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Abstract: Glaucoma is an eye disease initiated due to excessive intraocular pressure inside it and
caused complete sightlessness at its progressed stage. Whereas timely glaucoma screening-based
treatment can save the patient from complete vision loss. Accurate screening procedures are depen-
dent on the availability of human experts who performs the manual analysis of retinal samples to
identify the glaucomatous-affected regions. However, due to complex glaucoma screening procedures
and shortage of human resources, we often face delays which can increase the vision loss ratio around
the globe. To cope with the challenges of manual systems, there is an urgent demand for designing an
effective automated framework that can accurately identify the Optic Disc (OD) and Optic Cup (OC)
lesions at the earliest stage. Efficient and effective identification and classification of glaucomatous
regions is a complicated job due to the wide variations in the mass, shade, orientation, and shapes of
lesions. Furthermore, the extensive similarity between the lesion and eye color further complicates
the classification process. To overcome the aforementioned challenges, we have presented a Deep
Learning (DL)-based approach namely EfficientDet-D0 with EfficientNet-B0 as the backbone. The
presented framework comprises three steps for glaucoma localization and classification. Initially, the
deep features from the suspected samples are computed with the EfficientNet-B0 feature extractor.
Then, the Bi-directional Feature Pyramid Network (BiFPN) module of EfficientDet-D0 takes the
computed features from the EfficientNet-B0 and performs the top-down and bottom-up keypoints
fusion several times. In the last step, the resultant localized area containing glaucoma lesion with
associated class is predicted. We have confirmed the robustness of our work by evaluating it on a
challenging dataset namely an online retinal fundus image database for glaucoma analysis (ORIGA).
Furthermore, we have performed cross-dataset validation on the High-Resolution Fundus (HRF),
and Retinal Image database for Optic Nerve Evaluation (RIM ONE DL) datasets to show the general-
ization ability of our work. Both the numeric and visual evaluations confirm that EfficientDet-D0
outperforms the newest frameworks and is more proficient in glaucoma classification.

Keywords: fundus images; glaucoma; EfficientDet; EfficientNet

1. Introduction

Glaucoma is a malicious eye disease that harms the eye’s optic nerve because of the
usual intraocular pressure (IOP) in it [1]. The difference in the produced and drained
range of intraocular fluid (IOF) of the eye results in IOP which in turn affects the nerve
fibers (NF). The damaged NF disturbs the retinal nerve fiber layer (RNFL) and causes
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to increase in the cup-to-disc ratio (CDR) (or “cupping”) and optic disc (OD) or optic
nerve head (ONH) [2]. Furthermore, the IOP also causes to weaken the retinal pigment
epithelium namely peripapillary atrophy (PPA). Existing research work has confirmed that
a rise in the growth of PPA results in generating acceleration in glaucoma [3]. A sample
of glaucomatous eyes is presented in Figure 1, from where it can be visualized that the
blockage in IOF damages the optic nerve. Furthermore, it can be seen that the OD volume
for the glaucoma-affected eye is larger in comparison to a normal human eye.
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In a recent report, it is stated that glaucoma is the main cause of blindness in people
and its growth rate is increasing exponentially which tends to affect 80 million humans by
2021 all around the world [4]. The advanced stage of glaucoma can cause the complete
vision loss of the victim and it is usually identified at its severe level. Because of such
reasons, glaucoma is given the name of “silent thief of sight” [5]. Even though extensive
advancements have been introduced in the area of medical image analysis [6–9]. However,
the accurate localization and treatment of glaucoma-affected areas are incurable. Whereas
timely detection of this drastic disease can save the victims from complete sightlessness. In
another study conducted in [10], it is forecasted that by 2040, the number of glaucomatous
victims will rise to 111.8 million. The extensive increase in the growth rate of glaucoma
will introduce a social and financial load on the world economy and have an impact on the
comfort of victims [1].

At the start, manual eye grading systems were used by the ophthalmologists through
visually examining the CDR and OD area to locate the irregularities of border areas.
However, the increase in the number of victims and dependency on the availability of
experts often delayed the diagnostic process which in turn increased the cases of complete
vision loss [10]. To tackle the needs of a large population, the research community initiated
the step of introducing fully automated glaucoma recognition approaches. Usually, the IOP
measurement is used to identify the various eye-related diseases where the previous health
history of victims is used, and eye field loss tests are conducted by ophthalmologists to
visually examine the structure, size, and color of the optic nerve. For that reason, accurate
localization and segmentation of the glaucomatous area is not only necessary for better
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eyes medical examinations by ophthalmologists but also required for designing a fully
automated system for effective disease classification which is prone to less error rate [9].
Initially, the hardcoded feature-based approaches have been employed by the researchers
to discriminate the healthy and affected regions of human eyes [11,12]. However, these
approaches work by first locating the region of interest (ROI), which in turn increases the
economic cost of CAD systems and is not much effective in glaucoma recognition due
to extensive changes in the attributes of lesions [13]. Now, the effectiveness of DL-based
methods has grabbed the attention of researchers to employ them in the area of medical
image analysis [14–16]. The DL-based approaches are capable of automatically extracting
the representative set of image features without requiring the assistance of experts and
obtaining better performance with small preprocessing and computation power. Moreover,
DL-based methods are robust to localize the lesions of varying sizes by examining the
topological features of suspected samples and are more reliable to deal with the various
image distortions like size, rotation, and scale variations of glaucoma-affected regions.

