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ABSTRACT

Graphics Processing Units (GPUs) have become ubiquitous for gen-

eral purpose applications due to their tremendous computing power.

Initially, GPUs only employ scratchpad memory as on-chip mem-

ory. Though scratchpad memory benefits many applications, it

is not ideal for those general purpose applications with irregular

memory accesses. Hence, GPU vendors have introduced caches

in conjunction with scratchpad memory in the recent generations

of GPUs. The caches on GPUs are highly-configurable. The pro-

grammer or the compiler can explicitly control cache access or by-

pass for global load instructions. This highly-configurable feature

of GPU caches opens up the opportunities for optimizing the cache

performance. In this paper, we propose an efficient compiler frame-

work for cache bypassing on GPUs. Our objective is to efficiently

utilize the configurable cache and improve the overall performance

for general purpose GPU applications. In order to achieve this

goal, we first characterize GPU cache utilization and develop per-

formance metrics to estimate the cache reuses and memory traf-

fic. Next, we present efficient algorithms that judiciously select

global load instructions for cache access or bypass. Finally, we in-

tegrate our techniques into an automatic compiler framework that

leverages PTX instruction set architecture. Experiments evalua-

tion demonstrates that compared to cache-all and bypass-all so-

lutions, our techniques can achieve considerable performance im-

provement.
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C.1.2 [Processor Architectures]: Multiple Data Stream Architec-

tures; D.3.4 [Processors]: Compilers
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1. INTRODUCTION
With the continuing evolution of heterogenous computing plat-

forms that consist of GPUs and CPUs, GPUs are increasingly used

for high performance embedded computing. Due to their massively

parallel architecture, GPUs benefit a variety of embedded applica-

tions including imaging, audio, aerospace, military, and medical

applications [1, 16, 28]. Indeed, recent years have also seen a rapid

adoption of GPUs in mobile devices like smartphones. Mobile de-

vices typically use system-on-a-chip (SoC) that integrates GPUs

with CPUs, memory controllers, and other application-specific ac-

celerators. The major SoCs with integrated GPUs available in the

market include NVIDIA Tegra series with low power GPU [9],

Qualcomm’s Snapdragon series with Adreno GPU [10], and Sam-

sung’s Exynos series with ARM Mali GPU [11].

Despite the high computing power of GPUs, performance opti-

mization of GPUs is challenging [34]. The achieved performance

speedup critically depends on memory subsystem [19, 25]. In early

GPUs, software-managed scratchpad memory (SPM) was employed

as the on-chip memory to hide the memory access latency. Data al-

location to scratchpad memory can be explicitly controlled by the

programmer or automatically by the compiler. Scratchpad memory

benefits certain applications with predictable data access patterns,

but it is not appropriate for applications with irregular access pat-

terns. For these applications, they naturally prefer cache instead of

scratchpad memory. Ideally, the optimal memory hierarchy should

combine the benefits of both scratchpad memory and cache. In-

deed, in the recent generations of GPUs, GPU vendors have intro-

duced cache in conjunction with scratchpad memory to effectively

improve the memory performance. For example, both NVIDIA

Fermi and Kepler architectures feature configurable L1 cache [3,

4] in conjunction with scratchpad memory (a.k.a shared memory);

they also introduce a unified L2 cache to further exploit data reuse.

For both CPUs and GPUs, cache can effectively hide the data

access latency by exploiting the temporal and spatial localities of a

program. However, GPU caches are quite distinct from CPU caches

in terms of design and utilization. Meanwhile, the caches on GPUs

are highly-configurable. GPU architecture provides interfaces for

the programmer or the compiler to explicitly control the L1 cache

access or bypass for global load instructions [5]. Cache bypassing

is very beneficial for applications with memory accesses that are

scattered or have no data reuse as it can help to improve memory

efficiency and reduce cache pollution [14].

Although cache bypassing can potentially improve GPU perfor-

mance, it is a challenge for the programmer. Given a program that

consists of n global load instructions, the number of possible cache

bypassing solutions is exponential (2n). These global load instruc-

tions can not be considered in isolation (O(n)) as they are usually

dependent on each other (i.e. data reuse or conflict). Obviously,
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it is infeasible for the programmer to manually use the cache by-

passing interface and explore the huge design space exhaustively.

