
A n Efficient C o m p i l a t i o n Framework for
Languages Based on a Concurrent P r o c e s s

Calculus

Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa

Department of Information Science, University of Tokyo

Abs t r ac t . We propose a framework for compiling programming lan-
guages based on concurrent process calculi, in which computation is
expressed by a combination of processes and communication channels.
Our framework realizes a compile-time process scheduling and unboxed
channels. The compile-time scheduling enables us to execute multiple
independent processes without a scheduling pool operation. Unboxed
channels allow us to create a channel without memory allocations and
to communicate values on registers. The framework is given as a set
of translation rules from a concurrent calculus to an ML-like sequential
program. Experimental results show that our compiler can execute se-
quential programs written in the process calculus only a few times slower
than equivalent C programs. This indicates that pure process calculi like
ours and programming languages based on them can be implemented
efficiently, without losing their simplicity, purity, and elegance.

1 Introduction
In implementing programming languages, we often translate a high level lan-
guage which has many primitives into an intermediate language which has a
smaller set of primitives. Reducing the number of primitives makes it easier to
generate code, optimize it, and prove its correctness. Among such intermedi-
ate languages are the quadruple in imperat ive languages, and A-calculus and
CPS [1] in functional languages. For concurrent languages, process calculi such
as ~--calculus [8] and HACL [7] are good intermediate languages: their syntax and
semantics are clear, and they have a number of useful theoretical results for op-
timization [4-6,11]. Several concurrent languages are designed and implemented
based on process calculi [10, 13, 15].

In this paper, we propose a framework for compiling programming languages
which is based on a process calculus. Our target language is a subset of HACL, in
which most constructs are represented by combining processes and channels. For
example, in a procedure call, we create a channel, create a process, and perform
an inter-process communication via the channel, whether the call is synchronous
or asynchronous. Since a large number of processes and channels are created
during the execution of a process calculus, the efficiency of the implementat ion
of processes and channels is quite essential for the overall performance.

The basic execution model for a process cMculus would be as follows. A
scheduling pool, which stores all schedulable processes, is maintained during ex-
ecution. When a process is created dynamically, both the created process and

547

the running process become schedulable. One of the processes is stored in the
scheduling pool and the other is executed. When a running process has no natu-
ral continuation (e.g., a process failed to receive), one process is extracted from
the scheduling pool and executed. Channels are created in a heap and all com-
munications between processes are performed through the allocated heap space.

However, this execution model is inefficient in several ways. It frequently ma-
nipulates the scheduling pool and a communication always goes through memory.
Our execution model described in this paper overcomes many of the inefficien-
cies. To reduce the scheduling overhead, we introduce compile-time scheduling,
which enables us to execute multiple independent processes without a scheduling
pool operation. This is achieved by statically keeping track of a set of schedulable
processes at each program point. For the communication overhead, we propose
unboxed channel, which allows us to create a channel without memory allocations
and to communicate values on registers. In the framework of unboxed channel, a
channel is not allocated in a heap, but just put on a register at its creation time.
The channel is later elevated to a fully heap-allocated channel as necessary.

The structure of this paper is as follows. We explain our language HACL in
Sect. 2 and present our compilation algorithm in Sect. 3. After showing experi-
mental results in Sect. 4, we explain related work in Sect. 5 and finally conclude
in Sect. 6.

2 T h e S o u r c e L a n g u a g e

We define a subset of HACL below. 1

e (~xw) : : = x I c lop(el , ' " , e .)
P(proc) ::= ['11['2] Sx.P] x(y)=>P I x<=y] i f x then Pz else P2

I f i x F in P I z 0 (Z l , "'" , z n) I let z = e i n P
F(defs) ::= {]'1 (x l , "'") = P1, " " , f,~ (x l , " ") = P,~}

e is an expression which is evaluated to a value. An expression is either a variable
(z), a constant (c), or a built-in primitive (op(el , . . . ,en)).

P is called a process expression. P11 P2 executes P1 and P2 in parallel. Sz. P
creates a new channel, binds it to z in P, and executes P. z(y)=>P receives a
value from channel z, binds the value to y in P, and executes P. x<=y sends
value y to channel x (and disappears), i f x t h e n Pz e l s e P2 executes P1 if
z is true and P2 if z is false, f i x F in P defines a new process according to
F and executes P under the new environment. When x0 is a process defined
somewhere, x0(Zz, . . . ,z~) executes the body of the process definition, with
z~, . . . , zn bound to the corresponding parameters, l e t z = e in P binds the
evaluation result of e to x and executes P.