Even though a huge amount of work has been presented for the automated localization
and classification of glaucoma lesions, however, there is a need for performance enhance-
ment. Although, the power of ML approaches to better tackle tough real-life scenarios
is significant in comparison to the humans’ intelligence. However, these techniques may
not perform well for the samples post-processing attacks and show high computation
complexity as these methods generate long codes that rise the processing time. To tackle the
problems of ML approaches, the DL-based frameworks are utilized, however, they increase
the code complexity. Furthermore, these methods are not well-suited to everyday problems
because of the changing attributes of the glaucoma-affected areas. Therefore, there is a
need to both improve the detection accuracy and processing time for glaucoma-affected
regions identification and classification.

The challenging nature of glaucoma lesions like the intense variations in their size,
color, and structure has made them challenging to be diagnosed at the earliest stage. To
deal with the aforementioned challenges, a DL-based technique named EfficientDet [17,18]
is introduced with Efficient-B0 as a backbone architecture. In the first step, the Efficient-B0
feature computation unit of EfficientDet-D0 is utilized to calculate the deep key points.
Then, the computed keypoints are identified and categorized through the one-stage detector
of EfficientDet-D0. For performance analysis, we have used two standard datasets namely
ORIGA and HRF, and validated through the obtained results that the presented framework
provides an effective and efficient solution to glaucoma lesion classification under the
occurrence of extreme alterations in volume, color, and texture of lesions. Moreover, the
EfficientDet-D0 is also robust to glaucomatous region recognition under the occurrence of
intensity changes, noise, and blurring in the suspected samples. Following are the main
contributions of our work:

• We present a robust model namely EfficientDet-D0 with EfficientNet-B0 for keypoints
extraction to enhance the glaucoma recognition performance while decreasing the
model training and execution time.

• The presented technique can accurately identify the glaucomatous regions from the
human eyes because of the robustness of the EfficientDet framework.

• Accurate detection and classification of glaucoma-affected images due to the ability of
the EfficientDet model to tackle the over-trained model data.

• The model is computationally robust as EfficientDet uses a one-stage object identifica-
tion procedure.

• Huge performance evaluations have been performed over the two datasets namely
ORIGA and HRF which are diverse in terms of varying lesion color, size, and positions
and contain samples with several distortions to show the robustness of the proposed
solution.

The remaining manuscript follows the given distribution: Section 2 contains the related
work, whereas the presented approach is explained in-depth in Section 3. Section 4 contains
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the obtained results together with the details of the employed database and evaluation
metrics while the conclusion is drawn in Section 5.

2. Related Work

In this work, we have discussed the work from the history employed for the detection
and classification of glaucoma lesions from the fundus samples. The methods used for
glaucoma recognition are classified either as ML-based approaches or DL-based techniques.

Shoba et al. [19] introduced an ML-based method for glaucomatous region detection.
After performing the preprocessing step, the Canny Edge Detection (CED) approach was
applied to perform the blood vessels segmentation. Then the morphological operation was
performed for segmenting the blood vessels from the suspected sample. In the next step,
the Finite Element Modeling (FEM) analysis was conducted for final feature computation.
The computed features were used for the support vector machine (SVM) training to per-
form the classification task. The work [19] is robust to noisy samples, however, the model
needs to be evaluated on a challenging dataset. In [20] a method namely the Glowworm
Swarm Optimization algorithm was introduced for the automated identification of optic
cups from retinal fundus samples. The framework [20] is robust to glaucoma detection,
however, unable to compute the cup-to-disc ratio. Kirar et al. [21] presented an approach
for glaucoma identification employing second-stage quasi-bivariate variational mode de-
composition (SS-QB-VMD)-based fine sub-band images (SBIs) from suspected samples. The
computed features from the SS-QB-VMD framework were used to train the least-squares
SVM (LS-SVM) classifier. The work [21] performs well for glaucoma detection, however,
classification accuracy needs further improvements. Qureshi et al. [22] presented a frame-
work to recognize the glaucomatous lesions. After performing the image preprocessing
task, the OD and OC were segmented by employing the using pixel-based threshold and
watershed transformation approaches. Finally, the CDR was computed by distributing the
number of cup pixels by the number of disc pixels. The work [22] performs well for the
glaucomatous region recognition, however, may not perform well for the scale and rotation
variations in the suspected samples. In [23] an ML-based automated framework was pre-
sented to calculate the vertical cup-to-disk ratio (VCDR) to identify the glaucomatous areas
from the fundus images. Initially, the vasculature and disk selective COSFIRE filters were
employed for OD localization. After this, a generalized matrix learning vector quantization
(GMLVQ) classifier was utilized for classifying the OD and OC regions. The work shows
better glaucoma detection accuracy, however, not robust to noisy samples.

