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In recent years, human pose estimation has
greatly benefited from deep learning and huge
gains in performance have been achieved on
popular benchmarks [1, 3, 4]. The trend to max-
imise the accuracy on benchmarks, however, re-
sulted in computationally expensive deep net-
work architectures that require expensive hard-
ware and pre-training on large datasets. In this
work, we propose an efficient deep network ar-
chitecture that can be efficiently trained on mid-
range GPUs without the need of any pre-training
and that is on par with much more complex mod-
els on the benchmarks [1, 3, 4].

Our proposed Fully Convolutional
GoogLeNet (FCGN) network (see Figure 1) is
based on the network architecture from [2]. We
take the first 17 layers of [2] and add a decon-
volution layer to make it fully convolutional. In
addition, we introduce a skip layer and combine
two FCGNs with shared weights to obtain a
multi-resolution network. Belief maps for each
joint are then obtained by a deconvolution layer
with large kernel size in combination with a
sigmoid function for normalisation and spatial
drop out for regularisation.

We compare the performance of the pro-
posed architecture against convolutional pose
machines [5] on the well-known FLIC, LSP, and
MPII benchmarks [1, 3, 4]. Our proposed net-
work outperforms most previous approaches and
achieves competitive performance to the more
complex model of [5], while requiring only 3GB
of memory and far less training time.
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Figure 1: (a) Proposed fully convolutional
GoogLeNet (FCGN) (b) The proposed multi-
resolution network combines two FCGNs.

Figure 2: Our Qualitative results on FLIC [4],
LSP [3] and MPII [1].
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