More importantly, recent work has shown that GPU caches have

counter-intuitive performance tradeoffs [23]. In particular, neither

cache-all or bypass-all global load instructions is optimal; if the

cache bypassing is not done right, it may seriously hurt the perfor-

mance. Thus, it is very important to develop automatic compiler

techniques for cache bypassing on GPUs.

In this paper, we propose an efficient compiler framework for

cache bypassing on GPUs that aims to improve the performance

for general purpose GPU applications. We first characterize GPU

cache utilization and develop performance metrics to accurately es-

timate the cache reuses and memory traffic. In particular, we use

light-weight profiling to characterize each global load instruction,

data reuse among them, load efficiency, and memory traffic. Next,

we develop algorithms that judiciously select global load instruc-

tions for cache access or bypass. One algorithm is based on In-

teger Liner Programming (ILP) and the other one is a heuristic.

Our framework leverages the Parallel Thread Execution (PTX) in-

struction set architecture (ISA). Experimental results show that our

compiler framework for cache bypassing can effectively optimize

the overall GPU performance.

This paper contributes to the state-of-the-art in GPU optimiza-

tion with:

• Compiler Framework. We develop an efficient compiler frame-

work for cache bypassing on GPUs. It automatically ana-

lyzes GPU code and implements the optimized cache bypass-

ing solution by leveraging the PTX ISA.

• Algorithms. We develop two algorithms for cache bypassing

optimization. One algorithm is based on ILP and the other

is an efficient heuristic. Both algorithms are based on traffic

reduction graph which captures the data reuse and conflicts

between global load instructions.

• Evaluation. Experiments on a variety of applications show

that compared to cache-all solution, our techniques improve

the average cache benefits from 4.4% to 12.9% for 16 KB

L1 cache. The performance speedup of our cache bypassing

techniques is up to 2.62X.

This paper is organized as follows. In section 2, we provide some

background on GPUs and present a motivational example for our

cache bypassing study. In section 3, we introduce our compiler

framework and the involved analysis components. In section 4 and

section 5, we detail the characterization and optimization compo-

nents. Section 6 presents the experimental results. Section 7 dis-

cusses the related work and section 8 concludes the paper.

2. BACKGROUND AND MOTIVATION
This section provides the background details and motivation of

our study. We use NVIDIA Kepler GTX 680 GPU architecture

and CUDA terminology [6] in this paper. But our techniques are

equally applicable to other GPUs with caches and the OpenCL pro-

gramming models.

2.1 Background
State-of-the-art GPUs are many-core architectures. Based on

NVIDIA terminology, a GPU is composed of multiple Stream-

ing Multiprocessors (SMs), which in turn is composed of multiple

Streaming Processors (SPs). For example, the NVIDIA GTX 680

used in this paper has 8 SMs, each of which has 192 SPs. Thus,

there are 1536 cores in total. Each SM has private registers which
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Figure 1: GPU Memory Hierarchy

are shared among the threads running on it. Threads are organized

into thread blocks. A thread block is scheduled to execute on one

of the SMs. On one SM threads are scheduled in units of warps

(32 threads). The threads in a warp execute in a SIMD style. GPUs

perform zero overhead scheduling to interleave warps on a SM to

hide memory access latency and pipeline stall.

Figure 1 shows the memory hierarchy of recent generations of

GPUs with caches. Each SM is equipped with caches in con-

junction with shared memory. For example, each SM of NVIDIA

Fermi and Kepler architectures contains a configurable 64 KB on-

chip memory which is shared by scratchpad memory and L1 data

cache [3, 4]. The programmer can choose how much storage to

devote to the L1 cache versus scratchpad memory (16 vs 48, 32 vs

32, 48 vs 16). All the SMs share a unified L2 cache. L1 cache has

128 bytes block size while L2 cache has 32 bytes block size. The

block size does not change with the partition between L1 cache and

scratchpad memory. Global and local memories reside in cached

device memory. In other words, the accesses to data in global and

local memory have to go through the two-level cache hierarchy.

Most GPU applications begin data accesses from global memory

and write results back to global memory. Local memory is used as

a per-thread private memory space for register spills, function calls,

and automatic array variables. Hence, the majority of cached data

accesses are from/to global memory. Thus, in this paper, we focus

on the cache bypassing for the global memory. Table 1 describes

the architecture details of NVIDIA GTX 680 (Kepler architecture)

used in this paper.

