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Abstract

We formulate the problem of constructing broadcast trees for real-time traffic with delay
constraints in networks with asymmetric link loads as a del ay-constrained minimum spanning
tree (DCMST) problem in directed networks. Thenwe provethat thisproblem isNP-complete,
and we propose an efficient heuristic to solve the problem based on Prim’s agorithm for the
unconstrai ned minimum spanning tree problem. Thisisthefirst heuristic designed specifically
for solving the DCMST problem. Simulation results under realistic networking conditions
show that our heuristic’s performance is close to optima when the link loads are symmetric
as well as when asymmetric link loads are used. Delay-constrained minimum Steiner tree
heuristics can be used to solve the DCMST problem. Simulation results indicate that the
fastest delay-constrained minimum Steiner tree heuristic,c DMCT [1], is not as efficient as
the heuristic we propose, while the most efficient delay-constrained minimum Steiner tree
heuristic, BSMA [2], is much slower than our proposed heuristic and does not construct
cheaper delay-constrained broadcast trees.

1 Introduction

Most distributed real -time applicationsinvolve morethan two users and hence the need for efficient
multicast routing. Several multicast routing protocols have been proposed. These protocols con-
struct multicast trees that can be classified into two categories. source-specific trees (MOSPF [3],
DVMRP [4], and PIM [5, 6]) and shared trees (CBT [7] and PIM? [5])2. All these protocols are
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PIM has two modes: a dense mode that uses source-specific trees, and a sparse mode that allows both source-
specific trees and shared trees.

2In this paper we consider only source-specific trees.




based on smple multicast routing algorithms. shortest path algorithms [8, 9] and reverse path
multicasting [10, 11], and none of them applies cost metricsthat are functions of the utilization of
the network resources.

Real-time applications, e.g., multimedia and distributed real-time control applications, will
be popular applications of high-speed networks in the near future. Real-time traffic is usually
bandwidth extensive and requires quality of service (QoS) guaranteesfrom the underlying network.
Hence the need for efficient multicast routing algorithms which define cost as a function of the
utilized link bandwidth, and are capable of constructing low-cost multicast trees that satisfy the
constraintsimposed by the QoSrequirements. Thedelay constraint, i.e., the upper bound on end-to-
end delay, isanimportant QoS requirement, because most real -timeapplications, and theinteractive
onesin particular, are delay-sensitive. A number of delay-constrained multicast routing algorithms
have been proposed during the past few years. A delay-constrained shortest path heuristic was
proposed in [12], and several cost-efficient, but quite complex, delay-constrained minimum Steiner
tree heuristicswere proposed in [13, 1, 14, 2]. A thorough evaluation of different multicast routing
algorithms, unconstrained and delay-constrained, can be found in [15]. The destination set of the
minimum Steiner tree problem may be any subset of the network nodes. In the special case when
the destination set includes all nodes in the network, multicasting reduces to broadcasting, and
the minimum Steiner tree problem reduces to the, usualy less complex, minimum spanning tree
(MST) problem. The delay-constrained minimum Steiner tree problem isNP-complete [13], and it
remains NP-complete even after the delay constraint is removed [16]. We prove in this paper that
the delay-constrained MST (DCMST) problem isaso NP-complete. However, several polynomial
time algorithms exist for the unconstrained MST problem [17, 18].

In the future, many real-time applications will involve al nodes in a given network. Some
distributed real -time control applications and the broadcasting of critical network state information
are just a few examples. For such applications, DCMSTs are needed to broadcast the real-time
traffic from the source node to all other nodes in the network. The existing delay-constrained
minimum Steiner tree heuristics, can be used to construct delay-constrained broadcast trees, but
most of them are too complicated [15]. The comparison given in [15] shows that BSMA [2]
is the most efficient delay-constrained minimum Steiner tree heuristic. The distributed delay-
constrained minimum Steiner tree heuristic, DMCT, proposed in [1], is the only fast heuristic
capable of generating DCMSTs. DMCT was designed for networks with symmetric link loads
(undirected networks). In this paper, we propose an efficient DCM ST heuristic for the general case
of networks with asymmetric link loads (directed networks). Both our heuristic and DMCT are
based on Prim’s unconstrained MST algorithm [17]. We will show that the heuristic we propose
outperforms DMCT, not only in the case of directed networks, but also in the special case of
undirected networks. We also compare our heuristic to BSMA.

