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Abstract. The present paper proposes a new equation utilizing the nonlocal Euler-Bernoulli beam model to
investigate the linear transverse vibration of an embedded single-walled carbon nanotube (SWCNT) which
incorporates an extra-added nanoparticle. The elastic behavior of the surrounding medium is simulated
by the Pasternak-type foundation model. Hamilton’s principle is applied to derive the governing equation,
and the natural frequencies are obtained by the Galerkin method. The numerical results are compared with
the molecular dynamics (MD) simulation as well as with the local continuum approach in the previous
literature, to validate the nonlocal continuum elastic model. Unlike the classical continuum model, the
present new approach shows acceptable accuracy and good agreement to the MD approximation. The
results indicate that the fundamental frequencies are significantly dependent on the attached mass and
boundary conditions. To study the effects of supported end conditions, three typical boundary conditions,
namely clamped-clamped, clamped-pinned and pinned-pinned, are simulated. It is found that an attached
mass causes a noticeable reduction in natural frequencies, in particular, for the clamped-clamped boundary
condition, a stiff medium, stocky SWCNT and a small nonlocal parameter. In addition, when the position
of the added nanoparticle is closer to the middle point of SWCNT length, the mass sensitivity is increased.
Detailed results demonstrate that the present equation-based nonlocal continuum theory can be utilized
for SWCNT-based mass sensor, efficiently.

1 Introduction

Since carbon nanotubes (CNTs) demonstrate exceptional
and superior mechanical, chemical, electrical and ther-
mal properties [1–5], they have many new applications
in nanomechanical and nanoelectromechanical systems
(NEMS) such as nanosensors [6,7], nano-actuators [8,9]
and electrochemical sensing systems [10–12].

CNTs play significant roles in the biological applica-
tions [13–15], especially in bio-sensing [16], and there have
been several attempts to adapt CNTs as ultrasensitive
nano-bio sensors [9,17]. CNT-based nano-bio sensors have
been driven by the experimental evidence and the develop-
ment of nano-bio sensors and nanoscale bioreactor systems
based on CNTs are experimentally investigated to show
that biological entities such as proteins, enzymes and bac-
teria can be immobilized either in the hollow cavity or on
the surface of carbon nanotubes [18].

Recently, mass detection based on mechanical
resonators has been the subject of growing research in-
terest. The advances in lithography and materials syn-
thesis have permitted the fabrication of nanomechanical
resonators, which have been performed as a more accu-
rate mass sensor. The essence of mass sensing in a res-
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onator is based on the fact that the vibration behavior of
a resonator is sensitive to changing the total mass of the
system, including the mass of the system and added par-
ticle. The change in the attached mass causes a change
in the resonant frequency, and because the greater rela-
tive changes of mass, mechanical mass nanosensors with
nanoscale dimensions are more sensitive to large molecules
in comparison to the micro-sensors [19]. Consequently, the
dynamical behavior of a CNT-based mass sensor has be-
come important. Theories such as elastic continuum me-
chanics, as well as molecular dynamics (MD) simulations,
are used for modeling vibration of behaviors of these sys-
tems, because they can accurately and cost-effectively pro-
duce results that closely approximate the real behavior
of CNTs [20–23]. There is little research concerned with
the vibration of CNTs with an attached mass using MD
simulation. For instance, Georgantzinos and Anifantis [24]
applied a spring-mass-based finite element method for in-
vestigating the vibrational behavior of single- and multi-
walled carbon nanotubes (MWCNTs) with an added mass.
The paper demonstrates that different geometric para-
meters such as the diameter and length of CNTs with
cantilevered and bridged boundary conditions have sig-
nificantly influenced the mass sensing behavior of CNTs.
Further, they showed that SWCNTs are more sensitive
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than MWCNTs. In another work, Arash et al. [25] fo-
cused on the detection of gas atoms by using the vibra-
tional analysis of the SWCNTs as nanosensors. The MD
simulation was developed to determine the shift frequency
as well as to investigate the effects of gas atoms density
on the SWCNTs, the size of SWCNTs and the type of
boundary conditions on the sensitivity of nanomass sen-
sors. However, the MD simulation involves complex com-
putational processes, and is still formidable and expensive,
especially for large-scale nanostructures and continuum
elastic theories are widely utilized to simulate the vibra-
tion of CNTs as a mass detector instead. The potential
of SWCNTs as a cantilevered and bridged mass sensor
is explored using the classical Euler-Bernoulli beam the-
ory by Chowdhury et al. [18]. The results show that the
mass sensitivity of CNTs can reach up to 10−24 kg. Joshi
et al. [26] investigated the resonant frequency of the fixed-
free and bridged SWCNT with an attached mass in which
the SWCNTs are depicted as thin shells with thickness
using the finite element method (FEM). They examined
how the sensitivity of CNTs increases with the increase of
attached mass, especially for short SWCNTs. The effect
of tip rigidity and added mass on the resonant frequency
of a cantilever SWCNT has been studied by developing a
local continuum bending model [27]. Since the classical or
local elasticity theory in the above-mentioned studies is
not size dependent, the nonlocal elastic theory is utilized
to consider the small-scale effect in the dynamical model
of the mass sensors. Murmu and Adhikari [28] examined
the longitudinal vibration of SWCNTs when a buckyball
is attached to them based on the nonlocal Euler-Bernoulli
model. The results have shown that the change in reso-
nant frequency due to the added mass and the nonlocal
parameter could be important on the mechanical behav-
ior of nanoresonators. They also proposed the nonlocal
elasticity theory to investigate the vibrational behavior
of CNTs-based cantilever mass sensors with two practi-
cal configurations of attached mass, namely, point mass
and distributed mass [29]. The detailed results have shown
that the nature of added mass should be efficiently consid-
ered as the distributed mass. A nonlocal elastic rod model
is developed to study the axial vibrations of SWCNTs as
a mass sensor by Aydogdu and his co-worker Filiz [30].
The effects of differing length, attached mass, boundary
conditions and nonlocality on the natural frequency have
been shown.