NVIDIA Fermi and Kepler architectures provide interfaces to

explicitly control the L1 cache access or bypass for global load in-

structions. In particular, the programmer or the compiler can con-

figure the L1 cache in either coarse-grained or fine-grained man-

ner. In a coarse-grained manner, all the global load instructions

are cached or bypassed. We refer to this as “cache-all" or “bypass-

all", respectively. This is controlled by using compilation flags (-

dlcm=ca or -dlcm=cg). In a fine-grained manner, each individual

global load instruction can choose either cache access or cache by-

pass (see section 3 for detailed program interface). L1 caches on

different SMs are not coherent while L2 cache is coherent across all

the SMs on the chip. Finally, current NVIDIA GPUs do not cache

global store data in L1 cache because L1 caches are not coherent

for global data. Thus, global stores ignore L1 cache, and discard

any L1 cache line if it is matched. This behavior is not configurable

in the current GPU architecture. Thus, in this paper we only focus

on global memory loads.

2.2 Motivation
Here, we motivate the performance speedup potential through

cache bypassing on GPUs and the need of automatic compiler frame-

work for cache bypassing. We use the kernel particle filter from

Rodinia benchmark suite [18] as a case study. There are totally 14

load instructions in particle filter. Due to the large design space

(214), we only choose 6 global load instructions with high access

frequencies to be cache bypassing candidates. For the rest 8 global
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Table 1: Parameters of GTX680.
Parameters Values

Compute capability 3.0

Number of SMs 8

Number of SPs per SM 192

L2 cache size 512 KB (32-byte block)

L1 cache size 16, 32, 48 KB (128-byte block)

Shared memory size 48, 32, 16 KB
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Figure 2: Performance variation of particle filter with different

cache bypassing solutions.

load instructions, we choose to cache all of them. Figure 2 shows

how the performance speedup varies with the cache bypassing so-

lutions and the results are normalized to cache-all (e.g. cache all the

6 chosen global load instructions). The horizontal axis represents

the subset of design space (26 = 64 solutions) we consider, the

left-most point represents cache-all and the right-most point rep-

resents bypass-all. The experiments are performed on NVIDIA

Kepler GTX 680 and we use NVIDIA profiler [7] to collect the

performance data.

As shown in Figure 2, the performance speedup critically de-

pends on the cache bypassing solutions. Neither cache-all or bypass-

all ensures good performance. More importantly, there is a consid-

erable performance speedup potential by exploiting the cache by-

passing interface. Meanwhile, the cache bypassing optimization

necessitates an automatic compiler framework as it is infeasible to

manually explore such a huge design space.

3. COMPILER FRAMEWORK
Figure 3 presents our compiler framework for cache bypassing

on GPUs. The CUDA code is first pre-compiled to PTX (Parallel

Thread Execution) code which is CUDA’s intermediate representa-

tion used in NVIDIA CUDA Compiler [6]. Our compiler frame-

work takes unmodified PTX code as input and outputs optimized

CUDA binaries. The compiler framework involves three compo-

nents: characterization, optimization and instrumentation. Initially,

characterization component collects the data access, reuse, load ef-

ficiency, and memory traffic through light-weight profiling. Then,

optimization component determines cache access or bypass for ev-

ery global load instruction. Finally, instrumentation component

implements the optimized solution determined by the optimization

component by leveraging PTX ISA. The characterization compo-

nent is also assisted with the instrumentation component for profil-

ing.

The characterization and optimization components are detailed

in sections 4 and 5, respectively. Here, we describe the details of

the instrumentation component. Our implementation leverages the

PTX ISA [5]. Global memory loads in PTX are in the following

format,

ld.global.l1_cache_option.type dst, src

CUDA Kernel (PTX) 

Compiler Framework 

Characterization Optimization 

Instrumentation 

CUDA binary 

Figure 3: Compiler framework for cache bypassing on GPUs.

l1_cache_option has six possible values:

ca, cg, cs, lu, cv, empty

among which we focus on ca, cg, empty, which represent cache

access, cache bypass, and the default setting.