This paper is organized asfollows. In section 2, we formulate the DCM ST problem in directed
networks and prove that it is NP-complete. In section 3, we present our heuristic for solving the
problem. Then in section 4, we evaluate the average performance of the heuristic and compare it
to optimum, DMCT, and BSMA using simulation. Section 5 concludes the paper.



2 Problem Formulation

A communication network is represented as a directed network ¢ = (V| E), where V' is a set of
nodes and £ isaset of directed links. Any link e € F hasacost ¢(e¢) and adelay d(e) associated
with it. ¢(e) and d(e) may take any positive rea values.

A spanning tree T'(s) C E isrooted at asource node s € V' and contains a path from s to any
nodewv € (V — {s}). Thetotal cost of atree T'(s) issmply:

Cost(T(s)) = > (1) ©)
teT(s)
A path P(T'(s),v) C T(s) isthe set of tree links connecting s to v € V. The cost of the path
P(T(s),v)is.
Cost(P(T(s).0)) = 3 «(t) @
and the end-to-end delay along that path is:
Delay(P(T(s),0) = 3 d(t) &)
teP(T(s),v)
Thus the maximum end-to-end delay of a spanning treeis:
Max_Delay(T(s)) = mea‘; (Delay(P(T(s),v))) 4

The DCMST problem in directed networks constructs the spanning tree 7'(s) rooted at s that
has minimum total cost among all possible spanning treesrooted at s which have a maximum end-
to-end delay less than or equal to agiven delay constraint A. The same problem can be expressed
as adecision problem asfollows.

Delay-Constrained Minimum Spanning Tree (DCM ST) Problem:  Given a directed network
G = (V, E), apodtive cost ¢(¢) for each e € F, a positive delay d(e) for each e € F, a source
node s € V, a positive delay constraint A, and a positive value B, is there a spanning tree 7'(s)
that satisfies:

Cost(T(s)) < B, (5)
Max_Delay(T(s)) < A? (6)

Theorem 1 DCMST is NP-complete unless all link costs are equal.

Proof. The DCMST problem in undirected networks (DCM ST-undirected) is arestricted version
of DCMST. Weprovein appendix A that DCM ST-undirected isNP-complete and therefore DCM ST
is aso NP-complete. O

In the next section we propose asimple and efficient heuristic for the DCM ST problemto avoid
the exponentially growing execution times of the optimal solutions. We call it the bounded delay
broadcasting (BDB) heuristic.



3 TheBDB Heuristic

The BDB agorithm consists of two phases; phase 1 is executed once, followed by phase 2, which
is also executed once. The result of phase 1 is a moderate-cost spanning tree which satisfies the
delay constraint. phase 2 attemptsto replace expensive linksin this treewith cheaper links, without
violating the delay constraint, and without introducing loops.

Phase 1 of BDB is outlined below:

1. Gven G=(V,E), a source node s, all link costs, and
all link delays. The initial subtree contains the source
s only.

2. Repeat {

3. Find the cheapest link that connects an unconnected node
to the already constructed subtree w thout violating
the delay constraint. Add that link to the subtree.

4. If step 3 can not find any link, then select a link e=
(u,v) which is not included in the subtree and u and v
are already in the subtree. The link e is chosen such
t hat :

e Replacing the link [ = (w,v) (this is the subtree
[ink currently used to connect » upstreamtowards
s) with the selected link e maxi m zes the del ay rel axati on.

If no Iink that achi eves positive delay rel axation can
be found, the heuristic fails and exits, else renpve
[ and add ¢ to the subtree.

5. } until the tree spans all nodes.

The term delay relaxation can be defined as follows. Given are two alternate paths, P, and P,
to connect the source s to somenoden € V, and Delay () < Delay(Py). If Py isthe currently
used path from s to n, the delay from s to n can be reduced by using the path P, instead of P, then
the delay relaxation at » is the difference between Delay(F,) and Delay(F1). Phase 1 of BDB
is based on Prim’s M ST algorithm. It starts with a subtree containing the source node s only, and
adds one node at a time to the subtree without violating the delay constraint, as outlined above,
until the subtree spans al nodes in the network. If at any point during the first phase, the heuristic
can not find any node that can be added without violating the delay constraint, it resorts to delay
relaxation. BDB relaxes the delays by choosing anode . that isalready in the subtree and replaces
the subtreelink e ... cONnecting it upstream towards s with another link e, .., such that » remains
connected to s and the end-to-end delay from s to » is reduced. The node » is chosen such that
the delay relaxation is maximized. If no more positive delay relaxation can be achieved and BDB
failsto add any remaining unconnected nodes to the subtree, the algorithm fails. It is guaranteed,
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however, that the first phase of BDB will find a delay-constrained tree spanning all nodes if one
exists, because in the worst case the heuristic keeps applying the delay relaxation step, and thus
reducing the end-to-end delays to the individual nodes until it ends up with the shortest path tree
that minimizes the end-to-end delay, the least-delay tree. If the least-delay tree can not span al
nodes in the network without violating the delay constraint, no other tree can.

