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Abstract: Efficient skin cancer detection using images is a challenging task in the healthcare domain.
In today’s medical practices, skin cancer detection is a time-consuming procedure that may lead to a
patient’s death in later stages. The diagnosis of skin cancer at an earlier stage is crucial for the success
rate of complete cure. The efficient detection of skin cancer is a challenging task. Therefore, the
numbers of skilful dermatologists around the globe are not enough to deal with today’s healthcare.
The huge difference between data from various healthcare sector classes leads to data imbalance
problems. Due to data imbalance issues, deep learning models are often trained on one class more than
others. This study proposes a novel deep learning-based skin cancer detector using an imbalanced
dataset. Data augmentation was used to balance various skin cancer classes to overcome the data
imbalance. The Skin Cancer MNIST: HAM10000 dataset was employed, which consists of seven
classes of skin lesions. Deep learning models are widely used in disease diagnosis through images.
Deep learning-based models (AlexNet, InceptionV3, and RegNetY-320) were employed to classify
skin cancer. The proposed framework was also tuned with various combinations of hyperparameters.
The results show that RegNetY-320 outperformed InceptionV3 and AlexNet in terms of the accuracy,
F1-score, and receiver operating characteristic (ROC) curve both on the imbalanced and balanced
datasets. The performance of the proposed framework was better than that of conventional methods.
The accuracy, F1-score, and ROC curve value obtained with the proposed framework were 91%, 88.1%,
and 0.95, which were significantly better than those of the state-of-the-art method, which achieved
85%, 69.3%, and 0.90, respectively. Our proposed framework may assist in disease identification,
which could save lives, reduce unnecessary biopsies, and reduce costs for patients, dermatologists,
and healthcare professionals.

Keywords: medical imaging; skin cancer; deep learning; disease diagnosis system; healthcare

1. Introduction

The number of cancer patients is increasing due to smoking, environmental changes,
different types of radiation, viruses, alcohol, diet, and lifestyle [1]. The most common and
hazardous type of cancer is skin cancer. Skin cancer can be in the form of unusual swelling
of skin cells. Skin cancer is spreading worldwide and is a perilous disease [2]. The recorded
new skin cancer case rate in the USA is around 5.4 million a year [3]. According to the
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WHO, annually diagnosed cases of melanoma have increased by 53%, and its mortality rate
will increase in the next decade. The failure of early diagnoses has shown a survival rate
of less than 14%, but detecting skin cancer at an early stage can increase the survival rate
to 97%, approximately [2,4,5]. The Skin Cancer Foundation reported that the skin cancer
problem is continuously growing. The most common type of cancer is non-melanocytic
such as basal cell carcinoma and squamous cell carcinoma.

Meanwhile, non-melanocytic skin cancer is the basic form to be found, such as basal
cell carcinoma and squamous cell carcinoma [6]. It is found that, in the United States,
around 1 million SCC cases and 4.3 million BCC cases are diagnosed each year, which
are still said to be underestimated. To improve the survival rate, early diagnoses are a
foundation, having a 99% correlation with overall survival, and survival is very poor once
the disease has penetrated far enough into the skin [7]. An early skin cancer diagnosis is
helpful for cancer treatment, although survival is poor once the disease progresses beyond
the skin. Medical specialists currently examine the infected person through visual means
with the help of polarised light magnification and dermoscopy [8]. The diagnoses also
depend on ethnicity, exposure to the sun, social habits, and the patient’s medical history.
Medical procedures for skin cancer diagnosis are time-consuming and very tough due
to the processing of biopsied lesions [2,9]. In the revolution of healthcare and medicine,
AI-enabled computer-aided diagnostics (CAD) solutions make significant contributions,
especially in medical imaging. Medical imaging is now a part of clinical practices such as
computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound [10–12].
Dermoscopy, or less commonly confocal microscopy, plays a vital role in the in vivo vi-
sualisation of lesioned features, allowing for more accuracy in risk stratification in the
dermatological field. In various studies, AI-based algorithms exceed clinical performance
to detect disease in medical imaging [8,13,14].

Deep learning has recently provided end-to-end applications to identify breast cancer,
lung cancer, brain tumours, oesophagal cancer, and foot ulcer skin lesions. Imaging
techniques such as dermoscopy, CT, HRCT, and MRI have become helpful in diagnosing
cancer and are used to obtain data on skin cancer from patients worldwide [8,15]. Skin
imaging is a driving force behind skin lesion images and expert annotations for automated
CAD. High-speed internet, computing resources, and reliable cloud storage to maintain and
distribute skin cancer datasets have sparked the research interest in AI solutions for skin
cancer diagnosis [16,17]. These services can be applied to various computers, platforms,
and operating systems to transform them into cutting-edge medical devices. A skilful
dermatologist usually follows steps, from observation with the naked eye to dermoscopy
followed by a biopsy. However, this time-consuming procedure may lead patients to
advance to severe stages [18].

