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Abstract—Smart grids take advantage of information and com-
munication technologies to achieve energy efficiency, automation
and reliability. These systems allow two-way communications and
power flow between the grid and consumers. However, these bidi-
rectional communications introduce several security and privacy
threats to consumers. One of the open challenges in this context is
user privacy when smart meters are used to capture fine-grained
energy usage information. Although considerable research has
been carried out in this direction, most of the existing solutions
invariably introduce computational complexity and overhead,
which makes them infeasible for resource constrained smart
meters. In this paper, we propose a privacy-friendly and efficient
data aggregation scheme (EDAS) for dynamic pricing based
billing and demand-response management in smart grids. To the
best of our knowledge, this is the first paper to address privacy in
the context of billing under dynamic electricity pricing. Security
and performance analyses show that the proposed scheme offers
better privacy protection for electric meter reading aggregation
and computational efficiency, as compared to existing schemes.

Index Terms—Privacy, data aggregation, smart grids

I. INTRODUCTION

Smart-grids represent the next generation of power grids

which use extensive monitoring and measurements to manage

the operation of the grid, and achieve greater efficiency and

cost reduction. The combined volatility of both power supply

(e.g. with renewables) and power demand creates a growing

problem that needs to be resolved by smart grids. To enable

the envisioned energy management in smart grids, information

on current power consumption and the availability of power

needs to be exchanged between power consumers and power

suppliers. Hence, smart grids need a framework of intercon-

nected smart monitoring and measurement devices. Besides,

with the recent development in smart grids, many endeavours

have started to introduce the Internet of Things (IoT) as an

enabling technology for smart grids since each device in the

grid can be considered as a connected object [1]. In this regard,

devices in the smart grid such as smart meters act as IoT

devices that autonomously report their data to the grid infras-

tructure by using information and communication technology

(ICT). However, this interconnection of grid technology with

information and communication technologies leads to various
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security challenges in a power grid [2]. A key challenge and

major obstacle in the widespread deployment of smart grids is

privacy, which is a primary concern from the customer’s point

of view.

In general, for pricing and feedback purposes, a smart grid

relies heavily on the usage of a smart metering infrastructure.

For instance, smart meter data is useful for load forecasting,

demand-response management, and dynamic pricing. How-

ever, the recording and transmission of power consumption

profiles may cause serious privacy issues. For example, fine-

grained power consumption data of a smart meter can be ex-

ploited for revealing a consumer’s private information related

to their daily routines or the appliances in the house. This

can lead to personalized advertisements or be used extract

information on when a house is empty. In [2], it is shown

that complex usage patterns can be extracted from the high-

resolution consumption information using simple off-the-shelf

statistical tools, and the extracted information can be used to

profile and monitor users for various purposes. Thus, energy

usage data must be protected for privacy in a smart grid.

Furthermore, the computational resources at the consumer’s

side are usually very limited. Solutions for preserving user

privacy should thus be computationally inexpensive.

A. Related Work

In order to address the privacy issues, several privacy-

preserving data aggregation protocols have been proposed in

recent years. Lu et al. designed a privacy-preserving data

aggregation protocol [3] by using the Paillier homomorphic

crypto-system [4], which results in a high computation over-

head on the entities like smart meters. Liang et al. proposed

a usage-based dynamic pricing scheme for smart grids [5] by

using the fully homomorphic technique devised by Naehring

et al. [6]. As fully homomorphic techniques are difficult to im-

plement with current computing resources, this scheme is im-

practical. Chia-Mu et al. [7] introduced a ring signature based

scheme to protect usage profiles. However, its computational

cost increases with the size of the ring. In [8], a mesh-network-

based privacy-preserving data aggregation scheme has been

proposed using elliptic curve cryptography (ECC). However,

this scheme requires higher setup and computation cost. Zhang

et al. have proposed a self-certified signature scheme [9]

and Sui et al. have designed an incentive-based anonymous

authentication scheme [10]. These are constructed with the

assumption of an anonymity network, where the sources of
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usage reports are anonymous. Therefore, it is hard to identify

any smart meter or communication failure. Li et al. introduced

a different technique for data aggregation in smart grids in

a hop-by-hop way [11], [12]. But it is still unclear how to

construct the aggregation tree, and how to ensure aggregation

in case of failure. Besides, the public key signatures used

in these schemes result in higher computational cost. Apart

from the schemes above, there are few more data aggregation

protocols that have been introduced in recent years [13], [14],

[15], [16]. In [13] a discrete logarithm problem (DLP)-based

data aggregation scheme is introduced, in which the authors

allows a substation to access private data using a shared key.

Hence, this scheme cannot ensure strong privacy. In [14],

Kursawe et al. suggested a set of masking-based schemes for

privacy in smart grids. In their schemes, the authors utilized

the concept of Decisional Diffie-Hellman (DDH) group and

Bilinear mapping for checking the correctness of the shared

masking value, which are computationally expensive and ill-

suited for resource constrained smart meters. Knirsch et al.

have also proposed a masking-based approach for data aggre-

gation [15]. Their scheme utilizes the concept of homomorphic

hashing for checking the correctness of the shared secrets.

