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Abs t r ac t .  We propose a framework for compiling programming lan- 
guages based on concurrent process calculi, in which computation is 
expressed by a combination of processes and communication channels. 
Our framework realizes a compile-time process scheduling and unboxed 
channels. The compile-time scheduling enables us to execute multiple 
independent processes without a scheduling pool operation. Unboxed 
channels allow us to create a channel without memory allocations and 
to communicate values on registers. The framework is given as a set 
of translation rules from a concurrent calculus to an ML-like sequential 
program. Experimental results show that our compiler can execute se- 
quential programs written in the process calculus only a few times slower 
than equivalent C programs. This indicates that pure process calculi like 
ours and programming languages based on them can be implemented 
efficiently, without losing their simplicity, purity, and elegance. 

1 Introduction 
In implementing programming languages, we often translate a high level lan- 
guage which has many  primitives into an intermediate language which has a 
smaller set of primitives. Reducing the number of primitives makes it easier to 
generate code, optimize it, and prove its correctness. Among such intermedi- 
ate languages are the quadruple in imperat ive languages, and A-calculus and 
CPS [1] in functional languages. For concurrent languages, process calculi such 
as ~--calculus [8] and HACL [7] are good intermediate languages: their syntax and 
semantics are clear, and they have a number  of useful theoretical results for op- 
timization [4-6,11]. Several concurrent languages are designed and implemented 
based on process calculi [10, 13, 15]. 

In this paper,  we propose a framework for compiling programming languages 
which is based on a process calculus. Our target  language is a subset of HACL, in 
which most constructs are represented by combining processes and channels. For 
example, in a procedure call, we create a channel, create a process, and perform 
an inter-process communication via the channel, whether the call is synchronous 
or asynchronous. Since a large number of processes and channels are created 
during the execution of a process calculus, the efficiency of the implementat ion 
of processes and channels is quite essential for the overall performance. 

The basic execution model for a process cMculus would be as follows. A 
scheduling pool, which stores all schedulable processes, is maintained during ex- 
ecution. When a process is created dynamically, both the created process and 
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the running process become schedulable. One of the processes is stored in the 
scheduling pool and the other is executed. When a running process has no natu- 
ral continuation (e.g., a process failed to receive), one process is extracted from 
the scheduling pool and executed. Channels are created in a heap and all com- 
munications between processes are performed through the allocated heap space. 

However, this execution model is inefficient in several ways. It frequently ma- 
nipulates the scheduling pool and a communication always goes through memory. 
Our execution model described in this paper  overcomes many  of the inefficien- 
cies. To reduce the scheduling overhead, we introduce compile-time scheduling, 
which enables us to execute multiple independent processes without a scheduling 
pool operation. This is achieved by statically keeping track of a set of schedulable 
processes at each program point. For the communication overhead, we propose 
unboxed channel, which allows us to create a channel without memory  allocations 
and to communicate  values on registers. In the framework of unboxed channel, a 
channel is not allocated in a heap, but just  put on a register at its creation time. 
The channel is later elevated to a fully heap-allocated channel as necessary. 

The structure of this paper  is as follows. We explain our language HACL in 
Sect. 2 and present our compilation algorithm in Sect. 3. After showing experi- 
mental  results in Sect. 4, we explain related work in Sect. 5 and finally conclude 
in Sect. 6. 

2 T h e  S o u r c e  L a n g u a g e  

We define a subset of HACL below. 1 

e (~xw)  : : =  x I c lop(el , ' " ,  e .)  
P(proc) ::= ['11['2 ] Sx.P ] x(y)=>P I x<=y ] i f  x then Pz else P2 

I f i x  F in P I z 0 ( Z l ,  "'" , z n )  I let z = e i n  P 
F(defs) ::= {]'1 (x l ,  "'" ) = P1, " " ,  f,~ (x l ,  " "  ) = P,~} 

e is an expression which is evaluated to a value. An expression is either a variable 
(z), a constant  (c), or a built-in primitive (op(el , . . .  ,en)). 