Below isthe pseudo-code of phase 2 of BDB:

1. Gven G=(V,F), a source node s, all link costs, all
link delays, and an initial delay-constrained tree spanning
all nodes in V.

2. Repeat {

3. Find the cheapest link ¢ = (u,v), v # s, which is not
included in the subtree, and which satisfies the follow ng
condi ti ons:

| f adding ¢ to the tree does not create a | oop:

e c(e) <c¢(l) where [ =(w,v) is the tree link currently
used to connect v upstreamtowards s.

e Replacing /| wth e does not cause any del ay constraint
vi ol ations along the tree.

el se:

e Call the | oop breaking algorithm LBA It attenpts
to break the | oop such that the cost of the resulting
tree is less than the cost prior to creating the
| oop and that the resulting tree does not violate
the delay constraint. |If it returns success nenorize
t he values returned for /. u.w and l,4s. 1f the | oop
breaking algorithmfails, the | oop created by adding
e can not be broken. Thus e can not be used to reduce
the cost of the tree.

4. |f no such link can be found, the heuristic can not achi eve
further cost reduction and stops,
el se:

e Renove [ and add ¢ to the tree.

o |If ¢ creates a | oop, break the | oop by renoving the
link lnwe fromthe tree and replacing it with the
i nk Lodd.

5. } until no further cost reduction can be achieved.



In phase 2, expensive tree links are removed and replaced with cheaper links. The algorithm
scansall linksnot already inthetree, and choosesthe cheapest link, e = (u, v) suchthat ¢(e) < ¢(1),
where [ = (w,v) isthe link currently used to connect the node v upstream towards s. Another
condition for choosing the link ¢ isthat using it to replace [ in the tree does not cause any delay
congtraint violations. The chosen link e is then added to the tree, and link / is removed. Phase 2
repeats this operation until no more cost reduction can be achieved.

Thelink replacement operation of phase 2 may resultinloops. Beforealoop iscreated, theloop
breaking algorithm (LBA) isapplied. If LBA succeeds, the loop is created and broken according to
itsoutput, elsetheloop isnot created in thefirst place. The pseudo codefor LBA is shown below:

1. Gven G=(V,FE), atree T(s)CF, a potential |oop path
consisting of the set of nodes X = {xg,...,z:} CV, and
the set of links L = {ll = (l’o,l’l),...,lk = (l'k—lyl'k)} C T(S),
a link [§=(xz20) to close the loop if added, and a link
lo=(y,z0) l'inking the potential |oop path upstreamtowards
the source. ¢(lf) < ¢(lp).

2. improvement :=0, [ and [,4q are not set.
3. Repeat for all nodes z; € (X — ) {

4. Find the cheapest link I, to replace [, in connecting
x; upstreamtowards the source, such that:

o c(lo) + c(l;) — c(ly) — e(l’) > improvement
e The resulting tree after renoving /p and /; and repl aci ng

themw th [ and [/ does not contain any | oops and
does not violate the delay constraint.

I f such a link exists: improvement:=c(lp)+ c(l;) — c(lp) —
C(l;), lremove = li, ladd = l;

5. )