However, this construction has a couple of issues. First, it

is complicated to implement and computationally expensive

to execute. Second, it cannot ensure security of the hashed

data, and an attacker can compute the original message block

by taking the logarithm of the hash for that block. In [16]

a Paillier homomorphic encryption based data aggregation

protocol is proposed. However, in the proposed scheme, the

usage reports transmitted by each smart meter SM i reveals it’s

identity IDSMi
, which is fixed for all transactions. Therefore,

an adversary can easily understand that the usage data is from

the same consumer’s end and can easily link the IDSMi
to an

actual user. Thus, the scheme presented in [16] cannot ensure

anonymity of a consumer. Mohammed et al. have proposed

a multi-hop based data aggregation scheme [17]. However,

in their scheme the usage report is transmitted without any

integrity protection. Besides, during data aggregation, a smart

meter is not authenticated. Consequently, a dishonest or fake

smart meter may falsify the data, which will cause an in-

accurate aggregated result. Apart from [3-17], recently two

more interesting data aggregation schemes have been pro-

posed [25-26]. However, these schemes are designed upon the

computationally inefficient operations (such as EC-ElGamal

cryptosystem and complex parabolic function). Hence, they

would be infeasible for the resource constrained smart meters.

B. Problem Statement and Motivation

The collection of fine-grained energy consumption data is

necessary for a number of smart-grid features and applications.

For example, implementing dynamic electricity pricing based

on time-of-day schedules, demand-side management through

financial incentives, and energy demand-response management

requires the collection of meter readings multiple times a

day. Also, consumers may wish to know their energy usage

information on a given day or period in order to adjust their

energy consumption. Therefore, the utility or its designated

data aggregator needs the ability to collect smart meter

readings at arbitrary intervals or periods. Although several

existing techniques have been proposed for privacy-preserving

data aggregation for billing or demand-response management

of energy in smart grids, most of the existing schemes are

based on computationally expensive operations such as Paillier

crypto system, lattice-based encryption, ElGamal encryption

etc. On the other hand, in the existing masking-based schemes,

for verifying the correctness of the masking secrets, they

also use the computationally expensive operations such as

DDH group and Bilinear mapping, or homomorphic hashing,

which are not suitable for the resource-limited smart meters.

For example, a smart meter from Atmel’s family with ARM

Cortex-M4 processor can provide a maximum CPU speed

of 720 MHz [20]. As such, this smart meter may not be

suitable to perform any computationally expensive operations.

Also, since smart grid systems are mostly operated in a

large scale, computationally expensive operations may impair

the efficiency of the system. Furthermore, existing billing

solutions in the literature consider a constant tariff price rate

throughout the day (even for the whole month), which is not

suitable for the dynamic electricity pricing-based billing model

used in many counties (such as Finland, Estonia, Norway,

etc.) [22]. For instance, in Portugal, tariff price rate varies

four times in a day based on peak (3 hours/day), half-peak

(14 hours/day), normal off-peak (3 hours/day) and super off-

peak (4 hours/day). For that, we need a dynamic pricing-based

billing model.

This paper seeks to address all these issues by proposing an

efficient data aggregation scheme (EDAS) for privacy-aware

secure billing systems and facilitating applications such as

balancing the power production and demand in smart grids.

Our proposed scheme is based on symmetric key cryptographic

primitives such as hash functions, which cause very limited

computational overhead and data aggregation time and hence

is suitable for the resource constrained devices in smart grids.

The key contributions of this paper can be summarized as:

• An efficient authentication and key establishment scheme

is developed for data aggregation for dynamic pricing-

based billing.

• A computationally efficient, lightweight data aggregation

scheme, EDAS, is proposed for dynamic pricing-based

billing systems that ensures the privacy of the consumer’s

identity as well as the usage data. To the best of our

knowledge, this is the first paper to address privacy in

the context of billing under dynamic electricity pricing.

• A novel data aggregation scheme for a group of con-

sumers (e.g. from a region/locality) is proposed that does

not compromise the privacy of any individual customer.

• The proposed scheme provides a higher degree of effi-

ciency. Specifically, the proposed scheme does not need

to perform any asymmetric cryptographic operations.

The rest of the paper is organized as follows. In Section II,

we present the underlying smart grid model, adversary model,

and security goals that are relevant to this paper. Section

III presents the proposed EDAS scheme and its security is

analyzed in Section IV. A discussion on the performance of
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TABLE I
NOTATIONS AND CRYPTOGRAPHIC FUNCTIONS

Symbol Definition

SP Service provider

HAN Home area network

HG Home gateway

SM Smart meter

TPA Third-party aggregator

SIDi Shadow identity of the HGi

TIDi Temporary Identity of the HGi

ki Secret key of the HGi

Kas Shared secret key between TPA and SP

khi Shared integrity key between HGi and TPA

ENCk[x] Plaintext x encrypted using key k

Mij Meter reading of the smart meter SMi at time interval Tj

the proposed scheme is presented in Section V and Section VI

concludes the paper. The symbols and cryptographic functions

used in this paper are defined in Table I.

