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An Efficient CORDIC Array Structure for the 
Implementation of Discrete Cosine Transform 

Yu Hen Hu and Zhenyang Wu 

Abstract-We propose a novel implementation of the discrete cosine 
transform (DCT) and the inverse DCT (IDCT) algorithms using a 
CORDIC (Coordinate Rotation DIgital Computer)-based systolic proces- 
sor array structure. First, we reformulate an :\--point DCT or IDCT ai- 
gorithm into a rotation formulation which makes it suitable for CORDIC 
processor implementation. We then propose to use a pipelined CORDIC 
processor as the basic building block to construct 1-D and 2-D systolic- 
type processor arrays to speed up the DCT and IDCT computation. Due 
to the proposed novel rotation formulation, we achieve 100% processor 
utilization in both 1-D and 2-D configurations. Furthermore, we show 
that for the 2-D configurations, the same data processing throughput 
rate can be maintained as long as the processor array dimensions are 
increased linearly with S. Neither the algorithm formulation or the 
array configuration need to be modified. Hence, the proposed parallel 
architecture is scalable to the problem size. These desirable features make 
this novel implementation compare favorably to previously proposed DCT 
implementations. 

I. INTRODUCTION . 

In this correspondence, we present an efficient implementation of 
the discrete cosine transform (DCT) algorithm [ I ]  and its inverse 
(IDCT) using a CORDIC processor array structure. DCT has been 
incorporated into image compression standards such as JPEG, MPEG, 
and CCITT H261. It has also found many applications in speech 
coding and realization of filter banks for frequency-division and 
time-division multiplexer (FDM-TDM) systems. Due to its increasing 
importance, numerous attempts have been made to accelerate the 
DCT computation in order to facilitate real time, high-throughput 
implementation [2]. One family of approaches is to derive fast DCT 
algorithms [7]-[ 121 by reducing the number of multiplications needed 
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in the formulation. Yet another family of approaches [3]-[6] has 
focused on using hardware implementation of DCT with parallel or 
pipelined VLSI array structures [13]. While most of these proposed 
implementations are based on the multiply-and-add-type arithmetic 
units, some [5] have reported implementations using a special arith- 
metic unit called CORDIC. 

CORDIC (Coordinate Rotation DIgital Computer) is a rotation- 
based arithmetic algorithm which is particularly efficient for the 
evaluation of fast transformation algorithms such as DFT (discrete 
Fourier transform), FIT (fast Fourier transform) [15], and DHT 
(discrete Hartly transform) [16]. In this correspondence, we will 
propose new formulations of both the DCT and the IDCT algorithms 
to facilitate very efficient implementation using CORDIC processor 
array structures. Compared to the previous result [ 5 ] ,  our implenien- 
t,itions require only local data communication, have simple, regular 
array structures, and are linearly scalable. 

11. VECTOR ROTATION FORMULATION OF DCT AND IDCT ALGORITHM 

Given a real-valued sequence {.r(n): 0 5 5 AV - l}, the DCT 
of { . ~ ( J I ) }  is defined by 

and the IDCT of an S-point real-valued sequence {S(X.);0 5 k 5 
-Y - l} is defined by 

where r ( 0 )  = i, and ~ ( k )  = 1 for 1 5 k 5 S - 1. Since is 
a scaling factor which can easily be computed if S is a power of 2. 
we need only to compute .i-( k )  = SS( k)/2.  Let us define 

JI 

Clearly, . t ( X * )  = Re{I-(k)} for k 2 1, and - c (0 )  = L I T ( ( ) ) .  
Assuming that S is an even number, our strategy is to decompose 
1 7 ( k )  such that 

v5 

where 

and 

The following relations can be verified easily: Re{I: (s - k ) }  = 
Iln{T;(k)} and R P { T ~ ( T  - k ) }  = -Im{Ii,(k)}. Substitute r t t  = 
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S / 2  - i t  - 1 into (6) ,  we have 