According to the best of our knowledge, no research
has investigated the suitability of the nonlocal elastic-
ity theory for simulating the transverse vibration of the
SWCNT as a mass sensor device. In other words, the non-
local continuum model may move away obviously from the
MD approximation or experimental methods. In this pa-
per, a nonlocal Euler-Bernoulli model is used to analyze
the free transverse vibration of an embedded
SWCNT with an attached nanoparticle. The equation of
motion is derived by Hamilton’s principle and solved by
the Galerkin method. For the first time, the nonlocal
Euler-Bernoulli theory is compared with a MD simulation
and the local continuum approach. Therefore, a certain

condition is determined in which the results of the contin-
uum model agree well with the atomistic-based study with
a reasonable accuracy. Moreover, the Pasternak-type foun-
dation is applied with three typical boundary conditions
to demonstrate the mechanical behavior of the nanosensor
more naturally. Finally, the shift of frequency is discussed
for various parameters such as stiffness of the model, as-
pect ratio, the nonlocal parameter and physical location
of the attached mass.

2 Modeling

Figure 1 shows a clamped-clamped SWCNT with an at-
tached mass m in location Xm that is modeled by the
Euler-Bernoulli beam theory. E, ρ, A, L and do indicate
Young’s modulus, density, cross-section area, length and
outer diameter of the SWCNT, respectively. The surroun-
ding elastic medium is simulated as a Pasternak-type
foundation that represents a generalized and realistic
illustration of mechanical interaction between the
SWCNT and its medium.

The transverse vibration is assumed in the x-z plane.
Based on the Euler-Bernoulli beam theory, the displace-
ment field at any point in the SWCNTs along the x- and
z-axes, denoted by ux (x, z, t) and uz (x, z, t), respecti-
vely, as:

ux(x, z, t) = u(x, t) − z
∂w(x, t)

∂x
, uz(x, z, t) = w(x, t),

(1)
where u(x, t) and w(x, t) are displacement functions in
the mid-plane of the nanobeam for axial and transverse
coordinates, in that order, and t is time. The linear and
nonzero strain-displacement relations are given as:

εxx =
∂u

∂x
− z

∂2w

∂x2
, (2)

where εxx is the axial strain.
Hence, the first variation of the total strain energy U in

the SWCNTs on the time interval [0, T ] can be calculated
from:

δ

T∫

0

Udt =

T∫

0

L∫

0

∫

A

σxxδεxxdAdxdt

=

T∫

0

L∫

0

[
−dNx

dx
δu − d2Mx

dx2
δw

]
dxdt

+

T∫

0

[
Nxδu +

dMx

dx
δw − Mxδ

dw

dx

]x=L

x=0

dt,

(3)

where σxx is the axial stress and δ is the variation
operator. Moreover,

(Nx, Mx) =
∫

A

σx (1, z)dA, (4)
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Fig. 1. (Color online) The SWCNT embedded in an elastic
medium with an attached mass.

are the normal resultant force and bending moment,
respectively.