II. SYSTEM AND ADVERSARY MODEL, AND SECURITY

GOALS

In this section, we first describe the network architecture of

the proposed privacy-preserving data aggregation mechanism

and present the underlying adversary model. Subsequently, we

define the security goals of our proposed scheme.

A. System Model

Figure 1 shows our system model for the smart metering

infrastructure which is used to develop the proposed scheme.

Our system model consists of five major entities: a service

provider (SP), a third-party aggregator (TPA) employed by the

service provider, a set of smart meters (SMs), a set of home

gateways (HGs), and numerous home area networks (HANs).

In our system model, the SP is responsible for procuring elec-

tricity from the producers, supplying electricity to consumers,

and sending billing notification to each HAN. The TPA is

responsible for accumulating the power consumption data of

each HAN. At the end of each day or any specific period, the

TPA sends the aggregated data to the SP for billing purposes.

In this way, the TPA assists the SP to implement dynamic

pricing-based billing and also reduces the overhead of the SP.

Next, each HAN is composed of a SM, a HG, and a set of

home appliances (HAs). Each SM is connected with its HG

through a trusted link. A HG periodically collects reading from

the SM and sends it to the TPA. The communication between a

SM and its HG is through WiFi. Each HG communicates with

the TPA through a Long-Term-Evolution-Advanced (LTE-A)

network. Note that while the network model is provided for

completeness, the proposed EDAS scheme does not rely on

any specific underlying networking technology.

B. Adversary Model

In our system model, the SP handles the billing process.

Therefore, the SP has to know relevant information about

the consumer such as the consumer’s name and the mailing

address etc. Hence, in our adversary model we consider the

SP as a trusted organization (e.g. owned by the government,

Fig. 1. System model for smart metering infrastructure.

such as Singapore Power in Singapore and National Grid in

United Kingdom). On the other hand, the TPA is owned by

a private company whose main responsibility is to assist the

SP. Therefore, in our system model we consider the TPA as

a honest-but-curious entity, who may want to know the con-

sumption data of each HAN and subsequently may try to sell

the usage information to another company, e.g. for marketing

materials for home appliances. Various elements inside the

communication network may also act as adversaries and be

interested in private details of the power consumption of each

HAN. A compromised network and its various elements (like

router or switch) can alter or fabricate the meters’ consumption

data. Hence, any communication through the network may not

be secure. Usually, the TPA and the communication network

(like LTE-A) are owned and operated by two different orga-

nizations, and therefore we assume that they do not collude

with each other. Also, any HG may act as an adversary and be

interested to know the consumption data of another HG from a

different HAN. An outside attacker may try to impersonate as

a legitimate entity that can be a HG, or the TPA, to send data

under its name. For instance, a dishonest or fake HG could

falsify the data for causing inaccurate aggregation result. In

addition, the outside attacker may eavesdrop on the network

transmission media for obtaining the power consumption data

and also may try to alter or retransmit them.

C. Security Goals

• Authentication: Before aggregating any data, the TPA

needs to authenticate each HG in order to prevent in-

accurate aggregation results. On the other hand, before

obtaining the aggregated data from the TPA through the

insecure public communication channel, the SP needs to

authenticate the TPA.

• Usage Data Confidentiality: The secrecy of the end-to-

end communication is vital and the electricity consump-

tion data should be kept secret from any third party for

protecting the privacy of the customer. In this regard, if
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Fig. 2. Authenticated initialization and refilling process.

an outsider or an inside adversary like other HGs from

different HANs or the TPA obtains the messages with

electricity consumption information, then he/she should

not be able to comprehend the encrypted message.

• Usage Data Integrity: The TPA should be able to verify

the integrity of the data received from each HG of a

HAN. Similarly, the SP needs to check the integrity of

the aggregated data received from the TPA.

• Consumer Privacy: The TPA should not be able to ex-

tract any private information (e.g, name, address, contact

number, etc.) of a HAN user. Only the SP should have

the ability to know a consumer’s real identity, and their

electricity usage. This is necessary for determining the

actual electricity consumption and proper billing services.

In addition, after eavesdropping the usage data, an outside

adversary should not be able to comprehend that the data

is from a particular consumer’s end.

• Forward Secrecy: Forward secrecy is extremely impor-

tant since cryptographic computations, e.g., encryption,

and authentication, are often carried out during data

aggregation. In a scheme with forward secrecy, secret

keys are evolved at regular time periods. Exposure of

a secret key corresponding to a given time period does

not enable an adversary to break the scheme for any prior

time period. In other words, forward secrecy ensures that

the messages of prior time periods are confidential even

if the current time period’s key has been compromised.

To improve the security level of smart meters, forward

secrecy should be considered. Now, to ensure forward

secrecy in our proposed scheme, it is important that the

exposure of shared secret keys of HGi , TPA, and SP

should not enable the adversary to obtain the aggregated

meter reading and billing information of each user in the

previous time periods.