Training a classifier and learning the classes present in the dataset are much harder
when the dataset is imbalanced. This means that at least one of the classes present in
the dataset is significantly larger than the others. The problem is that the classes with
few instances have a low error cost and prior probability. Deep learning algorithms have
different learning strategies when trained on imbalanced datasets. Data augmentation
is a widely used method to overcome the data imbalance problem. Data augmentation
generates additional training data by transforming the input training data. Data augmen-
tation is especially beneficial for medical imaging [16,19]. Even for large datasets such as
ImageNet [20], it has been shown that data augmentation can be beneficial for very deep
architectures [16]. Additionally, data augmentation allows for an easy way to incorporate
prior knowledge about possible unseen data. Possible data augmentation schemes range
from simple additive or multiplicative image modifications such as intensity shifts to ge-
ometric transformations such as rotation, scaling, and elastic deformation, and synthetic
data generation [16,21].

Moreover, the main objective is to achieve accuracy in diagnosis, depending on the
clinician’s skills. Additionally, the best accuracy for diagnosing skin cancer is no more than
80%. In addition to these difficulties, we do not have enough skilful dermatologists around
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the globe. A significant amount of work has been carried out to rapidly develop image
analysis algorithms to diagnose skin cancer at early stages and solve the aforementioned
problems. Most of these algorithms are parametric, i.e., they require normalised data, but
the data nature cannot be controlled. Hence, these methods cannot diagnose the disease
accurately.

Contributions: This research makes various contributions to skin cancer detection.

• The experiments were performed on the latest dataset. The Skin Cancer MNIST:
HAM10000 dataset presents cutting-edge images of the newest advancement in cancer
lesion detection. Previous studies employed smaller and noisier datasets that led to
less efficient results.

• Available skin cancer datasets are highly imbalanced, where multiple lesion cases
severely outnumber other lesion types. This paper presents an efficient and novel
deep learning-based skin cancer detector for handling imbalanced skin cancer de-
tection problems. Our results reveal that skin cancer detector performance was
significantly improved.

• Preprocessing, such as normalisation, image resizing, and data argumentation, was
conducted to eradicate the different biases in the dataset amid various classes.

• The performance of the proposed skin cancer detector was validated with state-of-the-
art detectors. The proposed skin cancer detector outperformed existing detectors. The
proposed skin cancer detector may assist in disease identification, which could save
lives, reduce unnecessary biopsies, and reduce costs for patients, dermatologists, and
healthcare professionals.

• The proposed deep learning-based skin cancer detector is high-performance, efficient,
time-efficient, and empowered with the latest advancement in deep learning and has
the least dependence on feature engineering.

2. Literature Review

Popescu et al. [22] presented a system based on the deep learning methodology and
collective intelligence. Various CNN-based models were employed on the HAM10000
dataset, which can differentiate skin lesions, including melanoma. They analysed the
various CNN models to maintain a weight matrix, and their elements were based on neural
network lesion classes. Furthermore, the accuracy of their system increased by about three
percent. Srinivasu et al. [23] proposed a deep learning-based model for analysing skin
disease detection by combining MobileNet and long short-term memory models. The
performance of the proposed hybrid model was also analysed to evaluate the growth of the
disease. Its results were compared with other state-of-the-art models such as fine-tuned
neural networks and CNNs. The proposed hybrid model achieved an accuracy of 85%
on the HAM10000 dataset. Khan et al. [24] presented a deep learning-based model for
effectively screening skin disease lesions. They performed the experiments using a mask
recurrent neural network (MASK-RNN), and a pyramid network was used with Resnet50
to extract and classify the SoftMax classifier. The proposed method exhibited efficient
performance on the HAM10000 dataset. In the study of Huang et al. [25], a lightweight
skin cancer detector was proposed to aid first-line medical care based on deep learning.
The HAM10000 dermoscopy dataset was employed for the training of the multiclass
classification model. Their proposed framework achieved an accuracy of 85.8%.

Khan et al. [26] proposed a multiclass skin lesion classification method using local
colour-controlled histogram intensity values (LCcHIVs). Then, saliency was measured
using a novel deep saliency segmentation technique that includes a CNN, which consists
of ten layers. The heat map converts it into a binary image using the thresholding method.
They used an improved moth flame optimisation algorithm to avoid dimensionality to
select effective features. These features were used with multiple maximum correlation
analyses classified using a kernel extreme learning machine (KELM) classifier. The classifi-
cation performance was evaluated on the HAM10000 dataset and achieved an accuracy of
90.67%. Karl and Enrique [27] also presented a framework for skin cancer identification.
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In their framework, transfer learning was applied to the convolutional neural network for
plain and hierarchical classification and used to differentiate between seven types of skin le-
sions. Xing et al. [28] presented a Categorical Relation-preserving Contrastive Knowledge
Distillation (CRCKD) that was used as a supervisor of the model. They presented a class-
guided contrastive distillation (CCD) module for closer image pairs from the same class
as a teacher while separating negative images from different classes. This showed higher
intra-class similarity and inter-class variance in teachers’ relational knowledge in a robust
and balanced manner. Extensive experiments on the HAM10000 dataset demonstrated the
superiority of the CRCKD method.

