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Abstract 

This study proposes a novel DE variant for global 

optimizations based on both top collective information 

and p-best information (called CIpBDE). A combined 

mutation strategy (CIpBM) takes advantage of the 

mutation strategies “target-to-ci_pbest/1” and “target-to-

pbest/1” is introduced trying to escape from stuck of local 

optima. A modified crossover operation (CIpBX) is 

proposed to handle the stagnation of DE. CIpBX adopts a 

collective vector or top p-best individual based on 

probability to execute crossover operation when 

stagnation occurs. An improved parameter adaptation 

strategy is figured out to adaptability to adjust the 

parameters crossover probability and scale factor value in 

each generation. To evaluate the performance of CIpBDE, 

comprehensive experiments are conducted on the 

CEC2013 benchmark test suit with 28 functions. 

Experimental results show that CIpBDE outperforms the 

seven state-of-the-art DE variants. What’s more, we also 

apply CIpBDE to the feature selection problem. 

Compared results on several standard data sets indicate 

that CIpBDE outperforms the four comparing algorithms 

in terms of classification accuracy. 

Keywords: Differential evolution, Collective information, 

p-best information, Global optimization, 

Feature selection  

1 Introduction 

Different types of optimization problems exist in 

many real-world applications. Besides traditional 

deterministic optimization methods, many intelligent 

stochastic optimization algorithms have been designed 

to deal with these optimization problems. These 

algorithms are commonly simple, powerful and easy to 

implement. Some representative algorithms are genetic 

algorithm (GA) [1], particle swarm optimization 

algorithm (PSO) [2-3], artificial bee colony algorithm 

(ABC) [4-5], Cat Swarm Optimization (CSO) [6-7], 

differential evolution algorithm (DE) [8-11], Bat 

Algorithm [12], etc. Among these algorithms, the DE 

is a simple yet effective intelligent optimization 

algorithm, which was first introduced by Storn and 

Price [8] in 1995 for solving continuous optimization 

problems. Over the last two decades, DE has attracted 

the attention of many researchers in the fields of 

science and engineering, and it has been widely applied 

to solve various real-world problems [13-15]. 

The basic DE algorithm originates from the Genetic 

Annealing Algorithm [16] that combined the GA and 

the simulated annealing algorithm (SA) [17]. Hence, 

the three main evolutionary operators, selection, 

mutation and crossover adopted in GA are inherited 

into DE. However, the order of these operations in DE 

is mutation, crossover, and selection which is different 

from the operation sequence of GA [18-20]. Compared 

with other evolutionary algorithms, DE has been 

proven its competitive performance, but its 

performance is affected by the mutation operation, the 

crossover operation, and associated control parameters 

such as scale factor F,  crossover rate CR  and 

population size NP . To improve the DE’s performance, 

many researchers first make their research focus on 

developing new mutation operators [21-23], crossover 

operators [24-26] and parameter control approaches [9, 

27-28]. Now, there are more than six mutation 

strategies (i.e., DE/best/1, DE/rand/1, DE/best/2, 

DE/rand/2, DE/target-to-best/1, DE/target-to-rand/1 

and DE/target-to-pbest/1) and two crossover operators 

(i.e., binomial/uniform crossover and exponential 

crossover) in the DE family. These mutations and 

crossover operations are suitable for different problems. 

It is a challenging work to design a new mutation 

strategy with good exploration and exploitation ability. 

In [22], Zheng et al. proposed a novel powerful 

mutation strategy “target-to-ci_mbest/1” using 

collective information of several good individuals, but 

this mutation strategy may be not effective to target 

vector with poor fitness value.  
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Meanwhile, different settings of the control 

parameters have different characteristics [29]. For 

example, DE with a smaller CR  value pays attention 

to local exploitation because the target vector will 

propagate more components to the trial vector. In 

contrast, DE with a higher CR  value will lead to 

higher population diversity, because the trial vector can 

get more components from the donor/mutant vector. 

Similarly, DE with a smaller F  value pays more 

attention to local search ability. In contrast, DE with a 

larger F  value pays more attention to global search 

ability. As many works of literature report the claims 

and counter-claims for the selection of appropriate 

control parameters [13, 30-31], these may confuse 

scientific researchers and engineers who use DE. In 

fact, it is still an open problem to choose the 

appropriate parameter settings to get a good trade-off 

the DE’s exploration and exploitation capacity. 