Finally, F is a set of process definitions, each of which is of the form
f (z l zn) = P, where P is a process expression.

1 The subset does not have some features found in the original HACL, such as static
type, function (lambda expression), and choice primitive.

548

3 C o m p i l a t i o n

3.1 P r e l i m i n a r i e s

We express our compilation method by giving the translation rules from process
expressions to an ML-like sequential program which schedules them. Specifically,
the output program consists of l e t va l , l e t fun, i f - t h e n - e l s e , sequential
composition (;) , and tail function call. Every function call in the output program
is a tail call, and therefore, it is essentially a goto.

In the output sequential program, all control flows as well as runtime data
structures such as the scheduling pool are explicit. The scheduling pool is a list
of closures, called schedulable closures. It is maintained in LIFO order and is
thus hereafter called the scheduling stack. A closure to be executed is extracted
from the top of the scheduling stack and the rest of the stack is passed to it as
an argument.

When a process tries to receive a value from an empty channel, the con-
tinuation which will be executed after the value arrives must be stored in the
channel. We actually put a closure to execute the continuation in the channel.
We call such a closure blocked closure since it represents computation blocked
on a channel. A blocked closure takes two parameters. The first parameter is the
scheduling stack. The other is the value finally supplied by a sender. Similar to
schedulable closures, they eventually pop the next closure from the stack and
execute it.

3.2 T h e Bas ic T r a n s l a t i o n A l g o r i t h m

We first present the basic translation algorithm which realizes the static schedul-
ing. The basic idea is to reduce the frequency of runtime scheduling stack ma-
nipulations by identifying a set of schedulable processes at each program point.

The algorithm is illustrated in Fig. 1. The translation function jc takes two
parameters and is called in the form of :T U k, where U is a set of schedulable
processes identified at compile time, and k the name of a variable which, at
runtime, refers to the scheduling stack. U and k together constitute all the
executable works at that point.

When U is empty, it simply pops the next schedulable closure and executes
it. Tha t is, 2" D k = (hd k) (t l k) 2. When U i s not empty, on the other
hand, ~" picks up a process expression from U and schedules it in place. That is,

U k = ~1 u U - { u } k, where u is the selected process expression 3. Notice
that the scheduling stack is not manipulated unless U becomes empty.

~1 is the main function which translates a process expression according to the
type of the expression. In a parallel expression P1 I P~, we simply extend U with
P1 and P2. In a process instantiation f (x l xn) , the generated code creates a

2 Notational convention here is that typewriter characters express characters which
are literally embedded in the resulting ML-like program, whereas lower-case italic
characters represent meta variables which are replaced with actual names in the
translation. Free meta variables refer to unique names.

3 See [9] for a heuristics as to which schedulable process ~" picks up.

549

P r o c e s s d e f i n i t i o n
9 (f (x l x ,) = P)

= f (k , xl xn) = .T [P] k
D i s p a t c h e r

~ U k = J:l u U - { u } k
where u 6 U

.T'~ k = (hd k) (tl k)
P a r a l l e l

J=~ (P1 I P2) v k
---- F" (/'1 :: (P2 :: U)) k

C h a n n e l c r e a t i o n
2=1 ($ r . P) U k =

l e t val r = new_channelO
in 5 u(P::U) k end

Process instantiationl

.T1 (f (x l xn)) D k
= f (k , x l x,~)

P r o c e s s i n s t a n t i a t i o n 2
F1 (f (x l x ~)) U k =

l e t fun s (k) = .~ U k
i n f ((s : : k) , x l , x2 xn) end

R e c e i v e
}rl (r(v)=>P) U k =

if (r has value) then
l e t v a l v = g e t _ v a l u e (r)
in }: (P :: U) k end

else
let fun s(l,v) = jc [p] l
in

put_process (r, s) ;
}:U k

end

S e n d 1
J=l (r<=v) [1 k =

i f (r has process) then
l e t v a l p = g e t _ p r o c e s s (r)
in p (k , v) end

e l s e
pu t_va lue (r , v) ;
Y [] k

S e n d 2 a
~'1 (r<=v) V k =

i f (r has process) then
l e t v a l p = g e t _ p r o c e s s (r)