We can explicitly control cache access or bypass by modifying

the PTX code. More clearly, we implement cache access using

cache option ca and implement cache bypass using cache option

cg for the global load instruction. After all these changes, we need

to update the PTX section size and embed it into CUDA binary.

Below, it gives an example about PTX code instrumentation. After

PTX code instrumentation, the first global load instruction (line 1)

bypasses the L1 cache while the last global load instruction (line 4)

accesses the L1 cache.

1 l d . g l o b a l . f32 %f2 , [% rd23 + 0 ] ;

2 s t . s h a r e d . f32 [% rd14 +0 ] , %f2 ;

3 . l o c 14 82 0

4 l d . g l o b a l . f32 %f3 , [% rd19 + 0 ] ;

5 s t . s h a r e d . f32 [% rd15 +0 ] , %f3 ;

Listing 1: Original PTX code

1 l d . g l o b a l . cg . f32 %f2 , [% rd23 + 0 ] ;

2 s t . s h a r e d . f32 [% rd14 +0 ] , %f2 ;

3 . l o c 14 82 0

4 l d . g l o b a l . ca . f32 %f3 , [% rd19 + 0 ] ;

5 s t . s h a r e d . f32 [% rd15 +0 ] , %f3 ;

Listing 2: Modified PTX code

4. CHARACTERIZATION COMPONENT
GPU architecture is quite distinct from CPU architecture. In this

section, we first characterize the distinct features in terms of cache

utilization on GPUs and then present the performance metrics used

for cache bypassing optimization (section 5).

4.1 Block Size
Depending on the requested data size and data access patterns,

data transfers are separated into one or more cache blocks. More

clearly, when L1 cache is used, the hardware issues transfers of

128 bytes; otherwise, the hardware issues transfers of 32 bytes.

However, not all the transferred data in a cache block are useful,

that is to say, the global load efficiency is less than or equal to

100%. According to NVIDIA profiler [7], the global load efficiency

is defined as

efficiency =
useful data

transferred data

518



We use Eon to denote the global load efficiency when L1 cache

is accessed and Eoff to denote the global load efficiency when

L1 cache is bypassed. For example, for an aligned 16-byte data re-

quest, Eon is 16
128

= 12.5% and Eoff is 16
32

= 50%. Eon (Eoff ) can

be collected using CUDA profiler [7]. Hence, bypassing L1 cache

is very beneficial for applications with scattered memory accesses,

because a memory access that fetches 128 bytes for L1 cache sig-

nificantly wastes the memory bandwidth. In this case, bypassing

L1 cache can help to improve the load efficiency and thus reduce

memory traffic.

4.2 Data Locality
GPUs are many-core architectures. Thousands of threads may

execute and share the L1 cache simultaneously on the same SM.

As a result, cache contention among threads is more significant on

GPUs than on CPUs. In the extreme case, if all threads in a thread

block execute together in lock-step style, then it is less likely for

caches to exploit temporal locality. Indeed, previous work [23]

makes such a pessimistic assumption. However, in the real GPU

hardware, threads execute in warps, and the scheduler may execute

a few instructions for the current warp before it switches to the next

warp. Thus, GPU caches still exploit both spatial and temporal lo-

calities. We define two types of data localities on GPUs.

• Intra-warp spatial/temporal locality: the threads within the

same warp access the same cache line.

• Inter-warp spatial/temporal locality: the threads within dif-

ferent warps access the same cache line.

The threads in a warp are executed in a SIMD style. Intra-warp

spatial locality refers to the memory coalescing for GPUs [6]. The

continuous memory accesses from the threads within a warp lead

to coalesced accesses. Intra-warp spatial locality is determined by

the data access pattern of the warp and the coalescing rules of the

GPU architecture. Cache bypassing has no effect on it. Intra-warp

temporal locality is important because the threads within a warp

may execute a few instructions before switching to the next warp

and the neighboring instructions tend to have data localities. In

fact, intra-warp temporal locality is very significant for the GPU

benchmarks we studied in the experiments. For example, different

fields of a data structure are accessed consecutively in the code. On

the other hand, inter-warp locality is also possible because different

warps may access the same data (e.g. array [tid % 32]). Cache

bypassing is very beneficial for applications without data localities

because it helps to decrease the cache conflicts.

