
TRANSACTIONS ON SIGNAL PROCESSING. VOL. 43. NO. I , JANUARY 1995 33 I

V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Processing
M a g . , pp. 10-26, July 1991.
E. Karlsson, “Adaptive polynomial lattice filters,” in Proc. ICASSP -91
(Toronto), Apr. 1991.
S. Karaboyas and N. Kalouptsidis, “Efficient adaptive algorithms for
ARX identification,’’ IEEE Trans. Signal Processing, vol. 39, no. 3, pp.
571-582, Mar. 1991.
G. V. Moustakides and S. Theodoridis, “Fast Newton transversal fil-
ters-A new class of adaptive estimation algorithms,” IEEE Trans.
Signa/ Processing, vol. 39. no. 10, pp. 2184-2193, Oct. 1991.
S. Theodoridis. G . V. Moustakides, and K. Berberidis, “A class of fast
adaptive algorithms for multichannel system identification and signal
processing,” CTI Tech. Rep. #930936, Sept. 1993.

An Efficient CORDIC Array Structure for the
Implementation of Discrete Cosine Transform

Yu Hen Hu and Zhenyang Wu

Abstract-We propose a novel implementation of the discrete cosine
transform (DCT) and the inverse DCT (IDCT) algorithms using a
CORDIC (Coordinate Rotation DIgital Computer)-based systolic proces-
sor array structure. First, we reformulate an :\--point DCT or IDCT ai-
gorithm into a rotation formulation which makes it suitable for CORDIC
processor implementation. We then propose to use a pipelined CORDIC
processor as the basic building block to construct 1-D and 2-D systolic-
type processor arrays to speed up the DCT and IDCT computation. Due
to the proposed novel rotation formulation, we achieve 100% processor
utilization in both 1-D and 2-D configurations. Furthermore, we show
that for the 2-D configurations, the same data processing throughput
rate can be maintained as long as the processor array dimensions are
increased linearly with S. Neither the algorithm formulation or the
array configuration need to be modified. Hence, the proposed parallel
architecture is scalable to the problem size. These desirable features make
this novel implementation compare favorably to previously proposed DCT
implementations.

I. INTRODUCTION .

In this correspondence, we present an efficient implementation of
the discrete cosine transform (DCT) algorithm [I] and its inverse
(IDCT) using a CORDIC processor array structure. DCT has been
incorporated into image compression standards such as JPEG, MPEG,
and CCITT H261. It has also found many applications in speech
coding and realization of filter banks for frequency-division and
time-division multiplexer (FDM-TDM) systems. Due to its increasing
importance, numerous attempts have been made to accelerate the
DCT computation in order to facilitate real time, high-throughput
implementation [2]. One family of approaches is to derive fast DCT
algorithms [7]-[121 by reducing the number of multiplications needed

Manuscript received March 10. 1993; revised May 26, 1994. The associate
editor coordinating the review of this paper and approving it for publication
was Prof. Daniel Fuhrmann.

Y. H . Hu is with the Department of Electrical and Computer Engineering,
University of Wisconsin-Madison. Madison, WI 53706 USA.

Z. Wu is with the Department of Radio Engineering, Southeast University,
Nanjing 210018, People’s Republic of China.

IEEE Log Number 9406835.

in the formulation. Yet another family of approaches [3]-[6] has
focused on using hardware implementation of DCT with parallel or
pipelined VLSI array structures [13]. While most of these proposed
implementations are based on the multiply-and-add-type arithmetic
units, some [5] have reported implementations using a special arith-
metic unit called CORDIC.

CORDIC (Coordinate Rotation DIgital Computer) is a rotation-
based arithmetic algorithm which is particularly efficient for the
evaluation of fast transformation algorithms such as DFT (discrete
Fourier transform), FIT (fast Fourier transform) [15], and DHT
(discrete Hartly transform) [16]. In this correspondence, we will
propose new formulations of both the DCT and the IDCT algorithms
to facilitate very efficient implementation using CORDIC processor
array structures. Compared to the previous result [5] , our implenien-
t,itions require only local data communication, have simple, regular
array structures, and are linearly scalable.