(7 )  

Therefore. we have the following DCT computing algorithm: 

S ( k )  + J X ( S  - X )  = I ; ( k )  + IL*(k) 1 5 k 5 s / 2  
\ />- I  

= { . ~ , ( 2 ~ l ) + ( - l ) I . r ( ~ Y - 2 ? /  - 1 ) )  
I ,  xi1 

1 [ K ( 2 n  + 1)(2k + 1) 
lV/4 - I 

k = n  

. & ( ? t )  = c S ( 2 K  + l)c-os 
2 N 

\ / 1 - 1  

= Re { [.Y(2k + 1) - j-17(AT - 2 k  - l ) ]  
h =(I 

On the other hand, if S / 2  is an odd number, we decompose (11) 
and (12) as follows: 

(IT -2) / 4  

+ [ s ( ~ x )  - j-Y(;\- - 2x11 

x(2n + 1 ) k  
>v 

h = l  I }  (16) 

( \ ' - h ) / 4  

[ .Y(~x.+  I )  - j?i(S - 2 k  - 111 

x ( 2 n  + 1)(2k + 1) 
2 s 

A =(I 

! 

In (8) and (9). the S-point DCT can be obtained using (-\-/2)'+S/2 
complex number multiplications. In particular, s( k )  and Ai-( S - 6 ) 
are yimultaneously computed as the real part and imaginary part of 
the results. 

Similar to the DCT case. for IDCT we can also decompose .r( 1 1  ) 
into 

.PO ( I I  ) = Re 

where 
. T j Y - l  I 

( 1  1 )  Substituting the above equations into ( I O )  and (13) yields the inverse 7(%/2 + l ) k  

1. =O DCT algorithm below: 

- If - 1) = . ? ' ( I ! )  - . ? , , ( I t ) .  

.\- If S / 2  is also an even number, ( I  I )  and (12) can be decomposed 
as follows: 2 

0 5 ) I  5 - - I 

\ / i - l  

+ [.Y(26.) - ,/-\-(*I- - 2k)] 
I = 1  

(13) Similar to the DCT formulation, (18) and (19) are computed using 
complex multiplications. Careful comparison of these two equations s 
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also reveals that .r(-T - U - 1) can be computed using the same 
complex multiplication results used to compute .r(71). The only 
difference is in the summation of the final results. 

111. CORDIC ARRAY STRUCTURE 
IMPLEMENTATION OF DCT AND IDCT 

Consider the multiplications of two complex numbers ,r + j y  and 
r (co40  + J  s i n @ ) .  The result, ( I  + j i l ,  can be obtained by evaluating 
the final coordinate after rotating a 2 x 1 vector [.r y]' through 
an angle H and then scaled by a factor T .  This is accomplished in 
CORDIC via a three-phase procedure [ 141: angle conversion, vector 
rotation, and scaling: 
CORDIC Implementation of Complex Number Multiplication 

/ *  CORDIC angle conversion * /  
Initialization: 30 = H 
For i = 0 to b - 1 Do 

and 
fi, = sign(:,); 

11 ,  = -1 if 3, < 0. * /  

/* p ,  = 1 if z L  > 0, 

/ *  CORDIC vector rotation * /  
Initialization: [.TO galt = [.r y]'. 
For i = 0 to b - 1 DO 

/ *  Scaling operation * /  

During the angle conversion phase, the angle H is represented as 
the sum of a nonincreasing sequence of elementary rotation angles 
{t,an-' 2-';0 5 i 5 b - 1) such that 

I>- 1 

t4 = & tan- '  2-l .  (23) 

In (23), the set of parameters / I , ( =  z t l )  constitutes an implicit 
representation of 0, and b is the number of bits in the internal register. 
In DCT and IDCT, 0 is known. Hence, angle conversion can be per- 
formed in advance. The scaling factor I< = nfz,' cos( j', tan- '  2T'  ) 
will be a constant and independent of /it as long as I \ / ,  I = 1. Hence I< 
can be computed in advance as well. Moreover, in DCT and IDCT, 
r = 1. Thus, r / I i  will be a known constant. Multiplication by a 
known constant can be computed very efficiently using multiplier 
recoding [ 141. 