III. PROPOSED ENERGY-EFFICIENT DATA AGGREGATION

SCHEME - EDAS

In this section we present our EDAS which consists of three

phases: authenticated initialization and refilling, data aggrega-

tion for dynamic pricing-based billing, and data aggregation

for demand-response management. In the authenticated ini-

tialization and refilling phase, a home gateway HGi and the

aggregator TPA mutually authenticate each other with the help

of the SP and subsequently establish an integrity key khi , a set

of random integers, and temporary identities between them. In

addition, through this phase, both the HGi and the TPA can

update their integrity key and establish a new set of temporary

identities. In the data aggregation for dynamic pricing-based

billing phase, the TPA anonymously accumulates the usage

data and eventually sends it to the SP for billing. In the

final phase of EDAS, the TPA anonymously accumulates and

aggregates the usage data of a group of HANs in order to

assists the SP with demand-response management.
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Fig. 3. Proposed computationally efficient and lightweight data aggregation scheme for secure dynamic pricing-based billing process in smart grids.

A. Authenticated Initialization and Refilling

Assume that there are n HANs in a locality which obtain

power supply from the SP. During meter installation of a home

HANi , the SP randomly generates a shadow identity SIDi and

a secret key ki and assigns them to the HG of HANi . This

phase of the proposed scheme consists of the following steps:

Step 1: HGi generates a nonce Ng and computes V1 =
h(SIDi ||Ng ||ki). Then, HGi composes a request message

MA1
: {SIDi ,Ng ,V1} and sends it to the TPA. Since, a

particular shadow identity SIDi cannot be used twice, the

request message MA1
cannot be replayed. Moreover to address

the loss of synchronization issue or denial of service (DoS)

attack [19], both HGi and the SP can maintain a set of

pseudo identities PIDi = {pid1 , pid2 , · · · , pidn}, where each

identity can be used only once and after that it must be deleted

by both sides.

Step 2: Upon receiving the request message MA1
, the

TPA generates a random number Na and computes V2 =
h(IDA||Na ||Kas). Subsequently, the TPA creates a message

MA2
: {MA1

, IDA,Na ,V2} and sends it to the SP.

Step 3: After receiving the message MA2
, the SP first

tries to identify SIDi and then checks V1 and V2 . If these

parameters are valid, then the SP randomly generates an

integrity key kh , a new shadow identity SIDnew
i , and picks

a set of q random integers Riq = {ri1 , ri2 , · · · , riq} drawn

uniformly from [a, b], where a and b are chosen to be orders

of magnitude larger than the typical meter value. For instance,

in the USA the average power consumption of a house is

about 15 kWh each day. In this scenario, a and b may be

chosen as 106 and 108, respectively. To ensure better privacy,

the choice of a and b should be changed regularly. Now, the

SP computes R∗

iq = ENCki{ri1 , ri2 , · · · , riq}, SIDnew∗

i =
h(SIDi ||ki) ⊕ SIDnew

i , kHG
h = h(IDHGi

||ki ||Ng) ⊕ kh ,

kA
h = h(IDA||Kas ||Na) ⊕ kh , V3 = h(kA

h ||Kas ||Na), and

V4 = h(kHG
h ||ki ||R

∗

iq||SID
new∗

i ). It then composes a message

MA3
: {(SIDnew∗

i ,R∗

iq, k
HG
h ,V4)||(k

A
h ,V3)} and sends it to

the TPA. Here, ENC denotes symmetric-key-based encryption

using the Advanced Encryption Standard (AES).

Step 4: On receiving MA3
, the TPA first validates V3.

If the validation is successful, then the TPA decodes kh =
h(IDA||Kas ||Na) ⊕ kA

h and generates a set of q unique

temporary identities TIDiq = {tidi1 , tidi2 , · · · , tidiq}. Next,

the TPA derives TID∗

iq = ENCkh (TIDiq), V5 = h(TID∗

iq ||
kh ||IDA) and creates a message MA4

: {(SIDnew∗

i , R∗

iq, k
HG
h ,

V4)||(TID
∗

iq ||V5 )} and sends it to HGi .

Step 5: Upon receiving the message MA4
, HGi first

computes and verifies V4 and then decodes kh =
h(IDHGi

||ki ||Ng) ⊕ kHG
h and SIDnew

i = h(SIDi ||ki) ⊕
SIDnew∗

i . Hereafter, HGi verifies the parameter V5. If all

the validations are successful, HGi decrypts Riq from R∗

iq ,

and TIDiq from TID∗

iq , and stores {TIDiq ,Riq , kh} for data

aggregation. Details of this phase are also depicted in Fig. 2.