11. VECTOR ROTATION FORMULATION OF DCT AND IDCT ALGORITHM

Given a real-valued sequence {.r(n): 0 5 5 AV - l}, the DCT
of { . ~ (J I) } is defined by

and the IDCT of an S-point real-valued sequence {S(X.);0 5 k 5
-Y - l} is defined by

where r (0) = i, and ~ (k) = 1 for 1 5 k 5 S - 1. Since is
a scaling factor which can easily be computed if S is a power of 2.
we need only to compute .i-(k) = SS(k)/2. Let us define

JI

Clearly, . t (X *) = Re{I-(k)} for k 2 1, and - c (0) = L I T (()) .
Assuming that S is an even number, our strategy is to decompose
1 7 (k) such that

v5

where

and

The following relations can be verified easily: Re{I: (s - k) } =
Iln{T;(k)} and R P { T ~ (T - k) } = -Im{Ii,(k)}. Substitute r t t =

1053-587X/95$04,00 0 1995 IEEE

332 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 43, NO. 1. JANUARY 1995

S / 2 - i t - 1 into (6) , we have

(7)

Therefore. we have the following DCT computing algorithm:

S (k) + J X (S - X) = I ; (k) + IL*(k) 1 5 k 5 s / 2
\ />- I

= { . ~ , (2 ~ l) + (- l) I . r (~ Y - 2 ? / - 1))
I , xi1

1 [K (2 n + 1)(2k + 1)
lV/4 - I

k = n

. & (? t) = c S (2 K + l)c-os
2 N

\ / 1 - 1

= Re { [.Y(2k + 1) - j-17(AT - 2 k - l)]
h =(I

On the other hand, if S / 2 is an odd number, we decompose (11)
and (12) as follows:

(IT -2) / 4

+ [s (~ x) - j-Y(;\- - 2x11

x(2n + 1) k
>v

h = l I } (16)

(\ ' - h) / 4

[.Y(~x.+ I) - j?i(S - 2 k - 111

x (2 n + 1)(2k + 1)
2 s

A =(I

!

In (8) and (9). the S-point DCT can be obtained using (-\-/2)'+S/2
complex number multiplications. In particular, s(k) and Ai-(S - 6)
are yimultaneously computed as the real part and imaginary part of
the results.

Similar to the DCT case. for IDCT we can also decompose .r(1 1)
into

.PO (I I) = Re

where
. T j Y - l I

(1 1) Substituting the above equations into (I O) and (13) yields the inverse 7(%/2 + l) k

1. =O DCT algorithm below:

- If - 1) = . ? ' (I !) - . ? , , (I t) .

.\- If S / 2 is also an even number, (I I) and (12) can be decomposed
as follows: 2

0 5) I 5 - - I

\ / i - l

+ [.Y(26.) - ,/-\-(*I- - 2k)]
I = 1

(13) Similar to the DCT formulation, (18) and (19) are computed using
complex multiplications. Careful comparison of these two equations s

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 1, JANUARY 1W5 333

also reveals that .r(-T - U - 1) can be computed using the same
complex multiplication results used to compute .r(71). The only
difference is in the summation of the final results.