In view of the efficient implementation of the complex multipli- 
cation using a CORDIC processor, Wu er al. have proposed [5]  a 
CORDIC-based architecture to implement the DCT algorithm. In this 
previous implementation, *Y/2 CORDIC rotations are computed in 
parallel with the hroadcasting of each input .r( Ti ) to all &V/2 CORDIC 
processors. The intermediate results are routed to :Y/2 set of dual 
accumulators via a glohall~ interconnected exchange network. The 
output are computed in parallel once all the input ,r( 77 ) are fed into the 
network sequentially. This design is a serial-in-parallel-out computing 
scheme which requires both global synchronization of !V/2 CORDIC 
processors and global interconnections to broadcast the input data 
and to exchange intermediate results. When S becomes large, i t  may 
suffer excessive communication overhead. 

,=O 

Based on the new algorithm developed in (8), (9), (18), and (19), 
we propose to implement the DCT algorithm using different CORDIC 
processor array structures. Toward this goal, we first transform the 
proposed rotation algorithms in Section I1 into a localized recursive 
formulation in which no global data communication is needed. Let 
us define o(ii,O) = H(n.0) = ~ / 4 ,  and for k 2 1 

K ( 4 7 t  + 1 ) k  
2 .v o( t / .  k )  = 

and 
T(217 + 1 ) k  

2-Y . 
0 ( ? t .  k )  = 

Then the locally recursive DCT and IDCT algorithms can be formu- 
lated as follows: 

Locally Recursive Formulation of the Vector Rotation DCT 
Algorithm 
Initiation: Given { .r r ( 1 1  , 0 )  = .I-( 217 ), 

r,  (?I,()) = . r ( N  - 2 i t  - 1); 
0 5 1 )  5 x / 2  - l}, I7(0.  A * )  = 0. 

for k = 0 to %, 
for 11 = o to + - 1, 

1 7 ( i 7  + l . k )  = l - ( i t , k ) +  ( . r r ( n , k )  - ( - l ) k . r , ( n . k ) )  

x I< x esp[jd(n. k ) ]  

end /* the factor I< means the CORDIC scaling operation 
is not performed now * /  

."J(?' .k + 1) = . r J ( i ? . k ) : . r r  ( t 1 . k  + 1) = ,r, ( t ? , k )  

output: S ( k )  +Js(-l- - k )  = I - ( + , k ) / I <  
/ *  scaling is performed at the end * /  

end 

Locally Recursive Formulation of Vector Rotation IDCT Al- 
gorithm 
Initiation: S ~ ( 0 . k )  = S ( k ) , O  5 k 5 s / 2 .  

s, ( 0 . k )  = S(S - k ) .  0 5 k < s / 2 .  
s,c0..1-/2r = 0. I ' ( i t . 0 )  = I 7 ( t i , 0 )  = 0. 

for Ti = o to + - 1 
for k = o to + - 1 

I t * (  I t .  k )  = (-I-, ( t t .  X )  + JS, ( I ) .  k ) )  

IT( t i .  k + 1) = t 7 ( n ,  k )  + Re{W( 11. k ) }  
x A- x e s p [ ( - l ) " H ( n . k ) ]  (26)  

(274  
~ . ( t t . k + l ) = ~ - ( ? i . k ) + ( - l ) ~  xRe{l ly( i i .X*)} (27b) 

end 

S f ( l ' +  1 . k )  = S , ( 7 1 . k ) .  