B. Data Aggregation for Dynamic Pricing-based Billing

In this subsection, we present our privacy-friendly and

efficient data aggregation scheme for dynamic pricing-based

billing, where we consider the variations in tariff prices

throughout the day according to the time-of-day period sched-

ules. After a pre-defined schedule of the time interval Tj ,

HGi collects the meter reading of SMi , selects the next
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Fig. 4. Proposed computationally efficient and lightweight data aggregation scheme for demand-response management in smart grids.

unused masking value rij ∈ Riq , and calculates the blinded

measurement Xij = {Mij + rij}, where it is assumed

that rij ≫ Mij . Then, HGi selects an unused temporary

identity tidij ∈ TID{tidi1 , tidi2 , · · · , tidiq}, generates a

timestamp tgi , and computes Hij = h(Xij ||kh ||tgi). Finally,

HGi composes a message {tidij , tgi ,Xij ,Hij} and sends it

to the TPA. Then, HGi deletes the pair of used (rij , tidij )
from the respective lists. Note that once all the masking

values Riq = {ri1 , ri2 , · · · , riq} and temporary identities

tidij ∈ TID{tidi1 , tidi2 , · · · , tidiq} are used up, HGi needs

to execute Phase 1 again.

Now, upon receiving the usage data, the TPA first lo-

cates and validates the temporary identity tidij , along with

the timestamp tgi and key-hash integrity output Hij . If the

validation is successful, the TPA stores Xij in its database.

Otherwise, the TPA terminates the accumulation process and

asks HGi to send the reading again. At the end of the

day (or any desired interval), the TPA generates a times-

tamp ta and then computes XACC =
⊗q

j=1
{Xij}, E =

ENCKas
(SIDi ||ta), and δ = h(SIDi ||Kas ||XACC ||ta). Here,⊗

denotes the accumulation of the blinded measurements, i.e.,

{Xi1||Xi2|| · · · ||Xiq}. Finally, the TPA composes a message

∆ = {IDA,E , δ,XACC} and sends it to the SP. After receiv-

ing the power consumption information ∆, the SP first de-

crypts E and then validates the timestamp ta , and δ. If the val-

idation is successful, the SP locates Riq = {ri1 , ri2 , · · · , riq}
and the list of tariff prices Tar [q ] = {tar1, tar2, · · · , tarq} for

each interval and subsequently computes the bill amount for

the day d, i.e., Billdi =
∑q

j=1
(Xij − rij )Tar [j ] and stores

Billdi in its database. Thus, the consumer can see his/her

energy usage for each day. At the end of the month, the

SP calculates the billing amount BAi =
∑n

d=1
Billdi . After

calculating BAi, the SP locates the consumer information and

sends the bill to the owner of HANi . Details of this phase are

depicted in Fig. 3.

Note that for the correctness of the proposed scheme, both

the SP and HGi should sequentially use the masking values

from Riq = {ri1 , ri2 , · · · , riq}. For instance, if it is assumed

that there are five different tariff prices throughout the day,

then HGi needs to send the usage information of HANi

five times (T1, T2, · · · , T5) in a day. Now, we further assume

that after the execution of each authenticated initialization

and refilling phase, HGi receives five masking values, i.e.,

Ri5 = {ri1, ri2, · · · , ri5}. Therefore, both the SP and HGi

are required to use Ri5 in the following way: {ri1 (at T1), ri2
(at T2), · · · , ri5 ( at T5)}. However, for better performance of

the proposed scheme, we assume that after execution of each

authenticated initialization and refilling phase, HGi receives

the masking values for two to three days.

C. Data Aggregation for Demand-Response Management

For maintaining balance between power production and

demand, the SP needs to know the electricity usage of its users

or any sub-group of its users (e.g. from a specific geographic

region) on a regular basis (say, every one or two hours).

Consider a group of n users for aggregation. In this regard, the

SP maintains a n × q matrix (P ) of random integers, whose

i-th row comprises of the vector Riq = {ri1 , ri2 , · · · , riq} that

was generated for and shared with HGi during the execution

of the authenticated initialization and refilling phase. All HGs
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are synchronized with respect to their vector Riq and for any

time period Tj specified by the SP or the TPA, each HAN

uses the j-th element of its vector of random variables (i.e.,

rij for HGi ). Our data aggregation process then consists of

the following steps:

Step AG1: At a particular time interval Tj , the SP selects

the corresponding column of M and calculates ColjSum =∑n

i=1
P [i ][j ]. It then generates a time stamp tsp and computes

∆SP = ENCKas
(ColjSum ||Kas), HSP = h(∆SP ||Kas ||tsp),

and subsequently sends {∆SP ,HSP , tsp} to the TPA.

Step AG2: Upon receiving {∆SP ,HSP , tsp}, the TPA first

checks whether the time stamp tsp and HSP are valid or not.

If they are valid, the TPA decrypts and obtains ColjSum from

∆SP . Then the TPA asks the HGs to return their reading for

that interval.

Step AG3: Next, each gateway HGi picks an unused

temporary identity tidij ∈ TID and selects the predefined

random integer rij from its array, which was assigned for

that particular interval. The HGi then collects the meter

reading Mi for that interval from SMi and generates a

time stamp tgi . HGi then calculates its blinded measurement

Xi = Mi + rij , computes Hi = h(X1 ||khi ||tgi), composes a

message {tidij , tgi ,Xi ,Hi}, and sends it to the TPA.