111. CORDIC ARRAY STRUCTURE
IMPLEMENTATION OF DCT AND IDCT

Consider the multiplications of two complex numbers ,r + j y and
r (co40 + J s i n @) . The result, (I + j i l , can be obtained by evaluating
the final coordinate after rotating a 2 x 1 vector [.r y]' through
an angle H and then scaled by a factor T . This is accomplished in
CORDIC via a three-phase procedure [141: angle conversion, vector
rotation, and scaling:
CORDIC Implementation of Complex Number Multiplication

/ * CORDIC angle conversion * /
Initialization: 30 = H
For i = 0 to b - 1 Do

and
fi, = sign(:,);

11 , = -1 if 3, < 0. * /

/* p , = 1 if z L > 0,

/ * CORDIC vector rotation * /
Initialization: [.TO galt = [.r y]'.
For i = 0 to b - 1 DO

/ * Scaling operation * /

During the angle conversion phase, the angle H is represented as
the sum of a nonincreasing sequence of elementary rotation angles
{t,an-' 2-';0 5 i 5 b - 1) such that

I>- 1

t4 = & tan- ' 2-l . (23)

In (23), the set of parameters / I , (= z t l) constitutes an implicit
representation of 0, and b is the number of bits in the internal register.
In DCT and IDCT, 0 is known. Hence, angle conversion can be per-
formed in advance. The scaling factor I< = nfz,' cos(j', tan- ' 2T')
will be a constant and independent of /it as long as I \ / , I = 1. Hence I<
can be computed in advance as well. Moreover, in DCT and IDCT,
r = 1. Thus, r / I i will be a known constant. Multiplication by a
known constant can be computed very efficiently using multiplier
recoding [141.

In view of the efficient implementation of the complex multipli-
cation using a CORDIC processor, Wu er al. have proposed [5] a
CORDIC-based architecture to implement the DCT algorithm. In this
previous implementation, *Y/2 CORDIC rotations are computed in
parallel with the hroadcasting of each input .r(Ti) to all &V/2 CORDIC
processors. The intermediate results are routed to :Y/2 set of dual
accumulators via a glohall~ interconnected exchange network. The
output are computed in parallel once all the input ,r(77) are fed into the
network sequentially. This design is a serial-in-parallel-out computing
scheme which requires both global synchronization of !V/2 CORDIC
processors and global interconnections to broadcast the input data
and to exchange intermediate results. When S becomes large, i t may
suffer excessive communication overhead.

,=O

Based on the new algorithm developed in (8), (9), (18), and (19),
we propose to implement the DCT algorithm using different CORDIC
processor array structures. Toward this goal, we first transform the
proposed rotation algorithms in Section I1 into a localized recursive
formulation in which no global data communication is needed. Let
us define o(ii,O) = H(n.0) = ~ / 4 , and for k 2 1

K (4 7 t + 1) k
2 .v o(t / . k) =

and
T(217 + 1) k

2-Y .
0 (? t . k) =

Then the locally recursive DCT and IDCT algorithms can be formu-
lated as follows:

Locally Recursive Formulation of the Vector Rotation DCT
Algorithm
Initiation: Given { .r r (1 1 , 0) = .I-(217),

r, (?I,()) = . r (N - 2 i t - 1);
0 5 1) 5 x / 2 - l}, I7(0. A *) = 0.

for k = 0 to %,
for 11 = o to + - 1,

1 7 (i 7 + l . k) = l - (i t , k) + (. r r (n , k) - (- l) k . r , (n . k))

x I< x esp[jd(n. k)]

end /* the factor I< means the CORDIC scaling operation
is not performed now * /

."J(?' .k + 1) = . r J (i ? . k) : . r r (t 1 . k + 1) = ,r, (t ? , k)

output: S (k) +Js(-l- - k) = I - (+ , k) / I <
/ * scaling is performed at the end * /

end

Locally Recursive Formulation of Vector Rotation IDCT Al-
gorithm
Initiation: S ~ (0 . k) = S (k) , O 5 k 5 s / 2 .

s, (0 . k) = S(S - k) . 0 5 k < s / 2 .
s,c0..1-/2r = 0. I ' (i t . 0) = I 7 (t i , 0) = 0.

for Ti = o to + - 1
for k = o to + - 1

I t * (I t . k) = (-I-, (t t . X) + JS, (I) . k))

IT(t i . k + 1) = t 7 (n , k) + Re{W(11. k) }
x A- x e s p [(- l) " H (n . k)] (26)

(274
~ . (t t . k + l) = ~ - (? i . k) + (- l) ~ xRe{l ly(i i .X*)} (27b)

end

S f (l ' + 1 . k) = S , (7 1 . k) .