fun s (k) = p (k , v)
i n .TU (s : : k) end

e l s e
put va lue (r , v) ;
J : U k

S e n d 2 b
F1 if<--v) U k =

i f (r has process) then
l e t v a l p -- g e t _ p r o c e s s (r)

fun s (k) = 3 c U k
i n p ((s : : k) , v) end

e l s e
pu t_va lue (r , v) ;
J : U k

C o n d i t i o n a l
.T'I (i f x then P1 e l s e P2) U k =

i f x then .T(P1 : :U) k
e l s e .T'(P2 : :U) k

F i x
3ci (fix f in P) U k =

let fun ~rnap 1 ~
i n 5 = (P :: U) k end

F ig . 1. A basic translation algorithm

schedulab le closure s which schedules U and calls f ((s : : k) , x l x n) , where
(s : : k) is the e x t e n d e d schedul ing s tack. The head of the schedul ing stack, s,
is the ' ca l le r ' o f the process i n s t an t i a t i on . In a receive express ion r (x) = > P , the
gene ra t ed code first tes t s if the re is a value in r. I f the re is one, we ex tend U by
P and a compi l a t ion cont inues wi th the e x t e n d e d U. Otherwise , the genera ted
code inser ts a b locked closure to r and a compi la t ion cont inues wi th the or iginal
U. In pa r t i cu l a r , if U is e m p t y (there becomes no s t a t i ca l ly ident i f ied work), it
swi tches to the nex t closure in the schedul ing s tack. In a send express ion r<=v,
the gene ra t ed code checks if the re is a b locked closure in r and bas ica l ly schedules
i t if t he re is one. I f U is not e m p t y and a b locked closure is found in r , we have
choices as to which should be scheduled next . F igu re 1 i l lus t ra tes bo th cases
(S e n d 2 a schedules U first and S e n d 2 b schedules the b locked closure first) .

Because some t r an s l a t i ons dup l i ca t e a set of process express ions , our scheme

550

may increase code size exponentially. We can always revert to a more conservative
approach to share the code for U by creating a schedulable closure which executes
U and pushing it on the scheduling stack. Heuristics should be devised which
mix the two strategies [9].

3.3 U n b o x e d C h a n n e l s

T h e B a s i c V e r s i o n When both a send operation to a channel and a receive
operation from the channel are performed in a schedulable closure and no other
operations are performed on the channel, the channel can safely be allocated on a
register. However, we cannot always make a channel on a register. For example,
when a reference to a channel is put in a heap-allocated data which may be
referred to by unknown processes, we clearly need to allocate a heap space for
it to maintain the correct sharing (aliasing) relationship between processes.

Based on the above observation, we introduce an unboxed channel scheme as
follows. We represent a channel on a register at its creation time and elevate the
representation to a boxed (i.e. heap-allocated) channel as necessary. The basic
version keeps a channel unboxed as long as it is referenced to only by at most
one schedulable closure (and not from other types of da ta including blocked
closures). It is elevated to a boxed channel when this condition no longer holds.

More concretely, an unboxed channel is elevated to a boxed one in the fol-
lowing cases. When an unboxed channel receives the second value/process in
its value/process queue, it is made boxed simply because those values/processes
cannot be represented in a single word. The elevation is also performed when
the correct sharing relationship cannot be maintained, that is, when an unboxed
channel is put in a data structure (such as a cons cell and a channel), when an
unboxed channel is passed to another process instantiation, and when a blocked
closure which refers to an unboxed channel is enqueued in a channel. Our current
compiler inserts runtime checks at all the places where the above operations are
performed on the data which may be an unboxed channel.

To implement unboxed channels, two bit tags are added to all the data. The
tag distinguishes the four types of data: an empty unboxed channel, an unboxed
channel with one value, an unboxed channel with one waiting process, and a
data which is not an unboxed channel.

U n b o x e d C h a n n e l P r o p a g a t i o n Unfortunately, the above basic scheme fails
to execute a very frequent idiom efficiently. The idiom looks like:

$ r . (. . . r (v) = > . . . I . . . : f (r ) . . .),

which corresponds to a procedure call found in sequential languages.
The basic translation algorithm makes r boxed when it is passed to f . We

extend the basic scheme so tha t f may receive an unboxed channel in its first
parameter and later propagate the (possibly altered) representation of the first
parameter to the caller closure. The extended protocol in principle allows a
channel to be referenced to by an arbitrary number of schedulable closures (but
not by other types of da ta including blocked closures).