Martins et al. [24] presented an approach by introducing a lightweight CNN frame-
work for glaucoma recognition. After performing the preprocessing step, the MobileNetV2
approach was used to compute the deep features from the input images which were later
classified as healthy, and glaucoma affected. The work is computationally better, how-
ever requires extensive data for model training. In [25] another DL-based approach was
introduced for the automated classification of glaucoma-affected samples from the healthy
images. A framework namely evolutionary convolutional network (ECNet) was intro-
duced for reliable keypoints extraction from the input images. After this, the extracted
key points were employed for training the several ML-based classifiers i.e., K-nearest
neighbor (KNN), SVM, backpropagation neural network (BPNN), and extreme learning
machine (ELM) to perform the classification task. The work obtains the best results with
the SVM classifier, however, at the charge of the enhanced processing burden. Shinde
et al. [26] introduced a DL-based framework for the automatic detection and categoriza-
tion of glaucoma from the input samples. Initially, the Le-Net architecture was used to
identify the Region of Interest (RoI) from the input images. Then the U-Net framework
was used to execute the OD and OC segmentation. Finally, the classification task was
performed by employing the SVM, NN, and Adaboost classifiers. The work [26] attains
better accuracy by combing the SVM, NN, and Adaboost classifiers results, which in turn
increase the computational cost. Song et al. [27] presented a CNN-based framework in
which the Design of experiments (DOE) analysis was performed for attaining robust hyper-
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parameters. The work [27] shows better glaucoma classification performance, however, the
framework needs evaluation on some standard datasets. In [28], another approach namely
ResNet-50 was used to identify and recognize the glaucomatous regions from the fundus
images. The work presented in [28] demonstrates improved glaucoma detection results,
however, may not be robust to the noisy and blurred images. Similarly, in [29] another
DL-based framework namely DenseNet-201 was presented for the automated recognition
of glaucoma. The approach [29] is computationally better, however, performance needs
further improvements. Serte et al. [30] introduced an ensemble technique for OD and
OC recognition. The deep features from three models namely AlexNet, ResNet-50, and
ResNet-152 were fused to predict the healthy and glaucoma affected regions. The work [30]
shows better glaucoma classification performance, however, this framework is computa-
tionally expensive. Nazir et al. [31] introduced a methodology namely Mask-RCNN to
cluster OD and OC lesions from the fundus samples. Initially, DenseNet-77 was applied
as a backbone in the Mask-RCNN to extract the deep key points from the input image
which were later segmented by the Mask-RCNN framework. The method [31] performed
well to glaucoma segmentation, however, segmentation results need more improvements.
Similarly, in [32] another DL-based approach namely Fast Region-based Convolutional
Neural Network (FRCNN) algorithm with fuzzy k-means (FKM) clustering was intro-
duced. The approach [32] exhibits better glaucoma segmentation performance, however,
at the expense of large economic costs. Yu et al. [33] introduced a DL-based technique to
detect glaucoma by changing the U-net framework by replacing the down-sampling en-
coding layers with the ResNet-34 framework. This work [33] exhibits better glaucomatous
recognition accuracy, however, detection accuracy is dependent on the quality of fundus
samples. In [34] a VGG19 framework by using the concept of transfer learning was applied
to detect glaucoma from the suspected images. This technique works well for glaucoma
detection, however, needs extensive data for model training. Bajwa et al. [35] introduced a
two-stage network to identify and classify the glaucomatous areas from the input images.
Initially, the Faster-RCNN model was used to localize the ROI (optic disc) which were later
classified by the CNN classifier. This work performs well in comparison to the heuristic
localization approaches, however, not robust to extensive color variations in the input
images. Moreover, in [36] a weakly supervised multi-task learning (WSMTL) approach
was presented for the automated identification and classification of glaucoma. The CNN
feature extractor containing skip connections was used to calculate the deep key points
from the input images which were later classified to healthy and glaucoma-affected images.
The approach [36] is computationally robust, however, classification performance needs
further improvements. Another similar approach was introduced in [37] where the ResNet
framework with multi-layers average pooling was used to perform the mapping among the
global semantic information and precise localization. The approach shows better glaucoma
detection accuracy; however, the model may not perform well for blur images.

An analysis of existing techniques used for glaucoma recognition is provided in Table 1.
From Table 1, it can be seen that still, there exists a demand for a more robust framework
that can present both effective and efficient results for glaucomatous region classification.
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Table 1. Comparative analysis of existing approaches.

Reference Technique Accuracy Limitation

ML-based

[19] CED, FEM along with the SVM classifier. 93.22% The model is tested on a small dataset.
[20] Glowworm Swarm Optimization algorithm 94.86% The work is unable to compute the cup-to-disc ratio.
[21] SS-QB-VMD along with the LS-SVM classifier. 92.67% The classification accuracy requires further improvements.