6. If [ ... and l,;; are not set: return failure,
el se return success and the val ues of ... and [ .

LBA attemptsto select the proper location to break a given loop and to restore the tree structure
without violating the delay constraint, and such that the resulting tree after creating and breaking
the loop is cheaper. Using the same terminology of LBA's pseudo code, if link I = (a, xo) iS
added, aloop results. Removing link [y = (y, x¢) disconnectsthe loop nodes, «;, ¢ = 1, ..., k, from
the upstream tree. LBA scans each loop node and attemptsto removethelink /; = (x;_1, «;) and to
replaceit with another link I! = (z, z;), = € V. Removing /; breakstheloop. Thelink /! is selected
such that it reattaches the nodes of the broken loop upstream towards the source s. LBA attempts
to select /; and [/ such that the resulting tree does not violate the delay constraint, and such that its
cost is cheaper than the cost of the initial tree given to LBA. If there are multiple alternatives to
break the loop, LBA chooses the aternative which resultsin the cheapest tree. If LBA can not find
any links/; and /! to break the loop, it fails, else it outputs the values of /; and /..
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(8 Cost(T(s)) = 12, Max_Delay(T(s)) = 4. (b) Cost(T(s)) = 11, Max_Delay(T(s)) = 7.

Figure 1. Total cost of a MC tree relative to optimal, unconstrained algorithms, 20 nodes, average
degree 4.

Example: Figure 1 showsan exampleillustrating the loop breaking operation. Figure 1(a) shows
the broadcast tree constructed by the first phase of BDB. Itscost is 13. In phase 2, BDB attempts
to removethe link /o = (s, z¢) and to replace it with the link I = (3, x0) in order to reduce the
tree cost. However, thisresultsin a|OOp {ll = (l’o, l’l), [ = (1’1, 1}2), [3 = (1’2, 1}3), l6 = (1’3, l’o)}
LBA is called to determine how to break that loop. For the given case, LBA has only three
aternatives. The first alternative is to remove the link /; and replace it with thelink (¢, z1). This
breaks the loop and results in a tree cost of 11, but the resulting tree would have a maximum
end-to-end delay of 8 > A. Thusitisregected. The second aternativeis to remove thelink /, and
replace it with the link (u, x2), thus breaking the current loop, but creating another one consisting
of {(zo,x1), (w1, ), (u,x2),x2, x3), (v3,20)}. Thisis aso unacceptable. The only remaining
aternative for the given example is to remove [, and replace it with (¢, x,) which results in an
acceptable tree with a total cost of 12 and a maximum end-to-end delay of 7 = A as shown in
figure 1(b).

Kompellas DMCT agorithm [1] resembles phase 1 of BDB, but its approach to relax the
delaysisdifferent from BDB’s. However, DMCT does not have an equivalent to phase 2 of BDB.
DMCT’ s execution stops as soon as all destination nodes areincluded in the tree being constructed,
because its aim is to construct a Steiner tree and not a spanning tree.

In the next section we comparethe performance of BDB to the performancesof DMCT, BSMA,
and the optimal delay-constrained minimum spanning tree algorithm, OPT. We implemented OPT
as a branch and bound algorithm.



Figure 2: A randomly generated network, 20 nodes, average degree 4.

4 Experimental Results

We used simulation for our experimental investigationsto avoid the limiting assumptions of analyt-
ical modeling. Full duplex directed networksof different sizeswith homogeneous|ink capacities of
155 Mbps (OC3) were used inthe experiments. The positions of the nodeswere fixed in arectangle
of size 3000 * 2400 Km?, roughly the area of the USA. A random generator (based on Waxman's
generator [19] with some modifications) was used to create links interconnecting the nodes. The
output of thisrandom generator is always a connected network in which each node’sdegreeis > 2.
The probability of alink to exist between any two nodesis afunction of the distance between these
two nodes [19]. We adjusted the parameters of the random generator to yield networks with an
average node degree of 4. Figure 2 shows an example of a randomly generated 20-node network.

The propagation speed through the links was taken to be two thirds the speed of light. The
propagation delay wasdominant under these conditions, and the queueing component was neglected
when calculating link delays and end-to-end delays. Thus the link delays are symmetric, because
the link lengths, and hence the propagation delays, are symmetric.

We used variable bit rate (VBR) video for the broadcast sources. These are redistic bursty
traffic sources used in real-time applications with delay constraints. A broadcast tree that includes
alink e, reserves a fraction of e’s bandwidth equal to the equivalent bandwidth® of the traffic
generated by the corresponding broadcast source. The link cost, ¢(e), is equal to the reserved
bandwidth on that link,i.e., equal to the sum of the equivalent bandwidths of the traffic streams
traversing that link.