The above data localities are closely related. It is difficult to

analyze them separately. More importantly, both intra-warp and

inter-warp localities depend on the warp scheduling policy of the

real hardware. In this paper, we use light-weight profiling to char-

acterize the data localities as shown in the next subsection.

4.3 Performance Metrics
Let the GPU kernel have N global load instructions. We order

the global load instructions according to their program order. We

use ldi to denote the ith global load instruction. We rely on the

instrumentation component described in section 3 to modify the

GPU code and use NVIDIA profiler [7] to collect the following

metrics,

• accessi: the number of L1 cache accesses for ldi. This num-

ber is obtained through profiler by bypassing L1 cache for all

the global load instructions except ldi.

• hiti: the number of L1 cache hits for ldi. This number is

obtained as a by-product of accessi.

• hiti,j : the number of L1 cache hits for ldi and ldj together.

This number is obtained through profiler by bypassing L1

cache for all the global load instructions except ldi and ldj .

Let us define gaini,j

gaini,j = hiti,j − (hiti + hitj)

We use gaini,j to measure the data reuses or conflicts between ldi
and ldj . Note that gaini,j may be either positive or negative. If

gaini,j is positive, it means ldi and ldj have data reuses, and we

should cache them together to exploit the data localities between

them; otherwise, ldi and ldj conflict with each other, and we should

bypass either one of them, or both of them.

We could use gaini,j to estimate L1 cache hit ratio. However,

L1 cache hit ratio does not predict performance well as demon-

strated in prior work [23]. High L1 hit ratio does not guarantee

high performance as fetching L1 cache block (128 bytes) leads to

high L2 cache traffic. Hence, we extend our metrics with aware-

ness of cache block size and use L2 cache traffic as performance

indicator.

For ldi, we use Ton(ldi) (Toff (ldi)) to denote the L2 cache

traffic when L1 cache is accessed (bypassed) for ldi.

Ton(ldi) = (accessi − hiti)× L1_block_size

Depending on the data access patterns, one data transfer from L1

cache may be separated into n (1 ≤ n ≤ 4) transfers from L2

cache when L1 cache is bypassed. Note that n may not always be

4 = 128
32

. For example, to transfer an aligned 64-byte data, we need

one 128-byte transfer if L1 cache is cached; otherwise, we need

two 32-byte transfers if L1 cache is bypassed (L2 cache block is 32

bytes). For this case, n = 2. However, we can not get the exact

number of transferred L2 blocks for each global load instruction

through NVIDIA profiler [7] as the L2 cache can not be bypassed.

Instead, we compute Toff (ldi) as follows,

Toff (ldi) =
accessi × L1_block_size× Eon

Eoff

where Eon (Eoff ) is the program global load efficiency when L1

cache is accessed (bypassed). For the computation of Toff (ldi),
we use the overall load efficiency for all instructions in a program.

DEFINITION 1 (Traffic Reduction Graph). Let traffic reduc-

tion graph TG = (V,E) be a weighted and complete graph, where

node vi ∈ V represents ldi. Nodes and edges are weighted us-

ing function W . The weight of node vi, W (vi) = Toff (ldi) −
Ton(ldi); the weight of edge e(vi, vj), W (e(vi, vj)) = gaini,j ×
L1_block_size.

The weight function W estimates the L2 cache traffic reduction

of cache access over cache bypass. W (vi) or W (e(vi, vj)) could

be either positive or negative. If it is positive, it means L1 cache

access can reduce L2 cache traffic by exploiting data localities; oth-

erwise, it means L1 cache access can increase the L2 cache traffic

due to cache conflicts or low load efficiency. The negative nodes

and edges prefer cache bypassing.

In this paper, we use profiling to characterize the data locality,

load efficiency, and L2 cache traffic. The profiling runs very fast

(see experiment section). More importantly, GPU kernels usually

are frequently called for many times. Thus, the profiling overhead

is very low compared to the kernel runtime. For the applications

with dynamic behaviors, a more detailed profiling may be neces-

sary. However, for embedded system applications, their program

behaviors are more predictable and thus tend to be stable across

inputs. For this paper, we use the same input for profiling and eval-

uation.
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5. OPTIMIZATION COMPONENT

5.1 Problem Formulation
Given N global load instructions, we could select a subset of

global load instructions for cache bypassing. Thus, there exists 2N

cache bypassing solutions. For each candidate solution, we could

use compiler framework that automatically generates the compil-

able PTX code, runs the code and empirically evaluates the perfor-

mance and chooses the best one. However, obviously this approach

is infeasible for complex and large programs. Our solution is de-

veloped based on traffic reduction graph. We consider the traffic

reduction graph as if it were an exact representation of L2 cache

traffic reduction.