Saket et al. [29] presented a method for skin cancer identification. Their method
employed a better evaluation matrix technique than previous methodologies. They used the
MobileNet model for identifying cancer and HAM10000 employing transfer learning, and
their method achieved an accuracy of 83.1% for seven classes in the dataset. Ameri [30,31]
proposed a deep learning-based model for skin lesion classification. The proposed method
was trained on the HAM10000 dermoscopy image dataset to classify the melanoma and
non-melanoma lesions. Additionally, the deep CNN method was presented for image
classification. Transfer learning-based methods or deep learning-based models eliminate
the complex segmentation procedure of feature extraction. Andronescu et al. [32] developed
a model for identifying skin cancer using dermatoscopic images. A convolutional neural
network (CNN) detected images and patterns. The CNN works through three stages:
convolutional layer, pooling layer, and fully connected layer. HAM10000 was utilised,
containing 10,015 images, including seven skin lesions. These images were first resized to
90 × 120 pixels. Then, they were normalised. The dataset was divided into three parts:
training set, test set, and validation set. The CNN was used with a 3 × 3 kernel size and
one stride. A rectified linear unit (ReLU) was used as an activation function. Max pooling
with a size of 2 × 2 for each layer was used.

3. Methodology

First, the skin cancer dataset was obtained for a novel skin cancer detector and divided
into training and test sets. Further, augmentation techniques, i.e., rotating and flipping,
were applied to the training set to increase the data size to balance the classes. This training
dataset was shuffled well and augmented, i.e., reshaped and resized. This balanced dataset
was provided to the AlexNet, InceptionV3, and RegNetY-320 models for training. These
models were trained with 100% training accuracy. These were tested on the test dataset.
Their test accuracies were analysed, performing a comparison of their accuracies. The
proposed framework of our study is presented in Figure 1.

3.1. Dataset

Meaningful data are an essential component of deep learning. In this study, we
used the open-source Skin Cancer MNIST: HAM10000 dataset [33] consisting of 7 types
of skin lesions, namely: actinic keratoses and intraepithelial carcinoma/Bowen’s disease
(akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (solar lentigines/seborrheic
keratoses and lichen planus-like keratoses (bkl)), dermatofibroma (df), melanoma (mel),
melanocytic nevi (nv), and vascular lesions (angiomas, angiokeratomas, pyogenic gran-
ulomas, and hemorrhage (vasc)). More than 50% of the lesions were confirmed through
histopathology (histo). The ground truth for the rest of the cases was either follow-up
examination (follow_up), expert consensus (consensus), or confirmation by in vivo confocal
microscopy (confocal).
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3.2. Data Balancing

The HAM10000 dataset was employed in this study, which is prone to highly im-
balanced problems. Imbalanced data are a challenging problem while training a deep
learning model for a complex task [16,34]. Most deep learning models are designed to
work for classes with almost exact data for classification problems. When using a real-time
dataset, some events are rare, and we do not have balanced data for each class, especially
in the medical domain [35]. This imbalanced dataset often leads to a biased or skewed
prediction, affecting the model’s performance. Data augmentation can increase the sample
size for those imbalanced classes and produce a balanced dataset [16,21]. Predicting a
model trained with supervised deep learning relies on the diversity and the size of the
dataset used in training. The relation between a rocket’s engine and the enormous amount
of fuel used for a successful mission can represent the relation between the deep learning
model and the data size used for training. Generally, deep learning models have many
hidden neurons for achieving high performance on complex tasks [36].

The number of trainable parameters in a deep learning model depends on the number
of hidden neurons [37]. Hence, they need a large amount of data with huge diversity for
training purposes [38,39]. Data augmentation has been used to address these issues, i.e.,
increasing the training dataset’s size and diversity. For one class, it has 5000 images, while
for another class, it has just a few hundred images. Therefore, this may lead to insufficient
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training of our model. Hence, we used augmentation techniques such as image rotation
to balance our data, as shown in Figure 2. We used data augmentation to increase our
dataset’s size by more than 30,000 and to make it balanced for each class. This was done
by randomly cropping 256 × 256 patches, flipping the images horizontally, and rotating
them at different angles. We then obtained more than 30,000 images for our training set
with around 4000–5000 images for each class. Figure 3 shows the distribution of classes
before and after the data augmentation.
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3.3. AlexNet