Step AG4: After receiving the meter reading from each

home gateway HGi , the TPA first checks tgi and Hi , and

then maps tidij into SIDi . It then computes the sum of the

blinded measurement SumBM =
∑n

i=1
Xi , and obtains the

aggregated result of the actual measurement by SumAM =
SumBM − ColjSum . Thus the TPA obtains the aggregated

power consumption data of the HANs, which may be used

as an input for demand-response management.

Note that in our system if any of the checks in the steps

above fails, this phase of the proposed scheme is aborted.

Besides, to expedite the performance of the above data ag-

gregation scheme, the SP can pre-compute ∆SP and HSP for

several sessions and send them to the TPA. Finally, in order

to ensure forward secrecy in the proposed scheme, at the end

of each interaction, all the three entities (HGi , the TPA, and

the SP) need to update their shared secret keys. For example,

after sending/receiving the aggregated data of each day, both

HGi and the TPA need to update the hash-integrity key with

k∗

hi = h(khi ||tgi). In case of loss of synchronization or denial

of service (DoS) attack [19], both HGi and the TPA need to

execute the authenticated initialization and refilling phase of

the proposed scheme. Details of this phase are depicted in Fig.

4.

IV. SECURITY ANALYSIS

In this section, we demonstrate that the proposed scheme

can achieve all the security goals listed in Section II.

1) Accomplishment of Authentication: In the authenticated

initialization and refilling phase of EDAS, the SP authenticates

HGi by verifying the shadow identity SIDi and V1 in the re-

quest message MA2
, where only a legitimate HGi can generate

the valid key-hash output V1. Besides, the SP authenticates

the TPA by using the request parameter V2, which must be

equal to h(IDA||Na ||Kas). On the other hand, both HGi and

the TPA authenticate the SP by using the response parameters

V3 and V4, respectively. Now, in the data aggregation for

billing phase of EDAS, before accumulating any usage data,

the TPA authenticates HGi by using the time-stamp tgi and

the response Hij . Moreover, in this phase of EDAS, the SP

authenticates the TPA by using the hash-response parameter

δ. On the other hand, in the data aggregation for balancing

demand-response phase of EDAS, the TPA authenticates HGi

by using the time-stamp tgi and the response Hi . Finally, in

EDAS, if an adversary tries to perform any replay attempt, the

receiving end can easily comprehend such attacks by using the

timestamps {tgi , ta}. Therefore, the proposed scheme is also

secure against replay attacks.

2) Accomplishment of Usage Data Confidentiality: The

amount of electricity usage in HANi is blinded with the

random integer rij . Hence, the TPA can only see the blinded

measurement of a HAN or the summation of the usage data

of a group of HANs. As each element of Riq is unique and

random, even if two consecutive readings from a HAN or the

readings from two HANs are the same, an adversary (even the

TPA) cannot comprehend that from the blinded measurements.

Thus, the pattern of the electricity consumption is protected

from detection by any eavesdropper.

3) Accomplishment of Usage Data Integrity: In the data

aggregation for billing phase, we ensure two levels of data

integrity. In the first level, the TPA checks whether it has

received the same data as that was sent by HGi . For that,

the TPA computes H ∗

ij and checks whether H ∗

ij is equal to

Hij or not. Similarly, in the second level, the SP invokes the

key-hash oracle and computes δ∗ to check the integrity of the

aggregated electricity consumption by comparing δ∗ with δ.

This approach facilitates the detection of any manipulation of

the aggregated usage data during communication. On the other

hand, in the data aggregation for balancing demand-response

phase of EDAS, the TPA checks the integrity of the usage

data by using the parameter Hi , which helps to prevent the

generation of an inaccurate aggregated result.

4) Accomplishment of Consumer Privacy : In EDAS, ex-

cept for the SP, no one can gain knowledge of any private

information of a HAN user. The TPA only knows the shadow

identity SIDi and uses that to accumulate the readings for

each HAN. Besides, while sending the usage data, HGi is

not allowed use the same temporary identity tidij twice. No

one except the TPA can recognize the mapping between tidij
and SIDi . Therefore, an outsider cannot guess whether the

usage data for two consecutive days are from the same HAN

user. This approach of the proposed scheme is quite useful for

achieving privacy against eavesdropper (PAE) [21].

5) Accomplishment of Forward Secrecy : EDAS uses a

regular update of the shared keys khi and Kas . For instance,

after sending/receiving the usage data of each day, both HGi

and the TPA need to update the hash-integrity key kh with

k∗

h . Now, even if the integrity key k∗

h is revealed, an attacker

cannot obtain kh from k∗

h since the hash function h(·) is one-

way. In this way, EDAS can prevent an attacker from obtaining

any previous aggregated usage data and billing information.
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TABLE II
PERFORMANCE BENCHMARKING BASED ON SECURITY PROPERTIES

(NOTATION: A: AUTHENTICATION; DC: DATA CONFIDENTIALITY; DI:
DATA INTEGRITY; CP: CONSUMER PRIVACY; FS: FORWARD SECRECY).