Given a complete subgraph G′ = (V ′, E′) of TG = (V,E)
where V ′ ⊆ V and E′ ⊆ E, we define the traffic reduction by

caching all the global load instructions in G′ as

T (G′) =
∑

v∈V ′

W (v) +
∑

e∈E′

W (e)

Therefore, we formulate a problem that maximizes the L2 cache

traffic reduction as follows

PROBLEM 1 (Traffic Reduction Maximization). Given traf-

fic reduction graph G = (V,E), find a complete subgraph G′ =
(V ′, E′) where V ′ ⊆ V and E′ ⊆ E, such that T (G′) is maxi-

mized.

THEOREM 5.1. Traffic Reduction Maximization Problem is NP-

Hard.

PROOF. We show a reduction from Maximal Clique problem [12].

Given an instance of Maximal Clique problem, i.e. a graph G =
(V,E), we construct an instance of Traffic Reduction Maximiza-

tion Problem. Let TG = (V ′, E′,W ′), where V ′ = V and TG

is a complete graph. Thus, E ⊆ E′. Let ∀v ∈ V ′,W (v) = 1,

∀e ∈ E,W (e) = 1, and ∀e ∈ E′ \ E,W (e) = −∞. This reduc-

tion is polynomial time. Then, to solve the maximal clique problem

for G = (V,E), we just need to solve the traffic reduction maxi-

mization problem for TG = (V ′, E′,W ′). Thus, traffic reduction

maximization problem is NP-Hard.

5.2 ILP Formulation
We develop an ILP formulation to solve the traffic reduction

maximization problem exactly. In practice, the ILP solution can

be applied to programs with small number of global loads.

For a traffic reduction graph TG = (V,E), our optimization

objective is to maximize

∑

vi∈V

W (vi)×Nvi +
∑

e(vi,vj)∈E

W (e(vi, vj))×Mvi,vj

where Nvi and Mvi,vj are 0-1 decision variable.

Nvi =

{

1 cache ldi
0 bypass ldi

We have the following constraints,

Mvi,vj = Nvi ×Nvj

We linearize the above equations as follows.

Nvi ,Mvi,vj = 0 or 1

Mvi,vj ≤ Nvi

Mvi,vj ≤ Nvj

Mvi,vj ≥ Nvi +Nvj − 1

Algorithm 1: Heuristic Approach

Input: TG = (V,E)
Output: Vcache, the set of cached global loads,

Vbypass, the set of bypassed global loads

Vremain = V ; //Initialization1

while |Vremain| > 0 do2

//find the min_v ∈ Vremain with minimal traffic3

reduction with the others;

min_T = INFINITE; min_v = NULL;4

foreach vi ∈ Vremain do5

6

Tother(vi) =
∑

vj∈Vcache

W (e(vi, vj))+

∑

vk∈Vremain∧vk 6=vi

W (e(vi, vk))

if Tother(vi) ≤ min_T then7

min_T = Tother(vi); min_v = vi;8

9

T = Tother(min_v) +W (min_v) ;10

if (T ≤ 0) then11

//bypass it;12

delete (min_v) from TG;13

add min_v to Vbypass;14

else15

//cache it;16

add min_v to Vcache;17

delete (min_v) from Vremain ;18

19

For each global load instruction ldi, it is cached if Nvi = 1;

otherwise, it is bypassed.

5.3 Heuristic Algorithm
ILP formulation is not scalable to large programs. Thus, we

also develop an efficient polynomial-time heuristic. Algorithm 1

presents the details of our heuristic. It is an iterative algorithm. In

each iteration, for every global load instruction, we first evaluate its

potential traffic reduction if it is cached together with other cached

and remaining global loads (line 6). We selects the one with the

minimal traffic reduction (line 7). Then, we add its own traffic re-

duction. If the overall traffic reduction is positive, it is cached; oth-

erwise, it is bypassed. If a node is bypassed, then it is deleted from

traffic reduction graph; otherwise it is kept in the traffic reduction

graph for evaluation of the remaining nodes.