-y, (I t + 1, k) = -I-, (I t . k).

output: , r (i1) = ror. l - / 2) / I < ,
. r (S - I t - 1) = I-(II.-Y/~)/K

end
In the kth iteration, there are three types of operations: complex

number multiplications, complex number additions, and data trans-
mission. For convenience, we shall use T,,,,. T, <,, and T, to represent

334 lEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43. NO. I . JANUARY 1995

Even
Inputs

x(0) 4 7) x(2) x(5) x(4) x(3) 4 6) X U)

(a)

X(0) 0 X(l) X(7) X(2) X(6) X(3) X(5) X(4) 0
(b)

Fig. I Data input FIFO buffers for 2-D DCT and IDCT CORDIC array: (a)
Data input FIFO buffer for 2-D DCT CORDIC array; (b) data input FIFO
buffer for 2-D IDCT CORDIC array.

the time duration needed to complete each of these operations,
respectively. Usually T,,,, S bT,, and T,, 2 T,. where b is the
number CORDIC iterations, which is also roughly equal to the
number of bits in the internal registers. For convenience, we shall
assume T,, = T, = T and T,,,, = bT in later discussion. We
will also assume the time taken to perform the scaling operation
(multiplying a known number l/l<) is r T . Taking advantage of
the discrepancies of the computing speed, we can optimize the
performance using minimum hardware.

In both the DCT and IDCT cases, the input data order needs to be
scrambled as described in the above formulations. However, unlike
the shuffling network used in [5] , our scheme can easily be realized
with two FIFO (first-in-first-out) buffers accepting specified portions
of the input sequence at two opposing directions, as depicted in Fig. 1.
In the DCT case (Fig. I(a)), odd and even entries will enter separate
FIFO's. In the IDCT case (Fig. I(b)), the first half of the N-point
sequence will enter the first FIFO and the second half will enter the
other FIFO. Our scheme thus assumes serial data is first reordered
and buffered in the two FIFO's and then are fed to the processor
array in parallel. Since there are many .V-point DCT's or IDCT's
to be performed sequentially in the processor array, the time taken
to load the data to these FIFO's can overlap the computation of the
DCT or IDCT in the processor array of the preceding set of data.
Thus the data input overhead is negligible.

A. 2 - D Array Conjiguration

Depicted in Fig. 2 is a 2-D pipelined CORDIC processor array
using (:Y/2+1)(S / 2) processors, which is a direct realization of (25)
for an &point DCT problem. Each CORDIC operation is performed
by a pipelined CORDIC processor array with b cascaded functional
units as depicted in Fig. 2(a). Each rectangle contains two adders and
a shifter which realize a basic CORDIC iteration for a particular p , .
This will take T time units each. As a result, even each CORDIC
rotation needs hT time units to complete in this processor, b different
rotations can be performed concurrently in the same processor in a
pipelined fashion. Hence the data processing throughput rate is T
time units per CORDIC rotation operation. The data . r j (? t , 1.) and
, I , , (u . k) are propagated vertically through a single buffer, which
also incurs T time units delay per stage. The summation operation
is performed by yet another function unit which also takes T time
units delay. In Fig. 2(b). the 2-D array configuration along with

r(n+l ,k)

Vr(n'k) Vi(n,k) dxbi(n+l ,k)

Vr(n+l ,k) xf(n, k+l) xr(n,k+l)

Vi(n+l ,k)

xf(n,k+l)t

Block diagram

(a)
x(40) x(47) x(32) x(35) x(24) x(23) x(l6) x(l1)

x(30) x(37) x(22) x(25) x(14) x(13)'~x(oll
x(20) x(27) x(12) ~(15;-

x(l0) x(17)-(

Symbol

k ' o y i ' l + + + +

, I

-m
0 0 O A

X(31) X(Z l) ,X(l l)