The first CNN that became famous was AlexNet [40–42], which won the 2012 ILSVRC
(ImageNet Large-Scale Visual Recognition Challenge), a prestigious challenge in the ma-
chine learning field. It was the first architecture that proved the power of CNNs in the
context of pattern recognition, becoming the state of the art in image classification, object
detection, object recognition, and human pose estimation. AlexNet has eight weight layers,
five convolutional layers (where the ReLU per unit follows the convolution operation),
and three fully connected layers. The last is a SoftMax layer that returns the probability of
belonging to a certain image class. This is an innovative ordering of operations, as in the
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previous famous network, LeNet, a convolution was always followed by the non-linearity
and pooling, not by another convolution. The network has two parallel pipelines executed
in different GPUs to speed up the process. It is observed that the first convolution layer
uses a filter with a receptive field of 11 × 11, with stride 4 (number of pixels the filter shifts
from left to right and from up to down), immediately reducing the image spatially. The
receptive field diminishes to go deeper into the network to 5 × 5 and finally 3 × 3. This
means that the network initially tries to capture statistics for each pixel in a wider region.
As the filter size decreases, the image is down-sampled by max pooling operations, whereas
the number of filters increases from 96 to 256 and then 384. Thus, the data are compressed
spatially and up-sampled in depth. The model has many weights and memory needed for
keeping the feature maps during the forward/backward passes. The convolutional part of
the network requires more memory but less computation. The fully connected layers have
millions of weights, being the most computationally intensive part of the flow.

Two more novel properties are deployed in AlexNet: the ReLU activation instead
of tanh, and the local response normalisation. AlexNet empirically shows that training
with non-saturating non-linearity is faster and reaches a better convergence point. ReLUs
do not necessarily need input normalisation since, for learning to happen, it is enough
that some training examples have a positive input. However, using local normalisation
helps generalisation. The normalised response is defined for a unit obtained by applying
the filter to the position, defining the window size used for normalisation. Lastly, the
network is robust to some transformations by exposing it to an augmented dataset (flipped,
translated, reflected images where the label is preserved) and addressing overfitting by
applying dropout in the fully connected layers. Being the first successful deep network, the
representation properties of AlexNet have been studied extensively. There was already an
understanding that invariance and abstraction of features are created as we move deeper in
a network; the first layers in a convolutional network represent Gabor features. The higher
ones correspond to complex concepts in the image.

3.4. InceptionV3

InceptionV3 [43] is an updated version of GoogleNet [44], also called InceptionV1,
which reduces the number of parameters concerning state-of-the-art models 12 times.
The first version of the Inception architecture was introduced as GoogleNet in 2015. The
Inception module applies to different convolutions and max pooling to the same input
simultaneously to obtain multi-level features and combines them at the end of the module.
To compute them, GoogleNet uses three different filters of sizes 1 × 1, 3 × 3, and 5 × 5.
Furthermore, filter blocks were introduced to reduce dimensionality. It has also been
noticed that there was a problem of internal covariance shift, which means that when data
flow through the network, weights and parameters change data values, which could result
in being too big or too small. Sergey et al. [43] introduced batch normalisation, which
normalises data after each batch to overcome this problem. This new version of GoogleNet
is called InceptionV2. To scale the network, the 5 × 5 convolutional layer was factorised
into two consecutive 3 × 3 convolutional layers, and a new version of the network called
InceptionV3 was created.

Moreover, the architecture was re-factored to add factorisation convolution, modify the
auxiliary classifier, and introduce an efficient grid size reduction and the InceptionV3 ver-
sion. The factorisation convolution reduces the number of parameters without decreasing
the network efficiency. The factorisation techniques used in InceptionV3 are as follows.

Factorisation into smaller convolutions: This technique increases the number of
convolutional layers by stacking them to reduce the kernel size for each layer. For example,
one layer with a 7 × 7 kernel filter dimension has 49 parameters, while three layers
with 3 × 3 have 27. The number of parameters is reduced by 45%. With the usage of
this technique, it is possible to modify a single Inception module (basic structure of the
InceptionVX architectures) and reduce the number of network parameters.
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Factorisation into asymmetric convolutions: This technique reduces the number of
parameters using asymmetrical convolutional layers. The main concept is replacing an
NxN filter with two consecutive layers of sizes 1 × N and N × 1, usually greater than 2N.
For example, one layer with a 7 × 7 kernel filter dimension has 49 parameters, while two
layers with 1 × 7 and 7 × 1 have 14 parameters. The number of parameters is reduced
by 72%. With the usage of this technique, it is possible to modify a single Inception
module and reduce the number of network parameters. The auxiliary classifier, already
present since InceptionV1, had some modifications in InceptionV3. The V1 version has
2 auxiliary classifiers, while the V3 version has only 1 auxiliary classifier on top of the last
17 × 17 layers. The purpose of the auxiliary classifier is also different: firstly, it is used
to allow for a deeper network; with the V3 version, it is used to regularise the network.
Usually, a max pooling layer is added to reduce the number of weights. Sometimes,
this layer is not efficient if inserted before a convolutional layer, or it is too expensive if
inserted after a convolutional layer. The efficient grid size reduction technique reduces
these problems. It creates a hybrid situation. Each layer concatenates a convolutional layer
and a part of the max pooling layer.