Figure 4 shows an example of our algorithm. The traffic reduc-

tion graph consists of four nodes (four global loads). The nodes

and edges are weighted based on the traffic reduction metrics. In

the first iteration of the algorithm, the node V3 is selected as it has

minimal traffic reduction with others (-5 -5 -4 = -14); and V3 is

bypassed as its overall traffic reduction is negative (-14 + 1 = -13).

In the second iteration, we choose V4 and it is cached. Note that

the traffic reduction graph is updated only when the selected node

is bypassed.

6. EXPERIMENTS
Experiments Setup. We evaluate our techniques on NVIDIA

GTX 680 (Kepler Architecture). The hardware details of GTX 680
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Figure 4: Illustration of our heuristic algorithm.

Table 2: Benchmark Characteristics.
Benchmark Source Number of Thread Blocks Thread Block Size Shared Memory (KB)

backprop (BAA) Rodinia [18] 16384 256 0

bfs (BFS) Rodinia [18] 1954 512 0

euler3d (EUF) Rodinia [18] 1212 192 0

kmeans (KMI) Rodinia [18] 3249 256 0

particle filter (PFFL) Rodinia [18] 2 512 4

srad prepare (SRP) Rodinia [18] 450 512 0

srad reduce (SRR) Rodinia [18] 1 512 4

srad kernel (SRS) Rodinia [18] 450 512 0

spmv (SPM) Parboil [15] 765 192 0

mri-gridding (MGR) Parboil [15] 5188 512 0

mri-q (MRQ) SDK [8] 4 32 0

are presented in Table 1. We select a set of benchmarks from bench-

mark suite Rodinia [18], Parboil [15], and NVIDIA GPU Comput-

ing SDK [8]. The tested benchmarks are general-purpose GPU ap-

plications with diverse characteristics including thread structures,

computation, and memory access patterns. Some of them are mem-

ory intensive applications that involve a large number of global

loads and stores while the rest are computation intensive applica-

tion that contain only a few number of global loads and stores. The

benchmark details are shown in Table 2.

For each benchmark, our compiler framework performs a light-

weight profiling to characterize the data locality and load efficiency,

builds the traffic reduction graph, invokes our cache bypassing op-

timization algorithms, and modifies the CUDA PTX code to reflect

the optimized cache bypassing solution. We implement the opti-

mal solution based on the ILP and heuristic algorithms. We use

MOSEK [2] to solve the ILP problem. NVIDIA GTX 680 has con-

figurable L1 cache. It can be configured to 16, 32, and 48 KB.

Thus, we evaluate our technique using three different cache sizes.1

The performance are measured through NVIDIA Profiler [7].

Performance Speedup. For each benchmark, we compare four

solutions: bypass-all, cache-all, Heuristic, and ILP. For cache-all

solution, all the global load instructions go through L1 cache; for

bypass-all solution, all the global load instruction bypass L1 cache.

Figure 5 presents the results for three different cache sizes. We

normalize the performance to bypass-all solution.

First of all, neither cache-all or bypass-all solution guarantees

good performance for all the benchmarks. Such coarse-grained so-

lutions may be good for small benchmarks with only a small num-

1PFFL is tested only using 16 KB cache as its memory allocation
is unsuccessful for 32 and 48 KB caches.

ber of loads, but most likely give bad performance for benchmarks

with large number of loads. In contrast, our heuristic solution per-

forms consistently well across all the benchmarks. The perfor-

mance speedup of our cache bypassing techniques is up to 2.62X.

More clearly, for 16 KB cache, our heuristic improves the perfor-

mance by 12.9% on average while cache-all improves the perfor-

mance by only 4.4% on average. For 32 KB cache, our heuristic

improves the performance by 17.1% on average while cache-all im-

proves the performance by 10.6% on average. For 48 KB cache,

our heuristic improves the performance by 21.4% on average while

cache-all improves the performance by 18.3% on average. The av-

erage value is computed using geometric mean.

The performance improvement of our heuristic linearly increases

as the cache size increases. This is because larger cache offers more

opportunities to exploit data localities than smaller cache. Cache

size increases at the cost of the shared memory decrease. The de-

crease of shared memory does not affect the performance much for

most of the benchmarks as these benchmarks either do not use or

just use a small portion of the shared memory as shown in Table 2.