The first variation of the kinetic energy K on the time
interval [0,T ] for SWCNTs with the attached mass m in
the Xm position can be written as follows:

δ

T∫

0

Kdt =

T∫

0

L∫

0

∫

A

ρ

(
∂ux

∂t
δ
∂ux

∂t
+

∂uz

∂t
δ
∂uz

∂t

)
dAdxdt

+

T∫

0

L∫

0

mΔ(x − Xm)
∂uz

∂t
δ
∂uz

∂t
dxdt

=

T∫

0

L∫

0

[
−I0

∂2u

∂t2
δu − (I0 + mΔ(x − Xm))

×∂2w

∂t2
δw

]
dxdt +

L∫

0

[
I0

∂u

∂t
δu

+ (I0 + mΔ(x − Xm))
∂w

∂t
δw

]t=T

t=0

dx

(5)

where Δ (·) is the Dirac-delta function and I0 =
∫

A
ρdA

= ρA is the mass per unit length of the SWCNT.
The relationship between displacement and transverse

force of the Pasternak-type foundation is assumed to be
p = kww − kp

∂2w
∂x2 , where kw and kp are the Winkler stiff-

ness and the shearing layer stiffness of the foundation,
respectively, and p is the force per unit length. Therefore,
the first variation of the virtual work W done by external
distributed load p on the time interval [0,T ] is obtained
as:

δ

T∫

0

Wdt =

T∫

0

L∫

0

pδwdxdt

=

T∫

0

L∫

0

[
kww − kp

∂2w

∂x2

]
δwdxdt. (6)

The governing equations of motion of the SWCNTs can
be derived by Hamilton’s principle as:

δ

T∫

0

[K − (U − W )]dt = 0. (7)

Substituting equations (3), (5) and (6) into equation (7)
and setting the coefficient δw to zero lead to the differen-
tial equation of motion as:

∂2Mx

∂x2
+kp

∂2w

∂x2
−kww −ρA

∂2w

∂t2
−mΔ(x−Xm)

∂2w

∂t2
= 0,

(8)
and the natural boundary conditions at the ends of the
SWCNT are:

w = 0 or
∂Mx

∂x
= 0,

∂w

∂x
= 0 or Mx = 0, at x = 0, L.

(9)
The one-dimensional stress constitutive relation of the
nonlocal Euler-Bernoulli beam model becomes [31]:

σxx − (e0a)2
∂2σxx

∂x2
= Eεxx. (10)

In the above equation, e0a represents a nonlocal parame-
ter that reveals the nanoscale effect on the response of
structures. In addition, e0 and a are the material constant
and an internal characteristic length, in that order [32].
Using equations (10), (2) and (4), the bending moment of
SWCNTs in terms of displacement can be obtained as:

Mx − (e0a)2
∂2Mx

∂x2
= −EI

∂2w

∂x2
, (11)

where I =
∫

A
z2dA is the second moment of area. By in-

serting equation (11) into equation (8), the nonlocal trans-
verse linear equation of motion for a embedded SWCNTs
with an attached mass m is written as:

− ρA
∂2w

∂x2
− kww + kp

∂2w

∂x2
− mΔ(x − Xm)

∂2w

∂x2

−EI
∂4w

∂x4
+ (e0a)2

[
mΔ(2)(x − Xm)

∂2w

∂t2

+ 2mΔ(1)(x − Xm)
∂3w

∂x∂t2
+ mΔ(x − Xm)

∂4w

∂x2∂t2

+ ρA
∂4w

∂x2∂t2
+ kw

∂2w

∂x2
− kp

∂4w

∂x4

]
= 0, (12)

where Δ(n) (·) is the nth derivative of the Dirac-delta
function. It should be noted when the nonlocal e0a, the
Pasternak (kw, kp) parameters and the value of attached
mass m are taken as zero in the above equation, the local
equation of motion of an Euler-Bernoulli beam model is
easily obtained [33].