The experiment we ran, comparesthedifferent algorithmswhen each of themisappliedto create

3Any other suitable measure could also be used.
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Figure 3: Percentage increase in the cost of a broadcast tree relative to optimal, variable range of
link loads, 20 nodes, delay constraint A = 0.03 seconds.

a broadcast tree for a given source node generating VBR traffic with an equivalent bandwidth of
0.5 Mbps, under given network loading conditions. For each run of the experiment, we generated
a random set of links to interconnect the fixed nodes, we selected a random source node, and
we generated random background traffic for each link. The equivaent bandwidth of each link’s
background traffic was a random variable uniformly distributed between B,,;, and B,,... This
representstheinitial cost of each link. For networkswith symmetric link loads, the initial cost of a
linke = (u,v)andtheinitial cost of thereverselink ¢’ = (v, u) were set to the same random value.
For networks with asymmetric link loads, however, the initial cost of ¢ = (u,v) and e/ = (v, u)
were independent random variables. In that case, the asymmetry of the link loads increased as the
range of the link loads, i.e., the difference between B, and B,,,;,,, increased.

The experiment was repeated with different link loading conditions, different delay constraints,
and different network sizes. For each setting of these parameters, we measured the total cost of the
broadcast tree. We ran the algorithms repeatedly until confidence intervals of less than 5%, using
95% confidence level, were achieved. On the average, 300 different networks were smulated in
each experiment, in order to reach such confidence levels. At least 250 networks were simulated
in each case. We simulated the following algorithms. BDB, DMCT, BSMA, and OPT. We could
not apply OPT to networkswith more than 20 nodes due to its excessive execution time. The other
algorithms were applied to networks with up to 200 nodes. Therefore, we show the percentage
excess cost of each algorithm relative to OPT in case of 20-node networks only. When discussing
resultsfor networkswith morethan 20-nodes, we show the percentage excess cost of each algorithm
relative to BSMA which was previoudy shown in [15] to be the best performing minimum Steiner
tree heuristic.

Figure 3 shows the cost of a broadcast tree versus the range of link loads, B,,... — Bin, fOr
20-node networksand atight delay constraint of 0.03 seconds. Weincreased therangeof link loads,
Biaz — Bumin, from 0 to 120 Mbps while keeping the average link load, ( B,a. + Bmin)/2, fixed
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Figure 4: Percentage increase in the cost of a broadcast tree relative to optimal, variable delay
congtraint A, 20 nodes, B,,.;, = 5 Mbps, B,,.... = 125 Mbps.

at 65 Mbps at al times. All algorithms perform equally well in case of zero range of link loads,
because all link costs are equal and there is nothing to be minimized in that case. DMCT’s costs
also deviate further from optimal as the range of link loads increases. It is up to 23% worse than
OPT when the link loads are asymmetric, but it performs slightly better in case of symmetric link
loads and yield tree cost that are within 15% from OPT. BDB and BSMA remain close to optimal
even when the range of link loadsislarge. The tree costs of BDB and BSMA are equa throughout
the entire range of link loads simulated in this experiment. BDB's tree costs are within 7.5% from
OPT when asymmetric link loads are used and only 5% off optimal in case of using symmetric
link loads. We found that DMCT’s tree costs are comparabl e to the costs of the intermediate trees
resulting from phase 1 of BDB. Thus the phase 2 of BDB is capable of reducing the cost of its
initial tree by up to 15% in some cases.

We repeated the experiment with a fixed range of link loads and a variable delay constraint.
Theresultsare shown infigure 4 for 20-node networks. When the delay constraint istight, it limits
the algorithms’ ability to construct cheap trees, because there aren’'t many possible solutions for
the problem. As the delay constraint increases, its effect on restricting the algorithms' efficiency
in constructing cheap trees diminishes, and the algorithms are capable of constructing cheaper
trees. When the delay constraint increases further, the effect on the resulting tree costsis minimal,
because the solution of the DCMST problem approaches the solution of the unconstrained MST
problem. Thisisevident in figure 4(b), where BDB and DMCT are almost optimal when the delay
constraint exceeds 0.06 seconds. This happens because DMCT and phase 1 of BDB are based
on Prim’s agorithm whichis optimal for the unconstrained MST problem in undirected networks.
BDB performsdlightly better than BSMA when the delay constraint isrelaxed, both when the link
loads are asymmetric and when they are symmetric.