[22] Pixel-based threshold along with the watershed
transformation 96.1% The approach is not robust to scale and rotation alterations

in the input image.

[23] The disk selective COSFIRE filters along with the
GMLVQ classifier. 97.78% The work is not robust to noisy samples.

DL-based

[24] MobileNetV2 with CNN classifier. 88% The work requires extensive data for model training.

[25] ECNet along with the KNN, SVM, BPNN, and
ELM classifiers. 96.37% The technique is economically expensive.

[27] CNN 98% The approach needs evaluation on a standard dataset.

[28] ResNet-50 NA The work is not robust to noise and blurring in the
suspected images.

[29] DenseNet-201 97% This approach requires further performance improvements.
[30] AlexNet, ResNet-50, and ResNet-152 88% The work requires extensive processing power.
[31] Mask-RCNN 96.5% The work needs further performance improvements.
[32] FRCNN along with the FKM 95% The work is computationally inefficient.

[33] UNET 96.44% Detection accuracy is dependent on the quality of fundus
samples.

[34] VGG-16 83.03% The model needs extensive training data.

[35] Faster-RCNN 96.14% The work is not robust to color variations of the input
images.

[36] WSMTL NA The classification performance requires improvements.
[37] ResNet 88% The method is not robust to blurry images.

3. Proposed Methodology

The presented approach comprises two steps: (i) data preparation (ii) glaucoma
detection and categorization step. The main flow of the presented solution is exhibited in
Figure 2. In the data preparation step, we develop annotations by drawing a bounding box
(Bbox) to exactly locate the RoIs. Secondly, the EfficientDet framework is trained over the
annotated images to recognize glaucoma-affected regions. We used EfficientDet-D0 with
EfficientNet-B0 as its base network for features extraction. The EfficientDet-D0 follows
three steps to localize and classify glaucoma-affected regions. In the first step, the keypoints
calculator of the EfficientDet-D0 network namely EfficientNet-B0 takes two types of input
(suspected image and annotations). In the next step, the BiFPN module performs the
top-down and bottom-up keypoints fusion several times for the resultant features of Level
3–7 in EfficientNet. In the third step, the final localized region with the associated class is
predicted and results are computed for all modules as per evaluation parameters being
used in the area of computer vision. Algorithm 1 specifies the in-depth explanation of the
introduced technique.
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Algorithm 1: Steps for the presented method.

INPUT:
TrD, Ann
OUTPUT:
Localized RoI, EfficientDet, Classified glaucoma diseased portion
TrD—training data.
Ann—Position of the glaucomatous region in suspected images.
Localized RoI—Glaucomatous area in output.
EfficientDet—EfficientNet-B0 based EfficientDet network.
Classified glaucoma diseases portion—Class of identified suspected region.
imageSize← [x y]
Bbox calculation

µ← AnchorsCalculation (TrD, Ann)
EfficientDet—Model

EfficientDet← EfficientNet-B0-Based EfficientDet (imageSize, µ)
[dr dt]← Splitting database in the training and testing set

The training module of glaucoma recognition
For each sample s in→ dr
Extract EfficientNet-B0-keypoints→ ds
Perform features Fusion (ds)→ Fs
End
Training EfficientDet on Fs, and compute processing time t_Edet
η_Edet← DetermineDiseasedPortion(Fs)
Ap_ Edet← Evaluate_AP (EfficientNet-B0, η_ Edet)
For each image S in→ dt
(a) Calculate key points via trained network €→ βI

(b) [Bbox, localization_score, class]← Predict (βI)
(c) Output sample together with Bbox, class

(d) η← [η Bbox]
End For
Ap_€← Evaluate model € employing η
Output_class← EfficientDet (Ap_€).

3.1. Annotations

For an accurate and correct training procedure, it is essential to precisely demonstrate
the position of the glaucoma-affected areas from the suspected samples. To accomplish
this task, we have employed the LabelImg [26] software to generate the annotations of
affected image areas to exactly specify the RoIs. Figure 3 presents some of the generated
annotations. The developed annotations are saved in an XML file which carries two types
of information: (i) coordinate values of generated Bbox on the glaucomatous area (ii) class
associated with each detected region. Then, the training file is generated from the XML file
which is further employed for network training.
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3.2. EfficientDet