-y, ( I t  + 1, k ) = -I-, ( I t .  k ). 

output: , r ( i1 )  = ror. l - / 2 ) / I < ,  
. r ( S  - I t  - 1) = I-(II.-Y/~)/K 

end 
In the kth iteration, there are three types of operations: complex 

number multiplications, complex number additions, and data trans- 
mission. For convenience, we shall use T,,,,. T, <,, and T, to represent 
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Even 
Inputs 

x(0) 4 7 )  x(2) x(5) x(4) x(3) 4 6 )  X U )  

(a) 

X(0) 0 X(l) X(7) X(2) X(6) X(3) X(5) X(4) 0 
(b) 

Fig. I Data input FIFO buffers for 2-D DCT and IDCT CORDIC array: (a) 
Data input FIFO buffer for 2-D DCT CORDIC array; (b) data input FIFO 
buffer for 2-D IDCT CORDIC array. 

the time duration needed to complete each of these operations, 
respectively. Usually T,,,, S bT,, and T,, 2 T,. where b is the 
number CORDIC iterations, which is also roughly equal to the 
number of bits in the internal registers. For convenience, we shall 
assume T,, = T,  = T and T,,,, = bT in later discussion. We 
will also assume the time taken to perform the scaling operation 
(multiplying a known number l/l<) is r T .  Taking advantage of 
the discrepancies of the computing speed, we can optimize the 
performance using minimum hardware. 

In both the DCT and IDCT cases, the input data order needs to be 
scrambled as described in the above formulations. However, unlike 
the shuffling network used in [ 5 ] ,  our scheme can easily be realized 
with two FIFO (first-in-first-out) buffers accepting specified portions 
of the input sequence at two opposing directions, as depicted in Fig. 1. 
In the DCT case (Fig. I(a)), odd and even entries will enter separate 
FIFO's. In the IDCT case (Fig. I(b)), the first half of the N-point 
sequence will enter the first FIFO and the second half will enter the 
other FIFO. Our scheme thus assumes serial data is first reordered 
and buffered in the two FIFO's and then are fed to the processor 
array in parallel. Since there are many .V-point DCT's or IDCT's 
to be performed sequentially in the processor array, the time taken 
to load the data to these FIFO's can overlap the computation of the 
DCT or IDCT in the processor array of the preceding set of data. 
Thus the data input overhead is negligible. 

A.  2 - D  Array Conjiguration 

Depicted in Fig. 2 is a 2-D pipelined CORDIC processor array 
using (:Y/2+1)( S / 2 )  processors, which is a direct realization of (25) 
for an &point DCT problem. Each CORDIC operation is performed 
by a pipelined CORDIC processor array with b cascaded functional 
units as depicted in Fig. 2(a). Each rectangle contains two adders and 
a shifter which realize a basic CORDIC iteration for a particular p , .  
This will take T time units each. As a result, even each CORDIC 
rotation needs hT time units to complete in this processor, b different 
rotations can be performed concurrently in the same processor in a 
pipelined fashion. Hence the data processing throughput rate is T 
time units per CORDIC rotation operation. The data . r j ( ? t ,  1.) and 
, I , ,  ( u .  k )  are propagated vertically through a single buffer, which 
also incurs T time units delay per stage. The summation operation 
is performed by yet another function unit which also takes T time 
units delay. In Fig. 2(b). the 2-D array configuration along with 

r(n+l ,k) 

Vr(n'k) Vi(n,k) dxbi(n+l ,k) 

Vr(n+l ,k) xf(n, k+l) xr(n,k+l) 

Vi(n+l ,k) 

xf(n,k+l)t 

Block diagram 

(a) 
x(40) x(47) x(32) x(35) x(24) x(23) x(l6) x(l1) 

x(30) x(37) x(22) x(25) x(14) x(13)'~x(oll 
x(20) x(27) x(12) ~(15;- 

x(l0) x(17)-( 

Symbol 

k ' o y i ' l  + + + + 

, I 

-m 
0 0 O A  

X(31) X(Z l ) ,X( l l )  

X(37) X(27) 3 X(17) 

(b) 