551

P r o c e s s def in i t ion
G (f (x l x,~) = P)

= f (k , x l , . . . , x~) = }r[P]:k Xl
D i s p a t c h e r

~ U k x = F1 u U - { u } k x
where u 6 U

-%'0 k x = (hd k) ((t l k) , x)
P r o c e s s i n s t a n t i a t i o n

• r l (f (z l x n)) U k z =
l e t fun s (k ,x l) = F U k x
in f ((s : : k) , x l , x2 xn) end

Rece ive
~1 (r(v)=>P) U k x =

if (r has value) then
l e t va l v = get_v~alue(r)
in • (P :: U) k x "end

else
l e t full s (l , v , y) = ~" [P] I y
in

put_process (r , s) ;
J r U k x

end

S e n d l
J=l (r<=v) 0 k x =

i f (r has process) then
let val p = get_process(r)
in p(k,v,x) end

else
put_value (r, v) ;
J r O k x

Send2a
~'1 (r<=v) U k x =
i f (r has process) then

l e t va l p = ge t_p roces s (r)
f un s (k , x) = p (k , v , x)

in 5 c U (s : : k) x end
e l se

put value (r , v) ;
J Z U k x

F i g . 2 . A s u m m a r y o f the new translation algorithm

A s u m m a r y of the new t rans la t ion a lgor i thm is shown in Fig. 2. Major dif-
ferences f rom the basic version a re underl ined in the figure. 5 r now takes three
parameters U, k, and x. F U k x re turns a sequential code which eventual ly pops
the next closure f rom k and passes the rest of k and x to the closure. Schedulable
closures created at process ins tant ia t ion f (x l , xn) take an addit ional pa-
rameter which receives the representa t ion of xl re turned by f . Blocked closures
s tored in channels take an addit ional parameter (y) and eventually re turn it to
the caller, as is. Refer to [9] for more details of the new translat ion algori thm.

4 Experimental Results

Using HACL as an intermediate language, we implemented a compiler for the
concurrent object-or iented language Schematic [13]. A Schematic source pro-
g ram is first t ransla ted to a H A C L program, and then t ransla ted to an ML-like
p rogram based on the a lgor i thm described in this paper. The genera ted ML-like
p rogram is fur ther t ransla ted to assembly-like C and compiled to a nat ive code
by gcc . We wrote some Schemat ic programs and equivalent C programs for each
applicat ion and compared the per formance of two programs on SPARCSta t ion20
(Hype rSPARC, 150 MHz). The result is shown in Table 1.

In this experiment , runt ime type checks in Schematic are omi t ted for a fair
comparison with C. Wi th the assistance of the stat ic scheduling algori thm, no
blocked closures are made in any of the programs. Moreover, no boxed (heap-
al located) channels are made in any of the programs because we meet none of
the cases in which we must elevate an unboxed channel to a boxed one. The

552

fib 30 prime 100000 queen 12 tak 24 16 8
Schematic 850 957 866 934
C 327 587 250 364

Table 1. The results of benchmarks (elapsed time in milliseconds)

main remaining overhead is a runtime check of a state of a channel. Refer to [9]
for'a more detailed performance evaluation of our compiler.

5 R e l a t e d W o r k

Turner proposed a compilation framework for a concurrent language Pict [10,15],
which is based on ~'-calculus [8]. In their scheme, a receive (input) expression
always allocates a closure, whether the value is present or not, whereas in our
scheme, the receive expression immediately continues its body when the value
is present. The advantage comes from code duplication. We need more study
to selectively duplicate code to avoid code size explosion. They also propose
multiple representation schemes for channels. Their scheme avoids FIFO queue
creation in many eases, but, unlike ours, always creates channels in heap.

TAM [3] provides low-cost dynamic scheduling for threads that share the
compile-time environments (contexts). Switching between threads that share a
context involves only control transfer. We achieve a similar effect by statically
keeping track of schedulable code fragments and generating code that schedules
all of them in line. Our approach also eliminates unknown jumps that appear in
TAM, at the cost of increased code size. Further studies are necessary to make
a fair comparison.