Efficient and effective feature extraction is necessary to correctly classify the suspected
samples as glaucoma-affected or healthy images. At the same time, obtaining a more
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representative set of image features is a complex job because of the following causes:
(i) the computation of a larger-sized feature vector can cause the framework to result in
a model over-fitting problem and (ii) whereas, a small-sized feature vector can cause the
framework to miss to learn some essential sample aspects like color and texture changes
which make diseased parts of an image indistinguishable from the healthy areas. To
have a more representative set of image keypoints, it is essential to use an automatic
keypoints calculation approach without employing hand-coded features computation
method. The frameworks utilize hand-coded features which are not effective in precisely
locating and classifying glaucomatous regions due to huge variations in the size, structure,
chrominance, position, and subtle border of glaucoma lesions. To tackle the aforementioned
issues, we utilized a DL-based approach namely EfficientDet [17,18] due to its power to
automatically extract the robust key points from the samples under investigation. The
convolution filters of EfficientDet calculate the features of the input sample by investigating
its structure. Several object detection methods have been presented by the researchers for
the localization and recognition of medical diseases. These detectors are classified either as
one-stage (YOLO, SSD, RetinaNet, CornerNet, CeneterNet) or two-stage (RCNN [38], Fast-
RCNN [39], Faster-RCNN [40], Mask-RCNN) object detectors. The motivation of selecting
EffieicntDet in comparison to other one-stage detectors is that these methods compromise
the classification accuracy by showing a minimum time to perform the classification task.
While the two-stage detectors exhibit better lesion detection accuracy, however, at the
charge of enlarged processing complexity as these techniques perform two steps to locate
and classify the ROIs and which makes them unsuitable for real-world scenarios. Therefore,
there is a need to represent such an approach that will give a vigorous and effective solution
to glaucoma lesion recognition and categorization.

To overcome the above-mentioned issues, we have used the EfficientDet approach
which was presented by the Google brain team. By enhancing the multi-directed keypoints
fusion architecture of FPN and by deriving the idea from the EfficientNet framework scaling
approach for reference, the EfficientDet model is a scalable and robust object identification
algorithm. The EffificientDet approach comprises three main modules, the first part is
EfficientNet which is the feature extractor module. In our work, we have used EfficientNet-
B0 as the base network to calculate the reliable keypoints from the input images. The
second module is named BiFPN, which performs both top-down and bottom-up keypoints
fusion several times for the resultant feature vector of Level 3–7 in EfficientNet. And the
last module is used to localize and classify the detected region as glaucomatous affected or
healthy. The detailed description of training parameters used by the EfficientDet is given
in Table 2.

Table 2. Training parameters of the proposed solution.

Model Parameters Value

No. of epochs 60
Learning rate 0.01

Selected batch size 90
Confidence score value 0.5
Unmatched Score value 0.5

The detailed description of all three modules is given as:

3.2.1. Feature Extraction through EfficientNet-B0

We have used EfficientNet-B0 as a base network for extracting the deep features from
the suspected samples. In comparison to traditional methods that randomly scale network
dimensions, i.e., width, depth, and resolution, the EfficientNet method consistently scales
each dimension with a fixed set of scaling coefficients. The EfficientNet-B0 is capable of
computing the more representative set of image features with a small number of parameters
which in turn improves the detection accuracy by minimizing the computation time as
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well. Figure 4 presents the structure of the EfficientNet-B0 framework. The EfficientNet
framework is capable of presenting the complex transformation accurately which enables it
to better deal with the issue of the absence of the ROIs position information. Additionally,
the EfficientNet framework allows reusing the computed features which make it more
suitable for glaucoma disease identification and fasten the training procedure
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3.2.2. BiFPN

In glaucoma detection and classification application, key points like lesion position,
background, light variations, and the affected region size must be taken into consideration.
Therefore, utilizing multi-scale keypoints computation can assist in accurately recognizing
the glaucomatous regions. In history, frameworks usually employ the top-down FPNs
to fuse the multiscale keypoints However, in the one-sided FPN, varying scales are not
essentially participated equally to the resultant features which can result in missing to
learn some important image behaviors in glaucoma detection procedures. Therefore, in
the presented approach the concept of BiFPN is introduced to better tackle the problem of
equal contribution in FPN. The BiFPN module allows information to flow in both the top-
down and bottom-up directions via employing regular and reliable connections. Moreover,
the BiFPN module uses trainable weights to extract semantic-based keypoints having
significant contributions to the resultant framework. Therefore, key points from P3 to P7
layers of the EfficientNet-B0 are nominated as multi-scale features and passed as input to
the BiFPN module. The width of the BiFPN module upgrades exponentially as the depth
increases linearly, and must have to satisfy the given Equation (1):

Wb f = 64. (1.35∅), Db f = 3 + ∅ (1)

Here, Wb f and Db f are presenting the width and depth of the BiFPN module, respec-
tively, while ∅ is the compound factor that controls the scaling dimensions which is 0 in
our case.

3.2.3. Box/Class Prediction Network

The combined multi-scaled key points from the BiFPN module are passed to Box/class
prediction module to draw a Bbox across the suspected region and specify the associated
class. The width of this module is the same as that of the BiFPN, however, depth is
computed by using Equation (2):

DBbox = 3 + [∅/3] (2)

3.3. Detection Procedure

The EfficientDet approach is free from approaches like selective search and proposal
generation. Therefore, the input samples along with the generated annotations are feed to
the EfficientDet approach, on which it directly computes the lesion position along with the
dimensions of Bbox and associated lesion class.
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4. Experimental Results

In this section, we have discussed the detailed analysis of acquired results after
conducting several experiments to compute the glaucoma identification and categorization
power of the introduced framework. Moreover, we have discussed the details of employed
databases and evaluation metrics as well.