Fig. 2. (a) Function definition of processing element on pipelined CORDIC 
processor array; (b) 2-D pipelined CORDIC processor array for 8-point DCT. 
(The input data in the boxes belong to the same set of data. The indices are 
different from (a). Here, the first index refers to different data sets, the second 
index is the index within the same data set (8 points). The output scaling unit 
is not shown here.) 

the data input/output patterns are depicted. We assume the data are 
stored in the input buffers as decried earlier. Hence, successive DCT 
computations can be executed concurrently in different portions of 
the same 2-D a m y .  The average throughput rate is T time units 
per Y-point DCT. The latency (time duration between the first input 
arrives and the first output available) is ( 5 / 2  + b + N / 2  + r)T 
time units. In this expression, the first X T / 2  time units accounts 
for the input data rearrangement, and bT is the time taken for a 
CORDIC operation. The second X T / 2  time units account for the 
iV/2 summations, and r.T is the time taken to perform scaling at 
the end. From the above discussion, it is clear that as the size of 
the DCT Y increases, the throughput rate can remain the same as 
long as the size of this 2-D array (:V/2 by ( S / 2  + 1)) is increased 
accordingly. 

In Fig. 3, we show a 2-D pipelined CORDIC processor array for the 
implementation of an 8-point IDCT. It differs from the 2-D DCT array 
in  several aspects. First, the input data reordering buffer is different 
(see the above discussion), and the function of the pipelined CORDIC 
processor is slightly different. With fully pipelined operations, it is 
not difficult to see that this 2-D array has the same performance in 
terms of both throughput rate and latency as the 2-D DCT array. 
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Xf(n+l .k) Xr(n+l , k)  

block diagram Symbol 

(a) 

x(40) o x(31) ~ ( 3 7 )  ~ ( 2 2 )  ~ ( 2 6 )  x(13) x(15jx(04)01 
X(30) 0 X(21) X(27) X(12) X(16)‘x(o3)x(o5)1 

X(20) 0 x ( 1 1 ) x ( 1 7 ) ‘ x O ~ ]  

X(10) 0 ‘-1 

. U(n ,k+ l )  

-V( n ,  k+l ) 

x(30) x(20) x(lO),x(OO) 
x(37) x(27) x(17) x(07) 

~(21)  ~ ( i i  jx(o1) 

0-  

(b) 

Fig. 3 .  (a) 2-D pipelined CORDIC processor array for 8-point IDCT; (b) 
function definition of processing element on pipelined CORDIC processor 
array. (The input data in ihe boxes belong to the same set of data. The indices 
are different from (a). Here, the first index refers to different data sets, the 
second index is the index within the same data set ( X  points). Output scaling 
processors are not shown.) 

Same pipelined 

local storage @ @ @ @ 
Fig. 4. I -D pipelincd CORDIC processor array for eight-point DCT 

B .  I -D Array Configuration 

The 2-D array is a direct implementation of the original data 
dependency graph. If the data throughput constraint is less demand- 
ing, we may devise a I-D processor array such as depicted in 
Fig. 4 by projecting the data dependence graph along the vertical 
direction’. In this configuration, an :Y point DCT (or IDCT) can 
be computed every -\-T/2 time units using ( S / 2  + 1 ) pipelined 
CORDIC processors. Successive iterations can share the same array. 
Hence, 100% processor utilization is accomplished. A I-D array for 
IDCT is depicted in Fig. 5 .  

‘The systolic array synthesis method of projecting a graph along a specific 
direction on the index space is described in detail in 113). 

X(0) 0 X(1) X(7) X(2) X(6) X(3) X(5) X4) 0 

Same oioelined n A& 

storage local @ @ @ @ @ 
Fig. 5. I-D pipelined CORDIC processor array for eight-point IDCT. 