The Galerkin method is used for solving equation (12).
This method is an effective simple approach for various
engineering problems and the associated boundary condi-
tions to determine the linear free vibrational frequencies
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of the nonlocal Euler-Bernoulli nanobeam model. In the
modal form, the transverse dynamic displacement of the
SWCNTs [33] is written as:

w(x, t) =
∞∑

n=1

φn(x)qn(t), (13)

where qn(t) is a time-dependent function and φn(x) is
the natural mode shape of the nanotube. In this article,
three standard boundary conditions are investigated for
the SWCNT that are introduced as:

1. A simply supported beam or a beam with pinned-
pinned (P-P) boundary condition at both ends:

φn(x) = sin
(nπx

L

)
. (14)

2. A beam with clamped-pinned (C-P) boundary condi-
tion at both ends:

φn(x) = [cos(βnx) − cosh(βnx)
−C (sin(βnx) − sinh(βnx))] , (15a)

in which

C =
cos(βnL) − cosh(βnL)
sin(βnL) − sinh(βnL)

, (15b)

βn =
(2n + 1) π

4L
. (15c)

3. A beam clamped at both ends or clamped-clamped
(C-C) boundary condition:

φn(x) = [cos(βnx) − cosh(βnx)
−C (sin(βnx) − sinh(βnx))] , (16a)

in which

C =
cos(βnL) − cosh(βnL)
sin(βnL) − sinh(βnL)

, (16b)

βn =
(2n − 1) π

2L
. (16c)

Applying equations (13)–(16) into equation (12) and mul-
tiplying both sides of the resulting equation with φm(x),
then integrating it over the interval [0, L] and consider-
ing the orthogonality condition and general properties of
Dirac-delta function [31], the ordinary differential equa-
tion of the fundamental mode (n = 1) of the generalized
deflection for three classical boundary conditions can be
written as:

d2q(t)
dt2

+
(

Keq

Meq

)
q(t) = 0, (17)

where Keq and Meq are the equivalent values of stiffness
and mass of the vibrational system, respectively, that are
described in detail in the Appendix. Therefore, the fun-
damental frequency fn can be defined as follows:

fn =
1
2π

√
Keq

Meq
. (18)

3 Validation

This study provides a new equation based on the non-
local Euler-Bernoulli beam theory to predict the mass
sensing characteristics of a SWCNT-based mass sensor. In
the previous study [18], Chowdhury et al. have modeled a
SWCNT using the local continuum mechanics-based ap-
proach to detect the mass of biological objects. Hence,
they approximated the following expression to obtain the
resonant frequency fn:

fn =
1
2π

√√√√ 192EI/L3

13
35

ρAL + m
. (19)

As the size of SWCNTs is on the nanoscale, it is signif-
icant to regard the small-scale effect. This has raised a
major challenge to the local continuum mechanics that as-
sumes the stress at a reference point as a function of the
strain state at that point in the material. Therefore, the
local or classical continuum mechanic cannot predict accu-
rately the behavior of nanoscale materials. Unlike the local
theory, the nonlocal elasticity theory observes that the
stress at a given point in a body depends not only on
the strain at that point but also on at all points of the
body [32]. Reference [18] utilized local elasticity and
adapted a simplified method with approximate results.
Therefore, this model may consequently produce signifi-
cant errors in its results.

As mentioned before, the MD simulation has been used
to study the transverse vibrational behavior of SWCNTs
with C-C boundary condition when a nanoparticle is
added at the midpoint, in a previous study [24]. Molecular
dynamics methods simulate the exact geometry and
mechanical behavior of the CNT, revealing the precise
results of natural frequencies and mode shapes of vibra-
tion. To see the validity of the present method, the
obtained results are compared with a MD study [24] in
this literature.

First, in Figure 2, the fundamental frequencies that
were obtained by MD approximation [24], local contin-
uum approach (Eq. (19)) [18] and the present method are
plotted against the mass ratio MR (m/mr, where mr is
the mass of a carbon nucleus) for the different nonlocal
parameters. The armchair (6, 6) SWCNT is used to plot
this figure. The figure reveals that achieved results from
the present technique agree well with the MD method in
the nonlocal parameter of 1 nm < e0a < 2 nm. In addi-
tion, it can be seen that local elasticity causes a significant
deviation in the obtained frequency compared with the
nonlocal model used in this paper. Furthermore, it can be
seen that when the nonlocal parameter e0a is set as zero in
equation (12), the new present equation is more accurate
than the previous investigation [18].