4.1. Dataset

To check the robustness of our approach for glaucoma detection and classification,
we have used a publically accessible database namely ORIGA [41]. The ORIGA database
comprises 650 samples, where 168 images contain the glaucoma-affected regions, while
the remaining 650 images are from the normal human eyes. The ORIGA dataset is a
challenging dataset for glaucoma classification as its samples contain several artifacts for
example huge variation in the size, color, position, and texture of OD and OC. Moreover,
images contain several distortions like the presence of noise, blurring, color, and intensity
variations. Samples from the employed dataset are shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 5. Sample dataset images. 

4.2. Evaluation Metrics 
In this work, several assessment measures i.e., Intersection over Union (IoU), 

accuracy, precision, recall, and mean average precision (mAP) are used to check the 
localization and categorization performance of our approach [42]. Accuracy is measured 
by using Equation (3). 

TP TNAccuracy
TP FP TN FN

+=
+ + +  

(3)

Equation (4) demonstrates the calculation of the mAP score, where AP is showing 
the average precision from all classes, while q is denoting the sample under the test. 
Moreover, Q is denoting the total test samples. 

1
: ( ) /

T

i
i

mAP AP t T
=

=
 

(4)

Equations (5)–(7) show the IoU, precision, and recall, respectively. 

2TPIoU
FN FP TP

= ×
+ +  

(5)

Precision TP
TP FP

=
+  

(6)

Recall TP
TP FN

=
+  

(7)

4.3. Proposed Technique Evaluation 
Timely and precise identification of the OD and OC lesions is mandatory for 

designing an effective computer-aided approach for glaucoma-affected regions 
identification and classification. For this reason, we have designed an experiment to 
assess the localization ability of EfficientDet by checking its recognition power on all test 
samples from the ORIGA database, and obtained outputs are shown in Figure 6. It is 
clearly visible from the reported results that the proposed solution namely EfficientDet is 
capable of diagnosing the OD and OC lesions of varying sizes and positions. Moreover, 
our work is capable of dealing with numerous samples distortions like blurring, color, 
and brightness variations. 

Figure 5. Sample dataset images.

4.2. Evaluation Metrics

In this work, several assessment measures i.e., Intersection over Union (IoU), accuracy,
precision, recall, and mean average precision (mAP) are used to check the localization
and categorization performance of our approach [42]. Accuracy is measured by using
Equation (3).

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Equation (4) demonstrates the calculation of the mAP score, where AP is showing the
average precision from all classes, while q is denoting the sample under the test. Moreover,
Q is denoting the total test samples.

mAP :=
T

∑
i=1

AP(ti)/T (4)

Equations (5)–(7) show the IoU, precision, and recall, respectively.

IoU =
TP

FN + FP + TP
× 2 (5)

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

4.3. Proposed Technique Evaluation

Timely and precise identification of the OD and OC lesions is mandatory for designing
an effective computer-aided approach for glaucoma-affected regions identification and
classification. For this reason, we have designed an experiment to assess the localization
ability of EfficientDet by checking its recognition power on all test samples from the ORIGA
database, and obtained outputs are shown in Figure 6. It is clearly visible from the reported
results that the proposed solution namely EfficientDet is capable of diagnosing the OD and
OC lesions of varying sizes and positions. Moreover, our work is capable of dealing with
numerous samples distortions like blurring, color, and brightness variations.

The localization ability of the EfficientDet approach permits it to precisely recognize the
lesions exhibiting fewer signs. Furthermore, for the quantitative estimation of our approach,
we have utilized two evaluation measures namely mAP and IoU, as these measures are the
most widely employed by the researchers and assist in better evaluating the localization
power of a system. Our approach obtains an average mAP and means IoU values of 0.971
and 0.981, respectively. It can be seen from both the visual and numerical results that our
framework is reliable to localize and categorize the glaucoma-affected regions.

Moreover, for robust glaucoma detection and classification framework, it must be
capable of differentiating the glaucomatous samples from the healthy images. For this
reason, we have plotted the confusion matrix as it can better demonstrate the classification
results by showing the true positive rate (TPR). The obtained results are shown in Figure 7,
from where it can be witnessed that for glaucoma-affected images, the EfficientDet ap-
proach shows a TPR of 0.970 which is clearly showing the effectiveness of our approach.
Furthermore, our technique acquires an average glaucoma classification accuracy of 97.2%
on the ORIGA dataset. The main reason for the robust classification accuracy of our method
is that EfficientDet with EfficientNet-B0 as the base network is capable of computing the more
accurate set of image features which better assist in diagnosing the diseased image areas.
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4.4. Comparison with Other Object Detection Approaches