Figure 5 shows the percentage excess costs of BDB and DMCT relative to BSMA when the
network size varies from 20 nodes to 200 nodes while keeping the delay constraint and the range
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Figure 5: Percentage increase in the cost of a broadcast tree relative to BSMA's tree cost, variable
network size, delay constraint A = 0.03 seconds, B,,.;, =5 Mbps, B,.... = 125 Mbps.

of link loads fixed. BDB performs as well as BSMA does throughout the entire range of network
sizes, while DMCT’s performance relative to BSMA deteriorates as the network size increases.
For 200-node networks, DMCT'’s trees are 30% and 35% more expensive than BSMA and BDB
depending on whether the link loads are symmetric and asymmetric respectively.

Finally, in figure 6, we present the average execution times of BDB, DMCT, and BSMA versus
the network size. Note, however, that our code for these algorithms was not optimized for speed.
Figure 6 shows that the average execution times of both heuristics grow at the same rate, and are
always within the same order of magnitude, with BDB being constantly sower than DMCT by
approximately 60%. BSMA is at |east one order of magnitude slower than BDB and DMCT and
its execution time grows at afaster rate.

5 Conclusons

Distributed real-time applications with QoS constraints will extensively utilize the resources of
high-speed networks in the near future. We studied the problem of constructing broadcast trees
for real-timetraffic with delay constraints in networks with asymmetric link loads. We formulated
the problem as a DCMST problem in directed networks, and then we proved that this problem
is NP-complete. We proposed a bounded delay broadcast (BDB) heuristic to solve the DCMST
problem. The heuristic consists of two phases. The first phase is based on Prim’s algorithm [17]
and constructs a moderate-cost del ay-constrained spanning tree. The second phase reducesthe cost
of that tree by replacing tree link with cheaper links not in the tree without violating the imposed
delay constraint. Simulation results show that BDB'’s performance is close to optimal in case of
networks with asymmetric link loads as well as in the specia case of networks with symmetric
link loads. Delay-constrained minimum Steiner tree heuristics can be used to solve the DCMST
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Figure 6: Average Execution time, variable network size, delay constraint A = 0.03 seconds, B,,.;.,
=5Mbps, B,... = 125 Mbps.

problem. We compared BDB to the best delay-constrained Steiner heuristic with respect to tree
cost, BSMA, and the fastest delay-constrained Steiner heuristicc DMCT. BDB is as efficient as
BSMA in constructing cheap broadcast trees. DMCT is not as efficient as BDB. As the network
size increases the difference between BDB and DMCT increases. DMCT’s trees are up to 35%
more expensive than BDB'’s trees when the network size is 200 nodes. DMCT was designed for
networks with symmetric link loads, but even in that case BDB performs better. The average
execution times of both BDB and DMCT grow at the same rate with DMCT being faster than
BDB. BSMA's execution times are larger than BDB’s execution times, and grow at afaster rate. In
summary, our experimental resultsindicate that BDB isafast and efficient DCMST heuristic.

Appendix A NP-Completeness of DCM ST-undirected

Delay-Constrained Minimum Spanning Tree in Undirected Networ ks (DCM ST-undirected)
Problem: Given an undirected network G = (V, ), a positive cost ¢(e) for each e € E, a
positive delay d(e) for each e € E, a source node s € V, a positive delay constraint A, and a
positive value B, is there a spanning tree 7'(s) that satisfies:

Cost(T(s)) = > ¢(t) < B, @)
teT(s)
Max_Delay(T(s)) = rvneavx Delay(P(T(s),v)) < A? (8)

Theorem 2 DCMST-undirected is NP-complete unless all link costs are equal.
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Proof. Whenall link costs are equal, the solution to the polynomial timeleast-delay tree problem
(the shortest path tree in which link delays are used as a cost function) can be used to answer
the DCMST-undirected decision problem. The DCMST-undirected problem is in NP, since a
nondeterministic algorithm can guess a set of links to form the tree, then it is possible to verify in
polynomial time that these links do form atree, that this tree spans all nodes in the network, that
the total cost of the treeisless than B, and that the maximum end-to-end delay from the source
node s to any nodev € V' isno morethan A.

The next step is to transform a known NP-complete problem to DCM ST-undirected. We will
use the Exact Cover by 3-Sets (X3C) problem which has been shown to be NP-completein [20]. It
can be stated as follows.

Exact Cover by 3-Sets (X3C) Problem: Given afinite set X = {x1,...,3,} and a collection
Y ={y1,...., yy}, ¢ > p, of 3-element subsets of X, istherea subcollection Y’ C Y such that every
element of X occurs in exactly one member of Y, i.e, the members of Y’ are pairwise digoint,
and Uyeyr y = X?