P is called a process expression. P11 P2 executes P1 and P2 in parallel. Sz. P 
creates a new channel, binds it to z in P,  and executes P. z(y)=>P receives a 
value from channel z, binds the value to y in P, and executes P.  x<=y sends 
value y to channel x (and disappears),  i f  x t h e n  Pz e l s e  P2 executes P1 if 
z is true and P2 if z is false, f i x  F in  P defines a new process according to 
F and executes P under the new environment.  When x0 is a process defined 
somewhere, x0(Zz,  . . .  ,z~) executes the body of the process definition, with 
z~, . . . ,  zn bound to the corresponding parameters,  l e t  z = e in  P binds the 
evaluation result of e to x and executes P.  

Finally, F is a set of process definitions, each of which is of the form 
f ( z l  . . . . .  zn) = P, where P is a process expression. 

1 The subset does not have some features found in the original HACL, such as static 
type, function (lambda expression), and choice primitive. 
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3 C o m p i l a t i o n  

3.1 P r e l i m i n a r i e s  

We express our compilation method by giving the translation rules from process 
expressions to an ML-like sequential program which schedules them. Specifically, 
the output  program consists of l e t  va l ,  l e t  fun, i f - t h e n - e l s e ,  sequential 
composition (;) ,  and tail function call. Every function call in the output  program 
is a tail call, and therefore, it is essentially a goto. 

In the output  sequential program, all control flows as well as runtime data 
structures such as the scheduling pool are explicit. The scheduling pool is a list 
of closures, called schedulable closures. It is maintained in LIFO order and is 
thus hereafter called the scheduling stack. A closure to be executed is extracted 
from the top of the scheduling stack and the rest of the stack is passed to it as 
an argument. 

When a process tries to receive a value from an empty channel, the con- 
tinuation which will be executed after the value arrives must be stored in the 
channel. We actually put a closure to execute the continuation in the channel. 
We call such a closure blocked closure since it represents computation blocked 
on a channel. A blocked closure takes two parameters. The first parameter is the 
scheduling stack. The other is the value finally supplied by a sender. Similar to 
schedulable closures, they eventually pop the next closure from the stack and 
execute it. 

3.2 T h e  Bas ic  T r a n s l a t i o n  A l g o r i t h m  

We first present the basic translation algorithm which realizes the static schedul- 
ing. The basic idea is to reduce the frequency of runtime scheduling stack ma- 
nipulations by identifying a set of schedulable processes at each program point. 

The algorithm is illustrated in Fig. 1. The translation function jc takes two 
parameters and is called in the form of :T U k, where U is a set of schedulable 
processes identified at compile time, and k the name of a variable which, at 
runtime, refers to the scheduling stack. U and k together constitute all the 
executable works at that  point. 

When U is empty, it simply pops the next schedulable closure and executes 
it. Tha t  is, 2" D k = (hd k) ( t l  k) 2. When U i s  not empty, on the other 
hand, ~" picks up a process expression from U and schedules it in place. That  is, 

U k = ~1 u U - { u }  k, where u is the selected process expression 3. Notice 
that  the scheduling stack is not manipulated unless U becomes empty. 

~1 is the main function which translates a process expression according to the 
type of the expression. In a parallel expression P1 I P~, we simply extend U with 
P1 and P2. In a process instantiation f ( x l  . . . . .  xn) ,  the generated code creates a 

2 Notational convention here is that typewriter characters express characters which 
are literally embedded in the resulting ML-like program, whereas lower-case italic 
characters represent meta variables which are replaced with actual names in the 
translation. Free meta variables refer to unique names. 

3 See [9] for a heuristics as to which schedulable process ~" picks up. 



549 

P r o c e s s  d e f i n i t i o n  
9 ( f ( x l  . . . . .  x , )  = P)  

= f ( k ,  xl . . . . .  xn) = .T [P] k 
D i s p a t c h e r  

~ U k = J:l u U - { u }  k 
where u 6 U 

.T'~ k = (hd k) (tl k) 
P a r a l l e l  

J=~ (P1 I P2) v k 
---- F" (/'1 :: (P2 :: U)) k 

C h a n n e l  c r e a t i o n  
2=1 ( $ r . P )  U k = 

l e t  val r = new_channelO 
in 5 u(P::U) k end 

Process instantiationl 

.T1 ( f ( x l  . . . . .  xn) )  D k 
= f ( k , x l  . . . . .  x,~) 