On the other hand, DE has the problem of stagnation 

and premature convergence [32-34]. Stagnation means 

that the algorithm no longer generates better candidate 

solutions even though the whole population has not yet 

converged. While premature convergence means that 

the algorithm cannot generate better candidate 

solutions because the whole population has converged 

to the local optimal solution. 

In this study, we introduce a novel DE, referred to as 

CIpBDE, which consists of three main components. 

Firstly, we propose a combined mutation strategy 

CIpBM which takes the advantages of the mutation 

strategies “target-to-ci_pbest/1” and “target-to-pbest/1”. 

The mutation strategy “target-to-ci_pbest/1” is a 

variant of the “target-to-ci_mbest/1”. The “ci_pbest” 

means collecting information from the top *p NP  best 

individuals of the population. The letter p is a linear 

decreased value which is different from the letter m in 

“ci_mbest”, where m is a random integer and, [1,i]m∈ , 

governed by the rank i target individual [22]. The 

mutation strategy “target-to-pbest/1” was introduced in 

the literature [21] for JADE. Second, either collective 

vector, which is generated by weighted contributions 

from top *p NP  best individuals, or the top p-best 

individual based on probability is used to perform 

crossover operation when stagnation occurs. This 

crossover operation is beneficial to alleviate the 

problem of stagnation. Finally, a modified parameter 

adaptation strategy is used to adjust the parameters CR  

and F  values in each generation with the help of 

successful parameter values which can produce better 

offspring in the last generation. We verify the proposed 

CIpBDE algorithm by using the CEC2013 benchmark 

test suit and a real-world problem of feature selection 

in machine learning. The experimental results indicate 

that CIpBDE performs better than the comparing 

algorithms.  

The remainder of this paper is organized as follows. 

We briefly introduce the standard DE in section 2. 

Section 3 describes the related work of DE. Then, our 

enhancing DE using top collective information and p-

Best information (CIpBDE) is presented in Section 4. 

The experimental results under CEC2013 benchmark 

set are presented in Section 5. Moreover, the 

application of CIpBDE to feature selection problem is 

provided in Section 6. Section 7 provides the 

conclusion of this paper. 

2 Differential Evolution  

DE is a robust population-based algorithm. In 

general, there are four essential components in DE, i.e., 

initialization, mutation, crossover or recombination, 

and selection. First, DE initials the population, and 

then DE gets into a cycle of evolutionary operations 

consisted of mutation, crossover or recombination and 

selection until a stop condition is satisfied. The detailed 

description of these four components is provided below. 

Initialization. DE begins with an initial population, 

which consists of NP  D-dimensional individuals 

, ,1, ,2, ,D,
(x ,x ,..., x )

i g i g i g i g
X = , 1,2,...NPi = , where NP  

is the size of the population, D  is the dimension of the 

optimization problem, and g  is the generation number, 

max
1,2,...,g G= . Each individual denotes a candidate 

solution to the problem and is initialized by the 

following equation: 

, ,0 min, max, min,
(0,1) ( ) 1,2,...,

i j j j j
x x rand x x j D= + ⋅ −  =  (1) 

where (0,1)rand  is a uniformly distributed random 

generator in the interval [0, 1], j  is the parameter 

index in the thi  individual at the generation 0g =  and 

min min,1 min,2 min,D
{x ,x ,..x },X =  

max max,1 max,2 max,D
{x ,x ,..x }X =  

are the lower and the upper bounds of the variable 
,i j
x .  

Mutation. After initialization, a mutation operation is 

utilized to create a mutation/donor vector 
,i g
V =  

,1,
( ,

i g
v

,2, ,D,
,..., )

i g i g
v v  for each individual (target vector) 

in the population. Six basic and widely used mutation 

strategies are expressed below. 