X(37) X(27) 3 X(17)

(b)

Fig. 2. (a) Function definition of processing element on pipelined CORDIC
processor array; (b) 2-D pipelined CORDIC processor array for 8-point DCT.
(The input data in the boxes belong to the same set of data. The indices are
different from (a). Here, the first index refers to different data sets, the second
index is the index within the same data set (8 points). The output scaling unit
is not shown here.)

the data input/output patterns are depicted. We assume the data are
stored in the input buffers as decried earlier. Hence, successive DCT
computations can be executed concurrently in different portions of
the same 2-D a m y . The average throughput rate is T time units
per Y-point DCT. The latency (time duration between the first input
arrives and the first output available) is (5 / 2 + b + N / 2 + r)T
time units. In this expression, the first X T / 2 time units accounts
for the input data rearrangement, and bT is the time taken for a
CORDIC operation. The second X T / 2 time units account for the
iV/2 summations, and r.T is the time taken to perform scaling at
the end. From the above discussion, it is clear that as the size of
the DCT Y increases, the throughput rate can remain the same as
long as the size of this 2-D array (:V/2 by (S / 2 + 1)) is increased
accordingly.

In Fig. 3, we show a 2-D pipelined CORDIC processor array for the
implementation of an 8-point IDCT. It differs from the 2-D DCT array
in several aspects. First, the input data reordering buffer is different
(see the above discussion), and the function of the pipelined CORDIC
processor is slightly different. With fully pipelined operations, it is
not difficult to see that this 2-D array has the same performance in
terms of both throughput rate and latency as the 2-D DCT array.

IEEE TRANSACTIONS ON SlGhAL PROCESSING, VOL. 43, NO. I, JANUARY 1995 335

Xf(n+l .k) Xr(n+l , k)

block diagram Symbol

(a)

x(40) o x(31) ~ (3 7) ~ (2 2) ~ (2 6) x(13) x(15jx(04)01
X(30) 0 X(21) X(27) X(12) X(16)‘x(o3)x(o5)1

X(20) 0 x (1 1) x (1 7) ‘ x O ~]

X(10) 0 ‘-1

. U(n ,k+ l)

-V(n , k+l)

x(30) x(20) x(lO),x(OO)
x(37) x(27) x(17) x(07)

~(21) ~ (i i jx(o1)

0-

(b)

Fig. 3 . (a) 2-D pipelined CORDIC processor array for 8-point IDCT; (b)
function definition of processing element on pipelined CORDIC processor
array. (The input data in ihe boxes belong to the same set of data. The indices
are different from (a). Here, the first index refers to different data sets, the
second index is the index within the same data set (X points). Output scaling
processors are not shown.)

Same pipelined

local storage @ @ @ @
Fig. 4. I -D pipelincd CORDIC processor array for eight-point DCT

B . I -D Array Configuration

The 2-D array is a direct implementation of the original data
dependency graph. If the data throughput constraint is less demand-
ing, we may devise a I-D processor array such as depicted in
Fig. 4 by projecting the data dependence graph along the vertical
direction’. In this configuration, an :Y point DCT (or IDCT) can
be computed every -\-T/2 time units using (S / 2 + 1) pipelined
CORDIC processors. Successive iterations can share the same array.
Hence, 100% processor utilization is accomplished. A I-D array for
IDCT is depicted in Fig. 5 .

‘The systolic array synthesis method of projecting a graph along a specific
direction on the index space is described in detail in 113).

X(0) 0 X(1) X(7) X(2) X(6) X(3) X(5) X4) 0

Same oioelined n A&

storage local @ @ @ @ @
Fig. 5. I-D pipelined CORDIC processor array for eight-point IDCT.