3.5. RegNetY-320

ResNet and its different versions have performed brilliantly in various computer
vision tasks. ResNet was a game-changer because it allowed us to train extraordinarily
deep neural networks with more than 150 layers effectively. Figure 4 depicts the bottleneck
RegNet module based on the bottleneck ResNet building block proposed to handle a
large-scale image.
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4. Results

The retraining of the deep learning models was performed on an Intel i5 3.0 GHz. The
framework chosen for this work was TensorFlow, a deep learning library written in Python
and developed by Google. When performing the first stage of training, only original images
were used. The oversampled images were added to the dataset in the second stage. In
addition to the training images, approximately 3000 (adjusted as a percentage of the total
input images) were used as the test set, regardless of the training set size. The test set was
only used at the end of each training session to evaluate the final accuracy of the network.
All images, both for training and testing, were randomly sampled from the dataset. Most of
the hyperparameters were set to their default values. The exception was the learning rate.
The learning rate is probably the most important hyperparameter to change if there is a
time constraint (i.e., when exhaustive parameter testing is not an option). When fine-tuning
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a network, the learning rate should be decreased. Hence, it was changed from the default
of 0.01 to 0.001.

The data from each class were split into test and training sets. The weightage for the
test and training sets was almost 30% and 70% for balanced and imbalanced datasets. The
images were resized for each model. Training images were rescaled to 1/255 with a batch
size of 100 images. HAM10000 has various skin cancer images of imbalanced classes with
10,000 images, including seven types of skin lesions. The first experiment employed the
AlexNet, InceptionV3, and RegNetY-320 models on imbalanced data. The characteristics of
the CNNs’ architectures employed in the proposed framework are presented in Table 1.

Table 1. Characteristics of the CNNs’ architectures in the proposed framework.

Model Hidden Layers Image Size Parameters Learning Rate

AlexNet 8 227 × 227 200,132,679 [0.01, 0.001]
InceptionV3 48 299 × 299 22,126,759 [0.01, 0.001]
RegNetY-320 150 256 × 256 145,000,000 [0.01, 0.001]

The models were trained on the data of 7000 images and tested on 3000 images. The
number of epochs was no more than 20, with a batch size of 100. We further trained the
models by steepening the learning rate. The AlexNet, InceptionV3, and RegNetY-320
models were trained with a learning rate of 0.01 and achieved an accuracy of 76%, 69%, and
80%, respectively. These models were also trained with a learning rate of 0.001 and achieved
an accuracy of 76%, 77%, and 85%, respectively. Furthermore, the AlexNet, InceptionV3,
and RegNetY-320 models were trained with a learning rate of 0.01 and achieved an F1-score
of 52.2%, 49.9%, and 65.0%, respectively. These models were also trained with a learning
rate of 0.001 and achieved an F1-score of 60.2%, 63.7%, and 69.3%, respectively. The results
show that the performance of RegNetY-320 significantly increased when the learning rate
was changed. The complete results on the imbalanced dataset are presented in Figure 5.
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imbalanced dataset.
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The results obtained using the imbalanced dataset are not efficient. Therefore, a second
experiment was performed by employing image augmentation to obtain better results. The
various configurations of the image augmentation method are presented in Table 2.

Table 2. Various configurations of the image augmentation method.

Technique Configuration

Rotation (Random) [0◦, 360◦]
Translation (Random) [−10, 10] pixels
Rescaling (Random) [1/1.6, 1.6]

Flipping left to right
Shearing (Random) [−20◦, 20◦]

Stretching (Random) [1/1.3, 1.3]

The size of the images was increased to 32,000 from 10,000 when image augmentation
was applied. The models were trained on 22,000 images and tested on 10,000 images. As
the dataset was increased, the models could be trained better. The AlexNet, InceptionV3,
and RegNetY-320 models were trained with a learning rate of 0.01 and achieved an accuracy
of 76%, 78%, and 86%, respectively. These models were also trained with a learning rate
of 0.001 and achieved an accuracy of 76%, 85%, and 91%, respectively. Furthermore, the
AlexNet, InceptionV3, and RegNetY-320 models were trained with a learning rate of 0.01
and achieved an F1-score of 68.5%, 72.0%, and 78.3%, respectively. These models were also
trained with a learning rate of 0.001 and achieved an F1-score of 60.2%, 77.1%, and 88.1%,
respectively. The results show that the performance of RegNetY-320 significantly increased
when the learning rate was changed. The complete results obtained using the proposed
framework are presented in Figure 6.
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It can be observed that the results of our proposed framework outperformed the
state-of-the-art methods, as shown in Table 3. We employed a data augmentation technique
to balance the dataset in our proposed framework. Neural network-based architectures
are trained much better on balanced data than imbalanced data. However, we cannot find
balanced data in the real world, so we balanced the data using data augmentation. Previous
studies claimed that clear convergence is expected to be revealed when training a classifier
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increases the input data, while Table 3 supports our claim that there is a clear difference
between the balanced and imbalanced dataset results.