To represent the validity of the presented model more
clearly, and as second check, the shift of the frequency
parameter is presented in Figure 3 against the mass ratio
MR for the three approaches that were mentioned above.
The shift of frequency SF is defined as a parameter that
indicates the changes of frequency for a SWCNT with no
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Present Model (e0a = 1 nm)
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Fig. 2. (Color online) The fundamental frequency fn against
the mass ratio MR for a clamped-clamped supported (6, 6)
SWCNT with 6 nm length.
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102

104
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108

MR

SF
 (M

H
z)

Present Model (e0a = 1.2 nm)
MD Ref. [24]
Local Approach Ref. [18]

Fig. 3. (Color online) The shift of frequency SF against
the mass ratio MR for a clamped-clamped supported (6, 6)
SWCNT with 6 nm length.

added mass (m = 0) in comparison with a SWCNT con-
taining attached mass (m �= 0) as follows:

SF = fn

∣∣
(m=0) − fn

∣∣
(m �=0). (20)

In this specific situation (e0a = 1.2 nm, that is in the range
of 1 nm < e0a < 2 nm), detailed results indicate that the
error between the nonlocal Euler-Bernoulli model and the
MD simulation is insignificant.

According to Figures 2 and 3, the local mechanics ap-
proach shows an important deviation from the nonlocal
model and also a MD simulation. Moreover, unlike the
continuum elasticity theories, the MD simulation is com-
putationally and cannot be used for a large system. There-
fore, the nonlocal continuum mechanics approach could
be efficiently employed to investigate the vibration
of SWCNT including a nanoparticle.

4 Results and discussion

In the present study, the fundamental frequency equation
fn is obtained according to the nonlocal Euler-Bernoulli
beam model for SWCNTs with three standard boundary
conditions as a mass sensor. The mass of the attached

100 101 102 103 104103

104

105

MR

f n (
M

H
z)

P-P
C-P
C-C

Fig. 4. The fundamental frequency fn against the mass ratio
MR for three standard boundary conditions.

nanoparticle can influence the resonant frequency effec-
tively and is consequently considered here as a key pa-
rameter. The geometrical and mechanical properties are
assumed to be a (16, 12) SWCNT [34]. Moreover, the con-
stants of the Pasternak-type medium, nonlocal parameter
and aspect ratio of SWCNTs are taken as: kw = 1 Mpa,
kp = 1 nN, e0a = 2 nm, L/do = 25 [20].

In Figure 4, the fundamental frequency fn of a
SWCNT with a nanomass at the midpoint (Xm/L = 1/2)
for three typical boundary conditions is given as a func-
tion of the mass ratio MR. Increasing the mass of the at-
tached nanoparticle increases the total mass of the system
Meq and the fundamental frequency decreases as shown.
This frequency reduction exaggerates for nanoparticles
with larger MR. Also, the results show that the increas-
ing the SWCNT stiffness due to the boundary conditions
from P-P to C-C causes the natural frequency to increase.

As previously mentioned, the mass sensing with a
SWCNT-based mass sensor is based on the fact that the
added mass causes a shift to the resonant frequency of the
resonator. It means that the resonant frequency is sensi-
tive to changes in the attached mass. To gain a better
understanding of this fact and to explore the net effect of
the attached mass on the resonant frequency of the mass
sensor, the shift of frequency parameter SF is investigated
for different parameters such as Pasternak-type founda-
tion constants (kw, kp), aspect ratio L/do, nonlocal para-
meter e0a and the position of nanomass Xm/L. Moreover,
according to equation (20), increasing the SF parameter
indicates that the mass sensitivity is increased.

Figures 5–9 show the shift of frequency SF as a func-
tion of the mass ratio MR, while the impacts of a sin-
gle specific parameter have been studied in each figure. It
can be seen from all these figures that SF increases with
increasing the MR. Therefore, a high-mass sensitivity is
revealed for nanoparticles with high masses. It should be
noted that for a nanoparticle with very large mass (more
than 104 times greater than the mass of the carbon nu-
cleus), the nanotube does not need to be sensed because
these masses are larger than the mass of the nanotube.