DE/best/1: 
, , r1, r 2,

( )i g best g g gV X F X X= + ⋅ −   (2) 

DE/rand/1: 
, 1, r 2, r3,

( )
i g r g g g

V X F X X= + ⋅ −  (3) 

DE/best/2: 
, , r1, r 2,

( )i g best g g gV X F X X= + ⋅ − +  

r3, r 4,
( )

g g
F X X⋅ −   (4) 

DE/rand/2: 
, 1, r 2, r3,

( )
i g r g g g

V X F X X= + ⋅ − +  

r 4, r5,
( )

g g
F X X⋅ −   (5) 

DE/target-to-rand/1: 
, i, 1, i,

( )
i g g r g g

V X F X X= + ⋅ − +  

r 2, r3,
( )

g g
F X X⋅ −   (6) 

DE/ target-to-best/1: 
, i, best, i,

( )
i g g g g

V X F X X= + ⋅ − +  

r1, r 2,
( )

g g
F X X⋅ −  (7) 
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where 
best,g

X  is the current best individual found so far, 

g  denotes the generation, the indices 1 5r r−  are the 

random and mutually different integers generated from 

the interval [1,NP]  and these five integers are also 

different from i . The positive scaling factor F  is used 

for scaling the difference vectors. Generally, a 

convention DE/x/y/z [14] is used for naming these 

different mutation strategies, where x represents the 

base vector of the mutant operation, y represents the 

number of pairs of difference vectors used for 

perturbing the base vector x, and z represents the 

scheme of crossover being used. 

Crossover. After mutation, a crossover operation is 

utilized to create a trial vector 
, ,1, ,2, ,D,

(u ,u ,...,u )
i g i g i g i g
U =  

for each individual by combining the components of 

the mutation and target vectors. Two basic crossover 

operations are uniform (or binomial) crossover and 

exponential (or two-point modulo) crossover in the DE 

family [13]. Usually, the widely used uniform 

crossover is mathematically described as. 

 
, , ,

, ,

, ,

( (0,1) )i j g i j rand

i j g

i j g

v if rand CR or j j
u

x otherwise

   ≤   =⎧⎪
= ⎨

  ⎪
 (8) 

where 
,

(0,1)
i j

rand  is a uniform random number in the 

interval [0,1] , the parameter CR  is a user-defined 

crossover rate in the interval (0,1] , and rand
j  is a 

uniform random integer in the range [1,D]  which 

guarantees that trial vector 
,i g
U  has at least one 

variable inherited from donor vector 
,i g
V . 

Selection. After crossover, DE calculates the fitness 

value of the trial vector with the objective function of 

optimization problem. Then, the selection operation of 

DE uses a one-to-one competition to pick out the target 

vector or the trial vector to the next generation 

according to their fitness values. The selection 

operation for a minimization problem is described as. 

 
, , ,

, 1

,

( ) ( )
i g i g i g

i g

i g

U if f U f X
X

X otherwise+

   ≤⎧⎪
= ⎨

  ⎪
 (9) 

where 
,

( )
i g

f X  and 
,

( )
i g

f U  are the fitness values of 

the target vector 
,i g

X  and the trial vector 
,

,

i g
U  

respectively. Note that if a trial vector 
,i g
U  survives to 

the next generation, it is called a successful update; 

otherwise it is called an unsuccessful upgrade. Their 

corresponding parameters, including the crossover rate 

CR  and the scale factor ,F  are called successful 

parameters or unsuccessful parameters. 

3 Related Works  

Since the first DE algorithm was proposed in 1995, 

many improved DE algorithms have been proposed in 

the literature to improve its performance. In this part, 

we briefly review these related works from four 

aspects. 

3.1 Improving Mutation and Crossover 

Operations in DE 

Fan et al. presented a trigonometric mutation 

operation and embedded it into an original DE to 

propose a novel DE named TDE [35]. In this method, a 

new parameter 
t
M  is adopted to combine the 

trigonometric mutation operation with the “DE/rand/1” 

mutation operation of DE. DE algorithm with this 

modification can make a better trade-off between the 

robustness and the convergence speed. The authors use 

two well-known functions and two neural network 

training problems to demonstrate the performance of 

TDE. Mohamed presented a new trigonometric 

mutation operation, which is different from the Fan’s 

trigonometric mutation operation in two aspects, i.e., 

the weight and the difference vector [36]. In this 

method, the trigonometric mutation operation also 

combines with the “DE/rand/1” mutation strategy 

based on a non-linear decreasing probability. A restart 

mechanism is also presented in this method to prevent 

DE from getting into premature convergence. The 

authors tested the proposed algorithm on a set of well-

known unconstrained problems and indicated its 

advantages over some DE variants. Das et al. 