C. Discussion
1) So far, we ‘have neglected the time needed to execute the

scaling operation in the CORDIC algorithm. Fortunately, since
both DCT and IDCT involve only complex multiplication and
accumulation operations, it is not necessary to perform the
scaling operation after each complex multiplication. Instead,
the scaling operation can be accrued and performed only once
at the end. Moreover, in our derivation of the DCT algorithm,
we have postponed the multiplication of 2/3-. This factor can
be combined with the CORDIC scaling factor l/IC so that it
will not cost any extra computation overhead. We note that this
delayed-scaling strategy has previously been proposed for FFT
implementation [18].

2) A brief comparison with other existing results: In [3] , the DCT
is realized using the inverse DFT (IDFT) algorithm followed by
multiplication operations. It requires two types of processors.
Both [3] and [5] require approximately twice the number of
complex multiplications compared to our algorithm. Chang and
Wu [6] derived a I-D systolic processor array in which each
PE contains two real multipliers. Although this structure uses
only real multiplications, its throughput rate is slower than our
I-D array, and it needs .Y - 1 PE’s to evaluate an S-point
DCT. The structure proposed in [4] requires the size of the
DCT, :IT, to be the product of a set of prime numbers. In our
formulation, S needs only to be an even number.

Iv. CONCLUSlON

We have presented novel rotation-based formulations for DCT
and IDCT algorithms. These new formulations require $($ -t 1)
complex multiplications, and facilitate efficient CORDIC processors
implementation. Both 2-D and I-D pipelined CORDIC array struc-
tures have been presented. The proposed parallel structures consist
of a locally-connected module configured as a regular array, and are
linearly scalable to handle large value of S.

I l l

I21

I 31

I 41

1.51

I61

171

REFERENCES

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Trans. Comput., vol. 23, pp. 90-93, Jan. 1974.
K. R. Rao and P. Yip, Discwre Cosine Tr-unsform. New York: Aca-
demic, 1990, pp. 48-X2.
M. H. Lee, “On computing 2-D systolic algorithm for discrete cosine
transform,” IEEE Trans. Circuits Sysr., vol. 37, no. 10, pp. 1321-1323,
Oct. 1990.
C. Chakrabarti and J. JiJB, “Systolic architecture for the computation of
the discrete Hartley and discrete cosine transform based on prime factor
decomposition,” fEEE Trans. Comput.. vol. 39, no. 11, pp. 13.59-1368,
Nov. 1990.
J.-L. Wu and W.-J. Duh, “A novel concurrent architecture to implement
discrete cosine transform based on index partitions,” I n ! . J . Electron.,
vol. 68, no. 2, pp. 165-174, 1990.
L:W. Chang and M.-C. Wu, “A unified systolic array for discrete cosine
and sine transforms.” IEEE Truns. Si,Tna/ Processing, vol. 39, no. I , pp.
192-194, 1991.
W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational
algorithm for the discrete cosine transfonn,” IEEE Truns. Commun.,
vol. 25, pp. 1004-10Oc), Sepr. 1977, .