Table 3. The comparison of the performance on imbalanced data and the proposed framework.

Model Learning Rate
Imbalanced Dataset Proposed Framework

(Balanced Dataset)

Accuracy F1-Score ROC Value Accuracy F1-Score ROC Value

AlexNet 0.01 76% 52.2% 0.83 76% 68.5% 0.83
InceptionV3 0.01 69% 49.9% 0.75 78% 72.0% 0.84
RegNetY-320 0.01 80% 65.0% 0.85 86% 78.3% 0.92

AlexNet 0.001 76% 60.2% 0.83 76% 60.2% 0.83
InceptionV3 0.001 77% 63.7% 0.84 85% 77.1% 0.89
RegNetY-320 0.001 85% 69.3% 0.90 91% 88.1% 0.95

When analysing the problems with different algorithms, we often need to compare the
efficiency of each algorithm to determine which to choose. The ROC curve represents the
false positive rate (FPR) and true positive rate (TPR) under different threshold settings. Each
graph point represents T and FPR under a specific probability threshold. The threshold
ranges from 0 to 1. This is because FPR ranges from 0 to 1, as is obvious from its formula.
The ROC curve lies on (0,0) and (1,1) regardless of which model it is. The ideal TPR is 1,
which means a specific threshold exists where all positives are labelled as positives. The
ideal FPR is 0, which means a specific threshold exists where none of the negatives are
labelled as positives. Thus, (0,1) is the ideal point.

The advantage of the ROC curve is that it considers the balance of positive and negative
observations. TPR focuses on positive cases, and FPR focuses on negative cases. Therefore,
the ROC curve is a more balanced evaluation method. TPR and FPR, the two indicators
in the ROC curve, do not depend on a specific category distribution. Therefore, the ROC
curve has an outstanding feature compared with other evaluation methods. When the rate
of positive and negative observations in the test dataset changes, the ROC curve can remain
unchanged. In actual datasets, class imbalance often occurs. There are many more negative
observations than positive observations, and vice versa. The distribution of positive and
negative observations in the test dataset may also change. The ROC curve can show good
stability in this situation. The ROC curve was evaluated both on imbalanced data and the
proposed framework. In the case of an imbalanced dataset, the AlexNet, InceptionV3, and
RegNetY-320 models were trained with a learning rate of 0.01 and achieved an ROC curve
value of 0.83, 0.75, and 0.85, respectively. These models were also trained with a learning
rate of 0.001 and achieved an ROC curve value of 0.83, 0.84, and 0.90, respectively.

In contrast, using the proposed framework, the AlexNet, InceptionV3, and RegNetY-
320 models were trained with a learning rate of 0.01 and achieved ROC curve values of
0.83, 0.84, and 0.92, respectively. These models were also trained with a learning rate of
0.001 and achieved an ROC curve value of 0.83, 0.89, and 0.95, respectively. The accuracy
of the models concerning each class is presented in Table 4. The results show that the
performance of the models significantly increased using the proposed framework-based
ROC curve. The complete results obtained using the proposed framework based on the
ROC curve are presented in Figure 7.

Table 4. The accuracy of the models for each class.

Model akiec bcc bkl df mel nv vasc Average
Accuracy

AlexNet 57.9 76.2 70.1 67.3 68.0 94.9 98.0 76.0%
InceptionV3 75.6 82.2 80.3 82.4 80.5 95.0 99.0 85.0%

RegNetY-
320 80.7 84.9 88.5 89.4 94.5 99.0 100.0 91.0%
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5. Discussion

The accuracy achieved on the HAM10000 imbalanced dataset with RegNetY-320
was 85%, while the performance improved to 91% after the proposed framework was
employed. Because the size of images also increased from 10,000 to 32,000 images, it
was also concluded that the performance can be increased by increasing the dataset size.
Furthermore, neural network-based architectures performed better on a balanced dataset
for classification problems. Hence, the performance of models is directly proportional to
the size of the dataset. The results obtained using ResNet are better than those of AlexNet
and InceptionV3. The number of trainable parameters in AlexNet is 200,132,679, leading to
an accuracy of 76%. This adds more evidence to the accuracy of the number of trainable
parameters in the neural network. However, when we trained InceptionV3 with just
22,126,759 trainable parameters, we showed an unexpected behaviour with an accuracy of
78%. This exception shows that the accuracy depends on the number of parameters. Still, it
is more dependent on the architecture of the network, i.e., the sequence of layers, number
of convolutional layers, number of connected layers, and the pattern they are connected
in. When the learning rate of RegNetY-320 was changed from 0.01 to 0.001, its accuracy
increased from 86% to 91% in 20 epochs with a batch size of 100. This shows that it might
be evident that the accuracy increases with a decreasing learning rate, or there is still vacant
space in this network for more learning and better accuracy. When we changed the learning
rate of AlexNet from 0.01 to 0.001, its accuracy improved by fractions, showing that a model
with a slower learning rate can extract more features and information from the dataset.