We also notice that the gap between cache-all and our approach

decreases as the cache size increases, that is because more global

loads can fit into the larger caches.

Our heuristic and ILP solution return the same results for most

of the benchmarks. However, there are a few cases that our heuris-

tic is slightly better than ILP solution. This is because for those

benchmarks the load efficiency of different loads are diverse and

thus using a uniform load efficiency is not accurate. Therefore, it

is possible that our ILP solution results in a sub-optimal solution in

practice. But overall our heuristic and ILP solution perform consis-

tently well across all the benchmarks and cache settings.
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Figure 5: Performance comparison for different cache sizes.

Prior cache bypassing technique [23] does not model cross in-

struction localities. However, different global instructions may ac-

cess the same cache line and a warp may execute multiple instruc-

tions before switching to the next warp. Hence, intra- and inter-

warp temporal localities are important for GPU architecture. Our

technique achieves high improvement as the traffic reduction graph

captures these localities. For example, for MRQ benchmark, our

solution achieves 11.9%, 10.6% and 10.6% improvement for 16,

32 and 48 KB cache compared to bypass-all solution, respectively.

However, for MRQ benchmark, prior work [23] chooses bypass-all

solution for all three cache sizes due to the neglect of cross instruc-

tion localities.

Efficiency. Our compiler framework runs very efficiently. For

all the benchmarks, it only take a few seconds to complete.

7. RELATED WORK
GPU Performance Optimization. Although GPUs promised

high performance, tuning GPUs for high performance was not a

trivial task [19]. Both analytical performance models and opti-

mization techniques had been developed [22, 25]. The state-of-the-

art of GPU performance optimization techniques focused on auto-

matic data movement, data layout transformation, thread and warp

scheduling, control flow divergence elimination, register allocation

optimization, and memory coalescing optimization [17, 27, 31, 34,

35, 13]. However, none of above works targeted GPU architecture

with caches.

There were very few studies on GPU caches. Recently, Jia et

al. presented a characterization and optimization study for GPU

caches [23]. Their characterization study demonstrated that on

GPUs L1 cache hit ratio does not correlate with performance. They

used static analysis to analyze data access patterns. However, there

was one major drawback in their work. They assumed there was no

data reuse between global load instructions and different iterations

of the same global load instructions. Thus, their method only con-

sidered inter-warp spatial locality and completely neglected other

localities. In contrast, our solution systematically captured both

temporal and spatial localities using traffic reduction graph. Kuo et

al. presented a cache capacity aware thread scheduling for irregu-

lar memory access on GPUs [26]. However, they did not explore

cache bypassing in their work.
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Cache Bypassing for CPUs. Cache bypassing had been widely

used for CPU caches to effectively alleviate the cache pressure.

Runtime cache bypassing with extra hardware supports had been

used to reduce cache pollution in [30, 24]. As an alternative to

hardware approach, compiler-assisted cache bypassing techniques

had been proposed too [20, 33]. They used hit ratio as performance

metrics to guide the cache bypassing. These techniques were not

applicable to GPUs as hit ratio did not correlate well with perfor-

mance on GPUs as shown in [23].

Memory Customization for Embedded System. The customiza-

tion of memory subsystem is critical for embedded systems. Hard-

ware and software techniques had been proposed for embedded

systems with scratchpad memory and cache [32, 21, 29]. They

mainly used hit ratio as performance metrics and thus were not ap-

plicable to GPUs.

8. CONCLUSION
Nowadays, heterogenous computing platforms that consist of

CPUs and GPUs are widely adopted for high performance em-

bedded computing. Recently, caches are also included in modern

GPUs. GPU caches allow fine-grained cache bypassing for each

load instruction. This feature benefits the general purpose appli-

cations with scattered dynamic data access patterns. In this paper,

we develop an efficient compiler framework for cache bypassing

on GPUs. Our compiler framework can automatically analyze the

GPU code and optimize the code through bypassing the load in-

structions with low data reuse, low efficiency or high conflicts with

others. Experiments using a set of real applications show that our

techniques improve the average cache benefits to 12.9%, 17.1%,

and 21.4% for 16, 32, and 48 KB caches, respectively.
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