introduced a neighborhood-based mutation operation 

which is an improved form of the mutation scheme 

“target-to-best/1” [37]. It consists of local 

neighborhood-based mutation and global neighborhood- 

based mutation. This method combines the two trial 

vectors generated by local and global neighborhood 

mutation to generate the actual trial vector. The 

purpose of the neighborhood-based mutation operation 

is to make a trade-off the exploration and exploitation 

abilities of DE. Zhang et al. designed a novel DE 

mutation operation with or without the optional 

external archive [21], called “target-to-pbest/1”, which 

is a generalized version of the “target-to-best/1”. This 

mutation makes full use of useful information of the 

top best *p NP  individuals of the current population. 

This mutation with the optional external archive also 

explores the useful information of inferior individuals. 

Islam et al. proposed a novel DE mutation operation, 

named “target-to-gr_best/1”, which is also a variant of 

the “target-to-best” [24]. The mutation utilizes useful 

information of the best individuals of a set of randomly 

selected individuals from the current population. Yu et 

al. presented a new mutation operation called 

“DE/lbest/1”, which is a variant of the greedy mutation 

strategy DE/best/1 [38]. This method uses multiple 

local best individuals to replace the global best 

individual to guide the individual’s evolution. This 

mutation operation makes a good trade-off between 
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population diversity and convergence speed. Cui et al. 

proposed three novel mutation strategies for multiple 

subpopulations and each strategy is responsible for 

either exploration or exploitation [23]. Zheng et al. [13] 

designed novel mutation operation named “target-to-

ci_mbest/1” which uses the collective information of 

the top m best individuals instead of the single best 

individuals or the top p best individual. The useful 

information of these m best individuals is weight 

combined being a part of the difference vector for 

mutation operation. The authors used the CEC2013 

benchmark set to assess the efficiency and 

effectiveness of the proposed mutation strategy. 

Islam et al. presented a novel p-Best crossover [24]. 

This crossover is a usual uniform crossover 

incorporated with a biased parent selection. In this 

crossover, a mutant vector exchanges its variables with 

one of the top *p NP  best individuals in population 

instead of the target individual having the same index. 

Wang et al. adopted the orthogonal design to proposed 

an orthogonal crossover operation [39]. This approach 

can search systematically and rationally in an area 

defined by the mutant vector and target vector. The 

goal of this orthogonal crossover is to alleviate the 

drawbacks of two commonly used crossovers binomial 

and exponential which can only yield a trial vector in a 

hyper-rectangle determined by the mutant vector and 

target vector. Wang et al. applied covariance matrix 

learning to build an appropriate coordinate system for 

crossover operation based on the current population 

distribution [40]. This crossover operation reduces the 

DE’s dependence on the coordinate system to some 

extent and enhances DE’s capability to solve high-

variable correlation optimization problems. Guo et al. 

introduced an eigenvector-based crossover operation 

[41]. This method uses the eigenvectors information of 

the individuals’ covariance matrix to make the 

crossover rotationally invariant. To keep the population 

diversity, the offspring can be randomly born from the 

parents with either the rotated coordinate system or the 

standard coordinate system. The experimental results 

demonstrated that this crossover operation significantly 

improves the performance of DE. Meng et al. designed 

an automatically generated matrix to implement the 

crossover operation [26]. The authors demonstrated the 

proposed matrix performed well on the benchmark 

functions. 

3.2 Adapting the Control Parameter Setting 

in DE 

Liu et al. adopted a fuzzy logic controller to propose 

a fuzzy adaptive DE (FADE) [41], which adjusts the 

control parameters both for crossover and mutation 

operations. The experimental results indicated that 

FADE had better performance than the classic DE on 

high dimensionality problems. Brest et al. presented a 

DE variant, called jDE, with self-adaptive parameter 

control [27]. In this method, the scale factor F  and 

crossover rate CR  are encoded into the individuals and 

adaptively updated in the evolution process. The initial 

control parameter values are 0.5
i
F =  and 0.9.

i
CR =  

During the evolution, 
i
F  and 

i
CR  are updated obeying 

the uniform random distributions (0.1,0.9)U  and 

(0,1)U  with user pre-defined probabilities 
1
τ  and 

2
τ . 