P r o c e s s  i n s t a n t i a t i o n 2  
F1 ( f ( x l  . . . . .  x ~ ) )  U k = 

l e t  fun s ( k )  = .~ U k 
i n  f ( ( s :  : k ) ,  x l ,  x2 . . . . .  xn) end 

R e c e i v e  
}rl (r(v)=>P) U k = 

if (r has value) then 
l e t  v a l  v = g e t _ v a l u e ( r )  
in }: (P  :: U) k end 

else 
let fun s(l,v) = jc [p] l 
in 

put_process (r, s) ; 
}:U k 

end 

S e n d 1  
J=l (r<=v) [1 k = 

i f  (r has process) then  
l e t  v a l  p = g e t _ p r o c e s s ( r )  
in  p ( k , v )  end 

e l s e  
pu t_va lue  ( r ,  v) ; 
Y [ ] k  

S e n d 2 a  
~'1 (r<=v) V k = 

i f  (r has process) then  
l e t  v a l  p = g e t _ p r o c e s s ( r )  

fun  s ( k )  = p ( k , v )  
i n  .TU ( s : : k )  end 

e l s e  
put  va lue  ( r ,  v) ; 
J : U  k 

S e n d 2 b  
F1 if<--v) U k = 

i f  (r has process) then  
l e t  v a l  p -- g e t _ p r o c e s s ( r )  

fun  s ( k )  = 3 c U k 
i n  p ( ( s :  : k ) , v )  end 

e l s e  
pu t_va lue  ( r ,  v) ; 
J : U  k 

C o n d i t i o n a l  
.T'I ( i f  x then  P1 e l s e  P2) U k = 

i f  x then  .T(P1 : :U)  k 
e l s e  .T'(P2 : :U)  k 

F i x  
3ci (fix f in P) U k = 

let fun ~rnap 1 ~ 
i n  5 = (P  :: U) k end 

F ig .  1. A basic translation algorithm 

schedulab le  closure s which schedules  U and calls f ( ( s : :  k ) ,  x l  . . . . .  x n ) ,  where 
( s :  : k )  is the  e x t e n d e d  schedul ing  s tack.  The  head  of  the  schedul ing  stack,  s, 
is the  ' ca l le r '  o f  the  process  i n s t an t i a t i on .  In  a receive express ion r ( x ) = > P ,  the  
gene ra t ed  code first  tes t s  if the re  is a value  in r.  I f  the re  is one, we ex tend  U by  
P and  a compi l a t ion  cont inues  wi th  the  e x t e n d e d  U. Otherwise ,  the  genera ted  
code inser ts  a b locked  closure to  r and  a compi la t ion  cont inues  wi th  the  or iginal  
U. In pa r t i cu l a r ,  if  U is e m p t y  ( there  becomes  no s t a t i ca l ly  ident i f ied  work),  it  
swi tches  to  the  nex t  closure in the  schedul ing s tack.  In  a send express ion r<=v, 
the  gene ra t ed  code  checks if  the re  is a b locked closure in r and  bas ica l ly  schedules  
i t  if t he re  is one. I f  U is not  e m p t y  and a b locked closure is found  in r ,  we have 
choices as to  which should  be scheduled  next .  F igu re  1 i l lus t ra tes  bo th  cases 
( S e n d 2 a  schedules  U first and  S e n d 2 b  schedules  the  b locked closure first) .  

Because  some t r an s l a t i ons  dup l i ca t e  a set  of  process  express ions ,  our scheme 
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may increase code size exponentially. We can always revert to a more conservative 
approach to share the code for U by creating a schedulable closure which executes 
U and pushing it on the scheduling stack. Heuristics should be devised which 
mix the two strategies [9]. 

3.3 U n b o x e d  C h a n n e l s  

T h e  B a s i c  V e r s i o n  When both a send operation to a channel and a receive 
operation from the channel are performed in a schedulable closure and no other 
operations are performed on the channel, the channel can safely be allocated on a 
register. However, we cannot always make a channel on a register. For example, 
when a reference to a channel is put in a heap-allocated data  which may be 
referred to by unknown processes, we clearly need to allocate a heap space for 
it to maintain the correct sharing (aliasing) relationship between processes. 