The performance shown by AlexNet, InceptionV3, and RegNetY-320 after training on
the imbalanced dataset was not better than that of the proposed framework, even at the
same learning rate of 0.001, with an epoch size of 20 and a batch size of 100. The accuracies
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of AlexNet, InceptionV3, and RegNetY-320 after utilising the proposed framework were
76%, 85%, and 91%, respectively, but decreased to 76%, 77%, and 85% after training on the
imbalanced dataset. Certain factors involve a significant decrease in the performance of
models. One of those reasons is that the dataset generated using the proposed framework
is much larger than the imbalanced dataset. The model can extract more features from a
larger dataset than it could with a smaller dataset. Secondly, larger data have more than
the model can learn, which is not the case with a smaller dataset. Due to skewed datasets
in a classification problem, the interest of the model builds higher towards classes with
more data and lower classes of a low data size. In classification problems, the model has to
draw boundaries between classes. If the model does not have enough data to differentiate
between classes, it starts confusing class boundaries, decreasing its performance [16,21,45].
A comparison of previous studies on the HAM10000 dataset is presented in Table 5.

The results also show that the deep learning-based models performed better on a
balanced dataset than on an imbalanced dataset. This might be due to the neural network’s
convolutional layers, weight updates, and deep learning. As the neural network does not
need pre-extracted features to be fed to the machine learning algorithm but extracts its
features based on exciting aspects of the class in the images, it might extract features that are
performing well in the dataset, making it more flexible, instead of extracting features that
perform well overall, which leads to overfitting [46–49]. It cannot be verified or falsified
whether the deep learning models were overfitted on this dataset, as the classifiers were
not tested on other datasets. The generalisability of the classifiers trained on this dataset is
unknown. The proposed framework should be generalised to similar tasks and datasets
of the same level of complexity. The demonstrated results depend on the dataset, which
indicates the biased behaviour of the proposed framework. The generalisation of the
proposed framework is indeed a limitation of our work.

Table 5. Comparison of previous studies on the HAM10000 dataset.

Reference Year Models Accuracy (%) F1-Score (%)

[50] 2022 DenseNet201 82.9 74.4%
[51] 2022 Wide-ShuffleNet 86.3 ____
[22] 2022 Collective Intelligence-based System 86.7 ____
[23] 2021 MobileNet V2-LSTM 90.7 ____
[24] 2021 Mask-RCNN 86.5 86.2
[25] 2021 EfficientNet-B4 85.8 ____
[26] 2021 Kernel extreme learning machine (KELM) classifier 90.6 ____
[27] 2021 DenseNet201 87.7 85.5
[28] 2021 CRCKD algorithm 85.6 76.4
[29] 2020 MobileNet 83.1 83.0
[30] 2020 Deep CNN 84.0 ____
[32] 2019 L2 regularisation 72.1 ____

Our study 2022 Proposed framework 91.0 88.1

6. Conclusions

Skin cancer is one of the deadliest diseases globally if not detected at the early stages.
Many deep learning-based applications using computer vision are designed to assist in
detecting skin cancer. This paper sought to find a solution for classifying skin lesions
using images with an efficient performance. A novel framework was proposed to solve
the problem of data imbalance. The classes in the dataset were not balanced, limiting
the performance of deep learning models. Data augmentation techniques are used to
increase the size of the dataset and resolve the data imbalance issue. Our proposed frame-
work was trained on the Skin Cancer MNIST: HAM10000 dataset. AlexNet, InceptionV3,
and RegNetY-320-based deep learning models were trained on balanced and imbalanced
datasets. The proposed framework was tuned on different hyperparameters, i.e., the learn-
ing rate, epochs, and batch size in which the learning rate was changed, but the epochs and
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batch size were fixed. The performance of the RegNetY-320 model was better than that of
AlexNet and InceptionV3 in terms of the accuracy and ROC curve both on the imbalanced
and balanced datasets.

Furthermore, the accuracy obtained using the proposed framework was 91%, which
was significantly better than the state-of-the-art method, which achieved 85%. In the
future, to see a convergence in the accuracy of RegNetY-320, it would be valuable to test
it on a larger training set. It would be interesting to compare the results of the proposed
framework with those of dermatologists for the clinical implementation of our proposed
framework in skin cancer identification. This would provide healthcare institutions with
guidance on when it is appropriate to use our proposed framework as a second opinion
or even replace the human factor. Furthermore, the proposed framework should also be
tested on other skin cancer datasets.
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Hankiewicz, A.; Ułańska, M.; et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 2021, 11, 4337.
[CrossRef] [PubMed]

7. Nikolouzakis, T.K.; Falzone, L.; Lasithiotakis, K.; Krüger-Krasagakis, S.; Kalogeraki, A.; Sifaki, M.; Spandidos, D.A.; Chrysos, E.;
Tsatsakis, A.; Tsiaoussis, J. Current and future trends in molecular biomarkers for diagnostic, prognostic, and predictive purposes
in non-melanoma skin cancer. J. Clin. Med. 2020, 9, 2868. [CrossRef] [PubMed]

8. Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial intelligence-based image classification for diagnosis of skin cancer:
Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065. [CrossRef]

9. Chan, S.; Reddy, V.; Myers, B.; Thibodeaux, Q.; Brownstone, N.; Liao, W. Machine learning in dermatology: Current applications,
opportunities, and limitations. Dermatol. Ther. 2020, 10, 365–386. [CrossRef]

10. Kousis, I.; Perikos, I.; Hatzilygeroudis, I.; Virvou, M. Deep Learning Methods for Accurate Skin Cancer Recognition and Mobile
Application. Electronics 2022, 11, 1294. [CrossRef]

11. Nawaz, M.; Mehmood, Z.; Nazir, T.; Naqvi, R.A.; Rehman, A.; Iqbal, M.; Saba, T. Skin cancer detection from dermoscopic images
using deep learning and fuzzy k-means clustering. Microsc. Res. Tech. 2022, 85, 339–351. [CrossRef]

12. Bechelli, S.; Delhommelle, J. Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic
Images. Bioengineering 2022, 9, 97. [CrossRef] [PubMed]

http://doi.org/10.14569/IJACSA.2019.0100251
http://doi.org/10.1002/ijc.33588
http://doi.org/10.1016/j.jaad.2016.07.045
http://www.ncbi.nlm.nih.gov/pubmed/27707591
http://doi.org/10.1093/jjco/hyab057
http://doi.org/10.1038/s41598-021-83502-8
http://www.ncbi.nlm.nih.gov/pubmed/33619293
http://doi.org/10.3390/jcm9092868
http://www.ncbi.nlm.nih.gov/pubmed/32899768
http://doi.org/10.1016/j.compbiomed.2020.104065
http://doi.org/10.1007/s13555-020-00372-0
http://doi.org/10.3390/electronics11091294
http://doi.org/10.1002/jemt.23908
http://doi.org/10.3390/bioengineering9030097
http://www.ncbi.nlm.nih.gov/pubmed/35324786


Diagnostics 2022, 12, 2115 15 of 16

13. Phillips, M.; Greenhalgh, J.; Marsden, H.; Palamaras, I. Detection of malignant melanoma using artificial intelligence: An
observational study of diagnostic accuracy. Dermatol. Pract. Concept. 2020, 10, e2020011. [CrossRef] [PubMed]

14. Alfi, I.A.; Rahman, M.M.; Shorfuzzaman, M.; Nazir, A. A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using
Deep Learning and Ensemble Stacking of Machine Learning Models. Diagnostics 2022, 12, 726. [CrossRef] [PubMed]

15. Reis, H.C.; Turk, V.; Khoshelham, K.; Kaya, S. InSiNet: A deep convolutional approach to skin cancer detection and segmentation.
Med. Biol. Eng. Comput. 2022, 60, 643–662. [CrossRef]

16. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings
of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122.

17. Santos, M.A.; Munoz, R.; Olivares, R.; Filho, P.P.R.; del Ser, J.; de Albuquerque, V.H.C. Online heart monitoring systems on the
internet of health things environments: A survey, a reference model and an outlook. Inf. Fusion 2020, 53, 222–239. [CrossRef]

18. Wolner, Z.J.; Yélamos, O.; Liopyris, K.; Rogers, T.; Marchetti, M.A.; Marghoob, A.A. Enhancing skin cancer diagnosis with
dermoscopy. Dermatol. Clin. 2017, 35, 417–437. [CrossRef]

19. Srinivas, C.; KS, N.P.; Zakariah, M.; Alothaibi, Y.A.; Shaukat, K.; Partibane, B.; Awal, H. Deep Transfer Learning Approaches in
Performance Analysis of Brain Tumor Classification Using MRI Images. J. Healthc. Eng. 2022, 2022, 3264367. [CrossRef]

20. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

21. Saini, M.; Susan, S. Deep transfer with minority data augmentation for imbalanced breast cancer dataset. Appl. Soft Comput. 2020,
97, 106759. [CrossRef]

22. Popescu, D.; El-khatib, M.; Ichim, L. Skin Lesion Classification Using Collective Intelligence of Multiple Neural Networks. Sensors
2022, 22, 4399. [CrossRef]

23. Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural
networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [CrossRef] [PubMed]

24. Khan, M.A.; Zhang, Y.-D.; Sharif, M.; Akram, T. Pixels to classes: Intelligent learning framework for multiclass skin lesion
localization and classification. Comput. Electr. Eng. 2021, 90, 106956. [CrossRef]

25. Huang, H.W.; Hsu, B.W.Y.; Lee, C.H.; Tseng, V.S. Development of a light-weight deep learning model for cloud applications and
remote diagnosis of skin cancers. J. Dermatol. 2021, 48, 310–316. [CrossRef] [PubMed]
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