Scheme A DC DI CP FS

Li et al. [12] No Yes Yes No Yes

Fouda et al. [13] Yes No Yes No Yes

Kursawe et al. [14] No Yes Yes No No

Knirsch et al. [15] No Yes Yes No Yes

Jo et al. [16] Yes Yes Yes No Yes

Mohammed et al. [17] No Yes No Yes Yes

EDAS Yes Yes Yes Yes Yes

TABLE III
PERFORMANCE BENCHMARKING BASED ON COMPUTATION AND

COMMUNICATION COST (NOTATION: H: HASH OPERATION; ASE/D:
ASYMMETRIC ENCRYPTION/DECRYPTION; SE/SD: SYMMETRIC

ENCRYPTION/DECRYPTION; MEO: MODULAR EXPONENTIATION

OPERATION).

Performance Matrices Fouda et al. [13] EDAS

Key-establishment Cost
2ASE+2ASD 2SE+2SD
+4MEO+2H +15H

Computation Cost at HG 1SE+1H 1H

Computation Cost at TPA 1SD+1H 1SE+1H

Computation Cost at SP - 1SD+1H

Communication Cost (HG-TPA) 56 bytes 72 bytes

Communication Cost (TPA-SP) - 80 bytes

V. PERFORMANCE ANALYSIS AND COMPARISONS

The objective of EDAS is not only to fulfill several security

requirements in smart grids, but also to ensure that the com-

putational and communication overhead is reasonable during

the data aggregation process. To manifest the advantages

of EDAS, we compare EDAS with recently proposed data

aggregation schemes for smart grids: [12], [13], [14], [15],

[16], and [17]. We also demonstrate that EDAS is well suited

for resource limited smart grid devices (like smart meters

and home gateways). In order to analyze the performance

of EDAS, particularly on the security front, our scheme has

been compared with five state-of-the-art protocols [12], [13],

[14], [15], [16], and [17] (shown in Table II), by considering

all the security goals listed in Section II. From Table II we

see that EDAS can ensure all the security goals listed in

Section II, in contrast to the protocols presented in [12], [13],

[14], [15], [16], and [17] that only guarantee a subset of the

requirements. For instance, in [12], [14], [15], and [17], while

data aggregation the identity and the legitimacy of the smart

meters are not verified. Consequently, a dishonest or fake smart

meter may falsify the data, which will cause an inaccurate

aggregated result. On the other hand, in [12], [13], [14], [15],

[16], and [17], the smart meters reveal their fixed identity while

transmitting the usage data. As a consequence, an adversary

can easily comprehend that the usage data is from the same

HAN. Therefore, [12], [13], [14], [15], [16], and [17] cannot

ensure consumer privacy.

Next, we consider the computation and communication

costs for analyzing the performance of the data aggregation

for billing phase in EDAS with respect to other existing

schemes. To ensure fairness, we compare EDAS with the

scheme in [13] because both of these schemes use symmetric-

key crypto systems to ensure privacy and integrity of the

usage data for billing process. Before data aggregation, both

the schemes require the establishment of a shared secret key

between the HG and the TPA through an authenticated key-

exchange protocol. However, it should be noted that unlike

[13], for maintaining forward security EDAS does not need

to execute the authenticated key-establishment protocol for

each transaction. Instead, once all the random integers Riq are

used up, EDAS executes the key-establishment protocol of the

authenticated initialization and refilling phase for obtaining

the new set of random integers (the results presented here

use sets of 10 random integers). On the other hand, the key

establishment protocol in [13] is based on the computationally

expensive Diffie-Hellman key exchange scheme. In contrast,

EDAS is based on the lightweight cryptographic primitives

like one-way hash function, exclusive-OR, etc. (shown in Table

III).

Next we present experimental results to analyze the per-

formance of the proposed scheme more comprehensively.

Table IV presents the experiential specifications, including the

hardware, computational, and communication specifications.

For measuring the computation time of different cryptographic

operations used in [13] and/or EDAS, we conducted simula-

tions of their cryptographic operations on an Intel Core i5-

2500 processor with CPU speed 3.3 GHz (operating as the

SP), an AMD E450 processor with 1.65 GHz CPU speed

(operating as the TPA), and a HTC One X with ARM Cortex-

A9 MPCore processor with 890 MHz CPU speed (operating

as a HG). Moreover, the scheme presented in [13] uses

asymmetric encryption during its key-establishment process

and both EDAS and [13] use symmetric key encryption and

hash operations during data aggregation. Hence, we emulate

the Advance Encryption Standard with Cipher Block Chaining

(AES-CBC) mode, the Elliptic Curve Integrated Encryption

Scheme (ECIES), and SHA-256, as the symmetric encryption,

asymmetric encryption, and hash operation, respectively. The

simulation uses Java Cryptography Extension (JCE) [25] to

evaluate the execution time of different cryptographic opera-

tions.