As mentioned above, the natural frequency is sensitive
to the stiffness of the boundaries. Therefore, the effects
of three typical boundary conditions on the SF parameter
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Fig. 5. The shift of frequency SF against the mass ratio MR
for three standard boundary conditions.
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4
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H
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kp = 1 nN
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(a)

(b)

Fig. 6. The shift of frequency SF against the mass ratio MR
for different values of (a) the Winkler stiffness kw and (b) the
shearing layer stiffness kp.

are shown in Figure 5. This figure depicts that the SF
for C-C boundary condition has higher values than other
boundary conditions, due to the increased stiffness of the
model. Hence, for the remaining parts of the paper, the
SF is calculated for SWCNT with C-C boundary condition
with an attached mass.

Figure 6 shows the influence of the surrounding elastic
medium on the SF versus the MR. The results demon-
strate that with increasing stiffness of the medium, due
to increasing the Winkler stiffness kw and/or the shearing

100 101 102 103 104
0

0.5

1

1.5

2

2.5
x 104

MR

SF
 (M

H
z)

 

 

L/do = 25

L/do = 50

L/do = 80

Fig. 7. The shift of frequency SF against the mass ratio MR
for different values of the aspect ratio L/do.

100 101 102 103 1040

1

2

3

4
x 104

MR

SF
 (M

H
z)

 

 

e0a = 0 nm

e0a = 3 nm

e0a = 5 nm

Fig. 8. The shift of frequency SF against the mass ratio MR
for different values of the nonlocal parameter e0a.

layer stiffness kp, the amount of the shift of frequency in-
creases significantly. This indicates that as the nanotube
vibrates in a stiffer medium, the total stiffness of the
system Keq is increased and higher mass sensitivity
followed.

The SF parameter is highly sensitive to the dimensions
of the SWCNT. Therefore, Figure 7 examines the effect of
the aspect ratio L/do on the shift of frequency SF against
the mass ratio MR. It is clear from the figure that for
long and slender SWCNTs with a high aspect ratio L/do,
the SF declines, and the effects of an attached mass on the
rise of frequency reduce. With reducing the aspect ratio in
short SWCNTs, the total stiffness Keq remains constant
while the total mass of the system Meq decreases. This
can explain why the mass sensitivity increases in stocky
nanotubes.

Figure 8 illustrates the importance of the nonlocal elas-
ticity and nanoscale effects in determining the SF. The
nonlocal elasticity theory results in a prediction that the
SWCNT becomes more flexible and reduces the stiffness of
this structure. Therefore, with an increase in
SWCNT stiffness by a decrease in the nonlocal parameter
e0a, the SF increases consequently. It can be seen that the
larger shift of frequency occurred at the lower values of the
nonlocal parameter.
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Fig. 9. The shift of frequency SF against the location of the
attached mass Xm/L for different values of the mass ratio MR.

Finally, the position of any added mass can be impor-
tant for the frequency shift of the mass sensor. Figure 9
illustrates the relationship between shift of frequency SF
and location of attached mass Xm. The SF is plotted as
a function of Xm/L with different values of the mass ra-
tio (MR = 1, 10, 100). It can be found that the shift of
frequency increases when the position of attached mass is
converging to an intermediate location of C-C SWCNT es-
pecially in MR = 100, because the maximum displacement
occurs at this point for this kind of boundary condition.

5 Conclusion and future outlook

CNTs have many applications in biological technol-
ogy [13–15], especially in medical applications [16], and
sensors [6,7]. Therefore, in this study, based on the non-
local Euler-Bernoulli theory, the dynamic behavior of an
embedded SWCNT carrying a nanoparticle has been per-
formed, as a mass sensor. The obtained governing equa-
tion of motion is solved by the Galerkin method, and the
fundamental frequency is calculated. The results from the
nonlocal continuum-based elasticity model agree well with
numerical data of MD simulation published in the liter-
ature, while the local ones in a previous study show a
significant deviation. The results indicate that the reso-
nant frequencies decrease by an increase in the mass of
the nanoparticle and decreasing the stiffness of SWCNTs.
The shift of frequency due to a change in the value of
attached mass illustrates the sensitivity of the SWCNT-
based mass sensor and is characterized as a sensitivity
parameter. Detailed results demonstrated that the sensor
sensitivity rises by increasing the mass ratio, especially for
stocky SWCNT, with stiff foundation, the small values of
the nonlocal coefficient and for high boundary stiffness.
Furthermore, by moving the added mass from the bound-
aries of SWCNT to the center, the shift of frequency
increases.

Appendix

The parameters Keq and Meq for different boundary conditions:
P-P conditions:

Keq =
(
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)
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2
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(
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L

)2
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)
.

C-P conditions:

Keq =
(
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2
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