Given an arbitrary instance of X3C, weconstruct thenetwork ¢ = (V, £) for the corresponding
instance of DCM ST-undirected as follows:

e Every element of X isrepresented by anode in the network, and also every member of V' is
represented by a node. Two additional nodes are introduced: a source node s and another
nodet. Therefore:

V=sUutuXuyY 9)

e Add thefollowing set of undirected links £ to interconnect the nodes:

E = (,0)U{(s,y)i=1..,¢tU{(t,y) t=1,...,¢}U
{lyiszj) rxj €yi=1,..,¢,5=1,...,3p} (10

e Assign thefollowing costs to the links:

1 otherwise

c(e):{ 3 ee{(s,y)1=1..¢} (12)

e Unit delay isassigned to all links:

dle)=1 VYee E (12)

e Set the delay constraint A of DCM ST-undirected to:

A=2 (13)

e Set the positive value B to:
B=5+q¢+1 (14)
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X3C:p=2,g=4,
Y = {{x5. xa %33, {x2, 13, %43, {x2, %4, %57, {34, %5, %6) }

Transformed to DCMST:
B=15A=2

Figure 7. Equivaent instances of X3C and DCM ST-undirected. Link costs are shown. All link
delays are set to 1 (not shown).

Figure 7 illustrates this transformation. It is clear that it can be done in polynomial time. The
final step isto show that afeasible spanning tree existsfor the above instance of DCM ST-undirected
if and only if the 3-set collection Y has an exact cover Y. If for a given instance of X3C, any
element = € X isnot inany member y of the collection Y then that instance does not have an exact
cover. The above transformation, when applied to such an instance, will result in an unconnected
network, thus no spanning tree can be constructed.

If, however, for a given instance of X3C, each element + € X appearsin at least one member
y of Y, the resulting network will be connected. Since al link delays are set to 1 and the delay
constraint A is set to 2, the number of hops along any path starting at s in any feasible solution 7'( s)
can not exceed 2. Asaresult al nodesz;,: = 1, ..., 3p, must be leaf nodesin any feasible solution.
Each node z; will be attached to some node y; € Y viaaunit cost link. The y;s used to reach the
x;S must therefore be directly attached to s viathe expensive links of cost 3. Cheaper but longer
paths, viathe node ¢, can be used from s to the y;s which are not used to reach the «;s. Let there
be m nonleaf y; nodes (y;s that are used to reach the «;s) and » leaf y; nodes, where ¢ = m + n.
Thus the total cost of any spanning tree, 7'(s)sq.:_a, that satisfies the delay constraint A is:

zis nonleaf y;s  leaf y;s t
COSt(T(S)sat_A) - Sp*l‘l‘ m*3 —|—n>|<l—|—l>|<l

= 3Pp+3m+(g—m)+1=3p+2m+q¢+1 (15)

Each component in equation 15 represents the cost of the links used to attach a set of nodes,
indicated as the label of that component, upstream towards s. From equations 7, 14 and 15 it
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follows that the condition
m<p (16)

must be satisfied for the total cost of the tree to be less than B. On the other hand, each of the m
nonleaf y;s can be used to reach at most 3 x;S. Therefore

m > p (17)
nonleaf y; nodes are needed to reach the 3p ;s. Combining conditions 16 and 17, we get
m=p (18)

as the only possible number of nonleaf y;s that results in a feasible solution to that instance of
DCMST-undirected. For such afeasible solution to exist, each of the p nonleaf y;s must be used
to reach exactly 3 different «;s, or in terms of the X3C problem: the members of the collection Y
corresponding to the p nonleaf i, nodes must be pairwise digoint. p pairwise digoint 3-sets cover
3p elements, and thus form an exact cover of the set X. This meansthat the existence of afeasible
solution of an instance of DCM ST-undirected implies the existence of a feasible solution for the
corresponding instance of X3C.

Conversely, if aninstance of X3C has an exact cover of X, that exact cover Y’ C Y must have
exactly |Y’| = p membersto cover the 3p elements of X. The corresponding instance of DCM ST-
undirected will have a feasible solution with |Y”| nonleaf y;s, a maximum end-to-end delay of
2=A,andatotal costof 3p+ [Y'|*3+|Y —Y'|*1+1=3p+3p+q¢—p+1=5p+q+1=B.
This compl etes the proof. O
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