Reducing the frequency of runtime scheduling operations has also been stud-
ied in the context of concurrent logic/functional languages [2,12]. The basic tech-
nique is to find two code fragments that can be statically merged (i.e., scheduling
one fragment can be safely delayed until the other also becomes schedulable), by
dependence analysis. We achieve a similar effect not by dependence analysis but
by code duplication. We statically keep track of schedulable code fragments and
generate code that schedules both in line, in case both are runnable at runtime.

Kobayashi and Igarashi proposed optimizations for linear channels (chan-
nels that are used only once) [5, 6]. Their optimizations eliminate a channel
creation and indirect communication through the channel entirely, if the chan-
nel is used by a receive operation immediately after its creation. The unboxed
channel achieves a similar effect by holding the state of an unboxed channel on
a register.

The authors' previous work StackThreads [14] has proposed the framework of
unboxed channels. The presented work generalized the scheme of StackThreads
and formalized it as a compilation framework in more general settings.

The description of the compilation framework is influenced by Appel's CPS
framework for compiling functional languages. Many optimizations they perform
can also be incorporated into our compilation framework [1].

553

6 Conclusion
We proposed an efficient execution scheme for a process calculus and presented
an algorithm which translates a process calculus into an ML-like program. In our
framework, the overhead of a runtime process scheduling is reduced by compile-
time scheduling, and that of a communication between processes is reduced by
unboxed channels. Experimental results showed the programs of a process calcu-
lus can be executed only a few times slower than equivalent C programs.

References

1. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
2. T. Araki and H. Tanaka. Static Granularity Optimization of a Committed-Choice

Language Fleng. In Proceedings of Euro-Par '97, Passau, Germany, August 1997.
3. D. E. Culler, S. C. GoldStein, K. E. Schauser, and T. yon Eicken. TAM - - A Com-

piler Controlled Threaded Abstract Machine. Journal of Parallel and Distributed
Computing, pages 347-370, July 1993.

4. H. Hosoya, N. Kobayashi, and A. Yonezawa. Partial Evaluation Scheme for Con-
current Languages and Its Correctness. In Euro-Par'96 Parallel Processing, volume
1123 of LNCS, pages 625-632, 1996.

5. A. Igarashi and N. Kobayashi. Type-Based Analysis of Usage of Communication
Channels for Concurrent Programming Languages. Technical report, Department
of Information Science, University of Tokyo, 1997. (to appear).

6. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. In
Proceedings of POPL '96, pages 358-371, January 1996.

7. N. Kobayashi and A. Yonezawa. Higher-Order Concurrent Linear Logic Program-
ming. In Theory and Practice of Parallel Programming, volume 907 of LNCS,
pages 137-166. Springer-Verlag, 1995.

8. R. Milner. The polyadic 7r-calculus: a tutorial. In Logic and Algebra of Specifica-
tion. Springer-Verlag, 1993.

9. Y. Oyama, K. Taura, and A. Yonezawa. An Efficient Compilation Framework for
Languages Based on Concurrent Process Calculus. Technical report, Department
of Information Science, University of Tokyo, 1997. (to appear).

10. B. C. Pierce and D. N. Turner. Pict: A Programming Language Based on the
Pi-Calculus. Technical report, Computer Science Department, Indiana University,
1997. To appear in Milner Festschrift, MIT Press, 1997.

11. D. Sangiorgi. The name discipline of uniform receptiveness. In Proceedings o] 24th
International Colloquium on Automata, Languages, and Programming, July 1997.

12. K. E. Schauser, D. E. Culler, and S. C. Goldstein. Separation Constraint Parti-
tioning - - A New Algorithm for Partitioning Non-Strict Programs into Sequential
Threads. In Proceedings of POPL '95, pages 259-272, January 1995.

13. K.'Taura and A. Yonezawa. Schematic: A Concurrent Object-Oriented Extension
to Scheme. In Proceedings o/ Workshop on Object-Based Parallel and Distributed
Computation, volume 1107 of LNCS, pages 59-82. Springer-Verlag, 1996.

14. K. Taura and A. Yonezawa. Fine-grain Multithreading with Minimal Compiler
Support--A Cost Effective Approach to Implementing Efficient Multithreading
Languages. In Proceedings o/ PLDI '97, 1997.

15. D. N. Turner. The Polymorphic Pi-calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1995.