Based on the above observation, we introduce an unboxed channel scheme as 
follows. We represent a channel on a register at its creation time and elevate the 
representation to a boxed (i.e. heap-allocated) channel as necessary. The basic 
version keeps a channel unboxed as long as it is referenced to only by at most 
one schedulable closure (and not from other types of da ta  including blocked 
closures). It  is elevated to a boxed channel when this condition no longer holds. 

More concretely, an unboxed channel is elevated to a boxed one in the fol- 
lowing cases. When an unboxed channel receives the second value/process in 
its value/process queue, it is made boxed simply because those values/processes 
cannot be represented in a single word. The elevation is also performed when 
the correct sharing relationship cannot be maintained, that  is, when an unboxed 
channel is put in a data  structure (such as a cons cell and a channel), when an 
unboxed channel is passed to another process instantiation, and when a blocked 
closure which refers to an unboxed channel is enqueued in a channel. Our current 
compiler inserts runtime checks at all the places where the above operations are 
performed on the data  which may be an unboxed channel. 

To implement unboxed channels, two bit tags are added to all the data. The 
tag distinguishes the four types of data: an empty  unboxed channel, an unboxed 
channel with one value, an unboxed channel with one waiting process, and a 
data  which is not an unboxed channel. 

U n b o x e d  C h a n n e l  P r o p a g a t i o n  Unfortunately, the above basic scheme fails 
to execute a very frequent idiom efficiently. The idiom looks like: 

$ r . (  . . .  r ( v ) = >  . . .  I . . .  : f ( r  . . . .  ) . . .  ), 

which corresponds to a procedure call found in sequential languages. 
The basic translation algorithm makes r boxed when it is passed to f .  We 

extend the basic scheme so tha t  f may receive an unboxed channel in its first 
parameter and later propagate the (possibly altered) representation of the first 
parameter  to the caller closure. The extended protocol in principle allows a 
channel to be referenced to by an arbitrary number of schedulable closures (but 
not by other types of da ta  including blocked closures). 
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P r o c e s s  def in i t ion  
G ( f ( x l  . . . . .  x,~) = P)  

= f ( k ,  x l ,  . . .  , x~)  = }r[P]:k  Xl 
D i s p a t c h e r  

~ U k x  = F1 u U - { u }  k x  
where u 6 U 

-%'0 k x = (hd k) ( ( t l  k ) , x )  
P r o c e s s  i n s t a n t i a t i o n  

• r l  ( f ( z l  . . . . .  x n ) )  U k z = 
l e t  fun s (k ,x l )  = F U k x 
in  f ( ( s : : k ) ,  x l ,  x2 . . . . .  xn)  end 

Rece ive  
~1 (r(v)=>P) U k x = 

if (r has value) then  
l e t  va l  v = get_v~alue(r) 
in • (P :: U) k x "end 

else 
l e t  full s ( l , v , y )  = ~" [P] I y 
in  

put_process  ( r , s )  ; 
J r U k x  

end 

S e n d l  
J=l (r<=v) 0 k x = 

i f  (r has process) then 
let val p = get_process(r) 
in p(k,v,x) end 

else 
put_value (r, v) ; 
J r O k x  

Send2a  
~'1 ( r<=v)  U k x = 
i f  (r has process) then 

l e t  va l  p = ge t_p roces s ( r )  
f un  s ( k , x )  = p ( k , v , x )  

in  5 c U ( s : : k )  x end 
e l se  

put value (r ,  v) ; 
J Z U k x  

F i g .  2 .  A s u m m a r y  o f  the new translation algorithm 

A s u m m a r y  of  the new t rans la t ion a lgor i thm is shown in Fig. 2. Major  dif- 
ferences f rom the basic version a re  underl ined in the figure. 5 r now takes three 
parameters  U, k, and x. F U k x re turns  a sequential  code which eventual ly pops 
the next  closure f rom k and passes the rest of k and x to the closure. Schedulable 
closures created at process ins tant ia t ion f ( x l  . . . .  , xn)  take an addit ional  pa- 
rameter  which receives the representa t ion of  xl re turned by f .  Blocked closures 
s tored in channels take an addit ional  parameter  (y) and eventually re turn  it to  
the caller, as is. Refer to  [9] for more details of  the new translat ion algori thm. 