We have experimented to evaluate the glaucoma recognition results of our framework
with other object detection approaches i.e., RCNN, Faster-RCNN, and Mask-RCNN. The
obtained analysis is shown in Table 3. To perform the comparative analysis with other object
detection techniques, we have considered the mAP evaluation metric, as it is designated as
a standard by the research community in object recognition systems. Furthermore, we have
compared the models testing time to assess these approaches in terms of computational
burden as well. From Table 3, it is clear that our framework attains the highest mAP value
of 0.971, along with the smallest testing time of 0.20. Furthermore, the RCNN approach
attains the lowest mAP value of 0.913 and has the largest testing time of 0.30 as well.
Moreover, the Mask-RCNN approach with DenseNet-77 shows comparable results to our
work, however, it is computationally more expensive because of its two-step feature locator
architecture. Hence, it is noticeable that our work is more effective in glaucoma lesion
detection and classification due to its one-stage object detection ability which provides it
the computational benefit on the other techniques. Moreover, the reliable feature detection
by EfficientNet-B0 enables the EfficientDet-D0 framework to accurately localize the ROIs
and attain the highest mAP value to its competitors

Table 3. Comparative analysis with other object detection frameworks.

Model mAP Test Time (s/img)

RCNN 0.913 0.30
Faster-RCNN 0.940 0.25
Mask-RCNN 0.942 0.24

DenseNet77-based Mask-RCNN 0.965 0.23
Proposed 0.971 0.20

4.5. Comparison with State-of-the-Art

To further check the glaucoma identification and classification performance of our
approach, we have conducted another analysis in which the latest approaches employing
the same dataset are chosen for comparison. To have a fair analysis, we have taken
the average results of our technique and have evaluated them with the average results
of approaches in [31,32,35,37,43]. The comparative quantitative results with the help of
standard evaluation metrics are shown in Table 4.
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Table 4. Performance comparison with latest approaches.

Approach AUC Recall Time (s)

Liao et al. [37] 0.880 - -
Fu et al. [43] 0.910 0.920 -

Bajwa et al. [35] 0.868 0.710 -
Nazir et al. [32] 0.941 0.945 0.90
Nazir et al. [31] 0.970 0.963 0.55

Proposed 0.979 0.970 0.20

Liao et al. [37] presented a DL-based framework for glaucoma recognition from retinal
fundus samples and gained an average AUC of 0.88. Fu et al. [44] also proposed a DL-
based framework namely Disc-aware Ensemble Network (DENet) to identify and classify
the glaucomatous samples with the average AUC and Recall values of 0.901 and 0.920
respectively. Moreover, the work in [35] presented a Two-stage framework for OD and OC
detection to classify the glaucoma-affected images and showed the average AUC and Recall
values of 0.0.868 and 0.710, respectively. Nazir et al. [32] proposed an approach namely
Fast Region-based Convolutional Neural Network (FRCNN) and acquired the average
AUC and Recall of 0.941 and 0.945 respectively. Similarly, Nazir et al. [31] proposed a DL
framework namely Mask-RCNN to recognize the glaucomatous regions from the retinal
samples and attained an average AUC and Recall of 0.970 and 0.963 respectively. Whereas
the presented framework namely EfficientDet-D0 with EfficientNet-B0 as base network
obtain the average AUC and Recall values of 0.979 and 0.970, which are higher than all the
comparative approaches. More specifically, for the AUC evaluation metric, the competitive
approaches acquire an average value of 0.0.9138, whereas the presented approach shows
the AUC value of 0.979, so, EfficientDet-D0 framework gives a performance gain of 6.52%.
While in the case of Recall, the comparative approaches show an average value of 0.8845,
which is 0.970 for our approach. Therefore, we obtain the performance gain of 8.55% for
Recall and clearly demonstrate the robustness of EfficientDet-D0 for glaucoma classification.
Moreover, we have compared the proposed solution with other approaches in terms of
time complexity as well. It can be seen from Table 4 that our work shows minimum time in
comparison to all other methods due to its one-stage detection power.

The main reason for the better performance of our approach in comparison to other
techniques is that these methods [31,32,35,37,43] employ very complex and deep networks
for feature computation, which eventually cause the model over-fitting problem and
increase the computational complexity of models. Whereas, in comparison, our approach
employs EfficientNet-Bo as a base network, which is capable of computing the more
representative set of image features while maintaining the computational complexity as
well. Hence, it can be concluded that EfficientNet-Bo-based EfficientDet-D0 architecture
provides an efficient and effective solution to OD and OC recognition which can assist the
doctors to timely diagnose the glaucoma-affected regions.