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41. NO. 1 . JANUARY 1’995

W. Kou and J. W. Mark, “A new look at DCT-type rransforms,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1899-1908, Dec.
I989
B. G. Lee, “A new algorithm to compute the discrete cosine transform,”
IEEE Truns. Acoust., Speech. Signal Processing, vol. ASSP-32, no. 6,
pp. 1243-1244, Dec. 1984.
W. Lee, “A new algorithm to compute the DCT and its inverse,” IEEE
Truns. Signal Processing, vol. 39, no. 6, pp. 1305-1313, June 1991.
E:. Feig and S. Winograd, “Fast algorithm for discrete cosine trasform,”
IEEE Truns. Signul Processing, vol. 40, no. 9, pp. 2174-219, Sept. 1992.
Et. S . Hou, “A fast recursive algorithm for computing the discrete cosine
transform,” IEEE Puns. Acoust.. Speech. Signui Processing, vol. 35, no.
10, pp. 1455-1461, 1987.
S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NI: Prentice-
Hall, 1988.
I‘. H. Hu, “CORDIC-based VLSI architecture for digital signal pro-
cessing,” IEEE Signal Prncessing Mug., vol. 9. no. 3, pp. 16-35, July
1992.
A. M. Despain, “Fourier transform computers using CORDIC itera-
tions,” IEEE Truns. Comput., vol. 23, pp. 993-1001, Oct. 1974.
1.. W. Chang and S . W. Lee, “Systolic arrays for the discrete Hanly
transform,” IEEE Trans. Signui Prncessing, vol. 39, no. I I , pp.
241 1-2418, Nov. 1991.
Ei. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC architecture
for fast VLSI tiltering and array processing,” in IEEE ICASSP, 19x4,
41A, pp. 61-64.
A. M. Despain, “Very fast Fourier transform algorithms hardware for
implementation,” IEEE TI-uns. Comput., pp. 333-341. May 1979.

Unequal-Length Multichannel &-Levinson
and Schur Type RLS Algorithms

Xiaqi Liu and H. (Howard) Fan

Abstract- In this correspondence, 66-operator-based unequal-length
multichannel Levinson and Schur-type RLS algorithms are developed
which have the potential of improved numerical behavior for fast-sampled
or ill-conditioned input data. They provide computational improvement
over the overparameterization, or the zero padding approach using the
existing equal-length multichannel (i6 algorithms when an unequal length
multichannel case is considered.

I . INTRODUCTION

Recently, b-operator-based Levinson and Schur algorithms have
been developed which show numerical advantages over the tradi-
tional q-operator-based algorithms for fast sampled or ill-conditioned
data [1]-[3]. The &-operator’-based Levinson and Schur-type RLS
algorithms developed in [3] may be used in on-line adaptive signal
processing applications. But only equal length multichannel algo-
rithms have been proposed in [3]. They may be used in unequal

Manuscript received July 26, 1993; revised June 15, 1994. This work was
supported by U.S. Office of Naval Research under Grant N00014-90-J-1017.
The associate editor coordinating the review of this paper and approving it
for publication was Dr. James Zeidler.

X. Liu, formerly with the Department of Electrical and Computer Engi-
neering, University of Cincinnati. ic now with Adaptive Technology, Inc.,
Syracuse, NY 13208-2940 USA.

H. Fan is with the Department of Electrical and Computer Engineering,
University of Cincinnati, Cincinnati, OH 4522 I USA.

IEEE Log Number 9406914.
’ The backward delta operator 6/, is defined as h6 = (1 - (1-l) /A where

(I-‘ is the backward shift operator and A is a scaling factor.

length multichannel cases using the overparameterization or the zero
padding approach. However, the unequal length multichannel LS
algorithms provide computational efficiency over the zero padding
approach [4]. In this correspondence, the equal length multichannel
66-Levinson and Schur type RLS algorithms in [3] are extended to
more general unequal length multichannel cases. It will cover the
situation when the channels have unequal order filters. Levinson and
Schur-type RLS algorithms have been developed for this situation
based on the traditional q-operator [4]. We now develop a 66-operator
version. A transformation method similar to that of [3] will be used
to transform the q-domain algorithms [4] to the 66-domain.

Suppose we have k input channels . r ~ (t) . . r z (t) , r ~ (t) and
each channel contains different channel length (order) I ? , . 1 5 I 5
1.. Then, the multichannel forward and backward linear prediction
models are

and the multiindex nr is defined as

Here ’TnL and S,, are the permutation matrices [4], --Ink (t) and
DnL (t) are multichannel forward and backward prediction parameter
matrices with dimension (E,“=) t I) x k . The notations in (1 , l) and
(1.2) are defined as

1053-587X/95$04.0O 0 1995 lEEE