C.  Discussion 
1) So far, we ‘have neglected the time needed to execute the 

scaling operation in the CORDIC algorithm. Fortunately, since 
both DCT and IDCT involve only complex multiplication and 
accumulation operations, it is not necessary to perform the 
scaling operation after each complex multiplication. Instead, 
the scaling operation can be accrued and performed only once 
at the end. Moreover, in our derivation of the DCT algorithm, 
we have postponed the multiplication of 2/3-. This factor can 
be combined with the CORDIC scaling factor l/IC so that it 
will not cost any extra computation overhead. We note that this 
delayed-scaling strategy has previously been proposed for FFT 
implementation [18]. 

2) A brief comparison with other existing results: In [ 3 ] ,  the DCT 
is realized using the inverse DFT (IDFT) algorithm followed by 
multiplication operations. It requires two types of processors. 
Both [3] and [5] require approximately twice the number of 
complex multiplications compared to our algorithm. Chang and 
Wu [6] derived a I-D systolic processor array in which each 
PE contains two real multipliers. Although this structure uses 
only real multiplications, its throughput rate is slower than our 
I-D array, and it needs .Y - 1 PE’s to evaluate an S-point 
DCT. The structure proposed in [4] requires the size of the 
DCT, :IT, to be the product of a set of prime numbers. In our 
formulation, S needs only to be an even number. 

Iv. CONCLUSlON 

We have presented novel rotation-based formulations for DCT 
and IDCT algorithms. These new formulations require $($ -t 1) 
complex multiplications, and facilitate efficient CORDIC processors 
implementation. Both 2-D and I-D pipelined CORDIC array struc- 
tures have been presented. The proposed parallel structures consist 
of a locally-connected module configured as a regular array, and are 
linearly scalable to handle large value of S. 

I l l  
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Unequal-Length Multichannel &-Levinson 
and Schur Type RLS Algorithms 

Xiaqi Liu and H. (Howard) Fan 

Abstract- In this correspondence, 66-operator-based unequal-length 
multichannel Levinson and Schur-type RLS algorithms are developed 
which have the potential of improved numerical behavior for fast-sampled 
or ill-conditioned input data. They provide computational improvement 
over the overparameterization, or the zero padding approach using the 
existing equal-length multichannel (i6 algorithms when an unequal length 
multichannel case is considered. 

I .  INTRODUCTION 

Recently, b-operator-based Levinson and Schur algorithms have 
been developed which show numerical advantages over the tradi- 
tional q-operator-based algorithms for fast sampled or ill-conditioned 
data [ 1]-[3]. The &-operator’-based Levinson and Schur-type RLS 
algorithms developed in [3] may be used in on-line adaptive signal 
processing applications. But only equal length multichannel algo- 
rithms have been proposed in [3]. They may be used in unequal 
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’ The backward delta operator 6/, is defined as h6 = ( 1  - (1-l ) /A  where 
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length multichannel cases using the overparameterization or the zero 
padding approach. However, the unequal length multichannel LS 
algorithms provide computational efficiency over the zero padding 
approach [4]. In this correspondence, the equal length multichannel 
66-Levinson and Schur type RLS algorithms in [3] are extended to 
more general unequal length multichannel cases. It will cover the 
situation when the channels have unequal order filters. Levinson and 
Schur-type RLS algorithms have been developed for this situation 
based on the traditional q-operator [4]. We now develop a 66-operator 
version. A transformation method similar to that of [3] will be used 
to transform the q-domain algorithms [4] to the 66-domain. 

Suppose we have k input channels . r ~  ( t ) .  . r z ( t ) ,  . . . . . r ~  ( t )  and 
each channel contains different channel length (order) I ? , .  1 5 I 5 
1.. Then, the multichannel forward and backward linear prediction 
models are 

and the multiindex nr is defined as 

Here ’TnL and S,, are the permutation matrices [4], --Ink ( t )  and 
DnL ( t )  are multichannel forward and backward prediction parameter 
matrices with dimension (E,“= ) t I  ) x k .  The notations in ( 1 , l )  and 
(1.2) are defined as 
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