4 Experimental  Results 

Using HACL as an intermediate  language,  we implemented a compiler for the 
concurrent  object-or iented language Schematic  [13]. A Schematic  source pro- 
g ram is first t ransla ted to a H A C L  program,  and then t ransla ted to an ML-like 
p rogram based on the a lgor i thm described in this paper.  The  genera ted  ML-like 
p rogram is fur ther  t ransla ted to assembly-like C and compiled to a nat ive  code 
by gcc .  We wrote some Schemat ic  programs and equivalent C programs for each 
applicat ion and compared  the per formance  of two programs on SPARCSta t ion20  
(Hype rSPARC,  150 MHz). The  result is shown in Table 1. 

In this experiment ,  runt ime type  checks in Schematic  are omi t ted  for a fair 
comparison with C. Wi th  the assistance of  the stat ic  scheduling algori thm, no 
blocked closures are made  in any of  the programs.  Moreover, no boxed (heap- 
al located) channels are made in any of  the programs because we meet  none of  
the cases in which we must  elevate an unboxed channel  to a boxed one. The  
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fib 30 prime 100000 queen 12 tak 24 16 8 
Schematic 850 957 866 934 
C 327 587 250 364 

Table 1. The results of benchmarks (elapsed time in milliseconds) 

main remaining overhead is a runtime check of a state of a channel. Refer to [9] 
for'a more detailed performance evaluation of our compiler. 

5 R e l a t e d  W o r k  

Turner proposed a compilation framework for a concurrent language Pict [10,15], 
which is based on ~'-calculus [8]. In their scheme, a receive (input) expression 
always allocates a closure, whether the value is present or not, whereas in our 
scheme, the receive expression immediately continues its body when the value 
is present. The advantage comes from code duplication. We need more study 
to selectively duplicate code to avoid code size explosion. They also propose 
multiple representation schemes for channels. Their scheme avoids FIFO queue 
creation in many eases, but, unlike ours, always creates channels in heap. 

TAM [3] provides low-cost dynamic scheduling for threads that share the 
compile-time environments (contexts). Switching between threads that share a 
context involves only control transfer. We achieve a similar effect by statically 
keeping track of schedulable code fragments and generating code that schedules 
all of them in line. Our approach also eliminates unknown jumps that appear in 
TAM, at the cost of increased code size. Further studies are necessary to make 
a fair comparison. 

Reducing the frequency of runtime scheduling operations has also been stud- 
ied in the context of concurrent logic/functional languages [2,12]. The basic tech- 
nique is to find two code fragments that can be statically merged (i.e., scheduling 
one fragment can be safely delayed until the other also becomes schedulable), by 
dependence analysis. We achieve a similar effect not by dependence analysis but 
by code duplication. We statically keep track of schedulable code fragments and 
generate code that schedules both in line, in case both are runnable at runtime. 

Kobayashi and Igarashi proposed optimizations for linear channels (chan- 
nels that are used only once) [5, 6]. Their optimizations eliminate a channel 
creation and indirect communication through the channel entirely, if the chan- 
nel is used by a receive operation immediately after its creation. The unboxed 
channel achieves a similar effect by holding the state of an unboxed channel on 
a register. 

The authors' previous work StackThreads [14] has proposed the framework of 
unboxed channels. The presented work generalized the scheme of StackThreads 
and formalized it as a compilation framework in more general settings. 

The description of the compilation framework is influenced by Appel's CPS 
framework for compiling functional languages. Many optimizations they perform 
can also be incorporated into our compilation framework [1]. 
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6 Conclusion 
We proposed an efficient execution scheme for a process calculus and presented 
an algorithm which translates a process calculus into an ML-like program. In our 
framework, the overhead of a runtime process scheduling is reduced by compile- 
time scheduling, and that of a communication between processes is reduced by 
unboxed channels. Experimental results showed the programs of a process calcu- 
lus can be executed only a few times slower than equivalent C programs. 
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