our method

performs multi-vehicles collaboration while their methods can

only accept one vehicle for a task.

IX. CONCLUSIONS

This paper has presented a set of solutions to vehicular

mobile crowdsensing in IoV. Repeated general sensing tasks

and delay-sensitive emergent tasks have been discussed and

defined. An incentive mechanism with time and resource

constraints has been proposed to handle the repeated general

tasks allocation. A time-window based method has been de-

veloped to assign emergent tasks to the vehicles while they are

processing general tasks but have idle resources. The method

has made full use of the idle time duration between assigned

tasks, and it is capable of handling emergent tasks by utilizing

these idle resources of multiple vehicles. An objective function



IEEE INTERNET OF THINGS JOURNAL 11

Fig. 11. Performance in terms of running time

aiming to reduce the processing time while increasing the

profit generated by the task processing has been proposed,

and an algorithm has been designed to sort time window of the

available vehicles, so that the objective function can be solved

as an integer programming problem. Extensive experimental

results have demonstrated the effectiveness of the proposed

mechanisms by showing that using our time-window based

method, the amount of time of processing emergent tasks can

be saved, and more profits can be gained. Finally, a blockchain

framework has been proposed so that secured information

exchange can be handled among participated vehicles in the

mobile crowdsensing network.
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