Based on our experimental results, the key-establishment

process in [13] takes 147.48 ms on an average. Besides, for

securely transferring 56 bytes of usage data, the protocol

incurs 5.32 ms of communication cost. In our experiments,

we consider the size of the usage data for each transactions

to be 8 bytes, and the size of the identity of a HG and the

hash integrity outputs to be 128 bits and 256 bits, respectively.

Ensuring privacy and integrity of the usage data in [13]

incurs 0.0075 ms of computation cost. Overall, the average

computation and communication cost for data aggregation and

billing process in [13] for an entire month is N × 152.9 ms,

where N denotes the number of times the aggregated usage

data is sent from a HG to the TPA in a month. One the other

hand, the key-establishment process in EDAS takes 57.03 ms.

In addition, transferring 72 bytes of data (including usage data

of 8 bytes) between a HG and the TPA takes 6.49 ms. At the

end, for transferring billing information to the SP, EDAS takes

9.63 ms. Overall, the entire computation and communication

costs for the data aggregation and billing process for each
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TABLE IV
EXPERIMENTAL SPECIFICATIONS

Specification HG TPA SP

Hardware Specification HTC One X with ARM Cortex-A9 MPCore processor AMD E450 processor Intel Core i5-2500 processor

Computation Cost of the Cryptographic Operations Used in [13] and EDAS

Computational Specification HG TPA SP

SHA-256 0.00067 ms 0.00042 ms 0.00037 ms

AES-CBC-256 Encryption 0.0027 ms 0.0012 ms 0.00097 ms

AES-CBC-256 Decryption 0.0043 ms 0.0031 ms 0.0019 ms

Modular Exponentiation Operation 13.56 ms 8.93 ms -

Elliptic Curve Integrated Encryption (ECIE) 17.37 ms 11.54 ms -

Communication Cost

Communication Specification HG-TPA TPA-SP

Link Type One-hop Wireless (802.11) Wired (Internet)

Average Transmission Time for 896-bits 12.32 ms 16.19 ms

month in EDAS is x × 57.03 + N × 6.49 + d × 9.63 ms,

where x is the number of executions of the authenticated

initialization and refilling phase in a month and d is the

number of days in a month. Fig. 5 shows the total cost with

respect to the number of HG data transmissions in a month.

From Fig. 5, we see that if a HG sends it’s meter reading

twice in every day to the TPA (i.e. N = 60), d = 30 and

x = 15 (i.e., one execution of the authenticated initialization

and refilling phase every two days), then the scheme presented

in [13] takes 9174 ms, whereas EDAS takes only 1533.3 ms.

Finally, we consider the performance of the demand-response

management phase in EDAS with the existing schemes. For

this, we conducted simulations of the cryptographic operations

used by the existing data aggregation schemes and by the

proposed scheme on an AMD E450 processor with 1.65 GHz

CPU speed (operating as the TPA or SP), and a HTC One

X with ARM Cortex-A9 MPCore processor with 890 MHz

CPU speed (operating as a HG). The simulations used the

JPBC library Pbc-0.5.14 [23], JCE [25], and the Pailler library

libpaillier-0.8 [24] to evaluate the execution time of different

cryptographic operations. Table V shows the variation in the

aggregation time for different numbers of SMs in the proposed

scheme, and others. It can be seen from Table V that the

aggregation time for the Pailler encryption based Li et al.’s

scheme is higher than others. On the other hand, the data

aggregation time for the proposed scheme is significantly

lower as compared to the others. Hence, the proposed scheme

is better suited for efficient data aggregation in smart-grids.

VI. CONCLUSION

In this paper, we proposed an efficient data aggrega-

tion scheme (EDAS) for secure and privacy-aware dynamic

pricing-based billing, and demand-response management in

smart-grids. It is designed using lightweight symmetric-key-

based cryptographic primitives. We analyzed the security of

the proposed scheme and it was shown that EDAS can ensure

several security properties like authentication, data privacy,

data integrity, etc., which are highly important for smart grid

security. Moreover, it was shown that EDAS has significantly

lower computation and communication cost as compared to

other data aggregation schemes. Hence, we argue that EDAS

is efficient, practical, and more suitable for applications with

Fig. 5. Performance comparison between Fouda et al.’s scheme [13] and
EDAS-based Billing Approach in terms of total data aggregation time.

TABLE V
VARIATION OF AGGREGATION TIME FOR VARIOUS NUMBER OF SMS

Schemes No of Smart Meters Aggregation Time

Li et al. [12]
200 3216 ms
400 5829 ms
500 7210 ms

Fouda et al. [13]
200 1.87 ms
400 3.73 ms
500 4.65 ms

Kursawe et al. [14]
200 2364 ms
400 4698 ms
500 5880 ms

Knirsch et al. [15]
200 89.6 ms
400 123.45 ms
500 165.97 ms

Jo et al. [16]
200 1247 ms
400 2189 ms
500 2685 ms

Mohammed et al. [17]
200 875 ms
400 1546 ms
500 2317 ms

EDAS
200 0.185 ms
400 0.37 ms
500 0.56 ms
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real time requirements than other similar approaches for smart

grid security.
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