4.6. Cross Dataset Validation

We conducted an analysis via evaluating the proposed solution over a cross-dataset
on namely HRF [42]. This database contains 45 samples, of which 15 images are from
the healthy human eye, while 15 images contain DR-affected regions, and the remaining
15 samples are glaucomatous-affected. The performance analysis on a cross-dataset assists
to check the recognition accuracy of our approach in terms of its generalization ability
to real-world examples. Moreover, this experiment will help to determine whether our
system is capable of dealing with the training and testing complexities. More explicitly,
we have trained our system on the ORIGA dataset and tested it on the HRF database. The
obtained results are shown in Figure 8 by plotting the Boxplot, as it better demonstrates
the performance of the system by exhibiting the maximum, minimum, and median of
the acquired accuracies. In this experiment, our approach shows the average accuracies
of 98.98% and 98.21% for the training and testing respectively which is concluding that our
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framework can be employed in real-world problems to cope with the challenges of OD and
OC recognition and can better assist the ophthalmologist in the early diagnosis of glaucoma.
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We have further evaluated our method on a challenging dataset named: RIM ONE
DL [44,45] which is the latest version of the RIM ONE dataset. This dataset consists of
485 images of which 313 from normal and 172 are images of the patients affected from
glaucoma. We have performed two types of experiments to further check the generalization
ability of our approach and results are reported in Figures 9 and 10. In the first experiment,
we have trained the model on the ORIGA dataset and test it on the RIM ONE DL, and
obtained the average train and test accuracy of 98.91% and 97.96%, respectively. For the
second evaluation, we have trained the proposed framework on the RIM ONE DL dataset
while evaluating it on the ORIGA database and attain the average accuracy values of 98.14%
and 97.83%, respectively. It can be seen from the reported results in Figures 9 and 10 that
our work is capable of robustly classifying the unseen examples.

We have conducted the cross-dataset evaluation on different challenging datasets
namely the ORIGA, HRF, and RIM-ONE DL datasets. The ORIGA dataset is more chal-
lenging and large-sized in compassion to the other two databases. While the RIM-ONE
DL dataset is complex in nature than the HRF dataset. We have performed a comparative
analysis of cross-dataset validation and obtained results are reported in Table 5. It is quite
clear from Table 5 that our work has acquired reliable performance on all databases and is
robust to classify the unseen images efficiently.



Sensors 2022, 22, 434 15 of 18Sensors 2022, 22, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 9. Cross-Validation Results where the model is trained on the ORIGA dataset and test on the 
RIM ONE DL dataset. 

 
Figure 10. Cross-Validation Results where the model is trained on the RIM ONE DL dataset and 
test on the ORIGA dataset. 

We have conducted the cross-dataset evaluation on different challenging datasets 
namely the ORIGA, HRF, and RIM-ONE DL datasets. The ORIGA dataset is more 
challenging and large-sized in compassion to the other two databases. While the 
RIM-ONE DL dataset is complex in nature than the HRF dataset. We have performed a 
comparative analysis of cross-dataset validation and obtained results are reported in 
Table 5. It is quite clear from Table 5 that our work has acquired reliable performance on 
all databases and is robust to classify the unseen images efficiently. 

  

Figure 9. Cross-Validation Results where the model is trained on the ORIGA dataset and test on the
RIM ONE DL dataset.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 9. Cross-Validation Results where the model is trained on the ORIGA dataset and test on the 
RIM ONE DL dataset. 

 
Figure 10. Cross-Validation Results where the model is trained on the RIM ONE DL dataset and 
test on the ORIGA dataset. 

We have conducted the cross-dataset evaluation on different challenging datasets 
namely the ORIGA, HRF, and RIM-ONE DL datasets. The ORIGA dataset is more 
challenging and large-sized in compassion to the other two databases. While the 
RIM-ONE DL dataset is complex in nature than the HRF dataset. We have performed a 
comparative analysis of cross-dataset validation and obtained results are reported in 
Table 5. It is quite clear from Table 5 that our work has acquired reliable performance on 
all databases and is robust to classify the unseen images efficiently. 

  

Figure 10. Cross-Validation Results where the model is trained on the RIM ONE DL dataset and test
on the ORIGA dataset.

Table 5. Performance comparison of cross-dataset validation.

Dataset ORIGA (Test) HRF (Test) RIM-ONE DL (Test)

ORIGA (trained) 97.20% 98.21% 97.96%
RIM-ONE DL (trained) 97.83% 98.19% 97.85%
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5. Conclusions

The manual recognition of the glaucomatous-affected regions from fundus samples
requires trained human experts who can identify the small visible details and categorize the
images into relevant classes. However, because of the complex structure of the glaucoma-
tous regions and the unreachability of domain experts, there is a need for a fully automated
system. In the introduced technique, we have presented a DL-based approach named
EfficientDet-D0 with EfficientNet-B0 as the base network for the automated localization
and categorization of glaucoma lesions from the retinal fundus images. We have tested our
approach over the ORIGA database which is challenging in terms of variations of glaucoma
lesion size, color, position, and shapes. Moreover, to assess the generalization ability of
our framework to real-world problems, we perform cross-dataset validation on the HRF
and RIM ONE DL datasets. For the ORIGA database, we obtain the average accuracy
values of 97.2%, while for the HRF and RIM ONE DL databases, we obtain an average
accuracy of 98.21% and 97.96% respectively. Both the visual and numeric comparison
confirms that the used framework is more robust to glaucoma classification as compared
to other latest approaches and can certainly identify the lesions of variable masses from
the samples with several image distortions. Therefore, this work can play a vital role in
the automated recognition and classification of the glaucomatous-affected regions. In the
future, we plan to implement some feature section techniques and employed on deep
learning models [3,46–50]. Also our plan is to evaluate the work on other eye diseases.
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