The authors used 21 test functions to assess the 

performance of the jDE. Zhang et al. proposed an 

adaptive DE with optional external archive (JADE) 

[21]. In JADE, for each target individual, the scale 

factor 
i
F  and crossover rate 

i
CR  are adaptively 

updated from the Cauchy distribution ( ,0.1)randc Fµ  

and normal distribution ( ,0.1)randn CRµ  respectively. 

The Fµ  and CRµ  are updated based on their previous 

values and the successful parameters F  and CR  

values. The parameters F  and CR  of some DE 

variants MDE-pBX [24], SHADE [42], and L-SHADE 

[43] are also updated from the Cauchy distribution and 

normal distribution respectively. Yu et al. proposed an 

effective two-level adaptive parameter setting scheme 

for DE [38]. In the first population-level, the 

parameters 
P
F  and 

F
CR  are adaptively controlled 

based on the optimization states for the whole 

population. In the second individual-level, the 

parameters 
i
F  and 

i
CR  for every individual are 

adaptively generated based on the individual’s fitness 

value and its distance with the global best individual. 

The authors used 33 test functions to evaluate the 

efficiency and effectiveness of the proposed ADE. 

Draa et al. presented a DE variant Sinusoidal DE 

(SinDE) [44]. This variant employs sinusoidal 

formulas to tune parameters scaling factor F  and 

crossover rate CR  values. The experimental results 

have shown the superiority of the SinDE especially for 

composition and multimodal functions. Meng et al. 

proposed a DE variant PALM-DE whose parameters 

with adaptive learning mechanism to prevent control 

parameters mis-interaction in some DE variants’ 

evolution process [31]. In PALM-DE, the scale factor 

F  and crossover rate CR  of all individuals’ are 

separated into different groups to achieve better 

optimization performance.  

3.3 Ensemble of Trial Vector Generation 

Strategies and Control Parameter Settings 

Qin et al. presented a self-adaptive DE (SaDE) 

algorithm [29]. In this method, both mutation strategies 

and the control parameter settings are self-adaptive 

updated based on the previous search information. 

SaDE adopts a strategy candidate pool with four trial 

vector generation strategies. For each generation, each 

individual chose one strategy according to selection 

probability. Moreover, each individual in SaDE will be 

assigned different control parameter values. The 
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authors used a test suite of 26 functions to evaluate 

SaDE’s performance. Wang et al. presented a 

composite DE algorithm called CoDE [45]. CoDE 

employs three mutation strategies and three parameter 

control schemes to create the trial vectors in a random 

manner. This algorithm is based on some useful 

experiences, obtained by the previous DE researchers, 

on choosing strategies and control parameters. The 

authors used CEC2005 benchmark functions to assess 

CoDE’s performance. Mallipeddi et al. presented a DE 

variant, called EPSDE, with the ensemble of mutation 

schemes and parameters [46]. In this approach, EPSDE 

uses a strategy pool containing four distinct mutation 

schemes and a pool of control parameter values. In the 

process of evolution, a mutation strategy and a control 

parameter setting are selected according to their 

successful experience in the past generations to create 

a trial vector. Therefore, a successful combination of 

mutation strategy and parameter settings has a higher 

probability to create the trial vector. The proposed 

EPSDE is verified on a suite of bound-constrained 

problems. Mallipeddi presented a novel parameter 

adaptation approach for DE using an ensemble method 

and harmony search (HS) [47]. This algorithm can be 

considered as a variant of EPSDE. In this algorithm, 

the values of ensemble parameters F  and CR  are 

evolved through the optimization process of the HS 

algorithm. The authors used CEC2005 benchmark 

functions to evaluate this adaptation method. Wu et al. 

presented a multi-population based method to 

implement an adapted ensemble of three mutation 

strategies into a new variant of DE, called MPEDE 

[48]. In MPEDE, the entire population is dynamically 

divided into three indicator subpopulations with a 

relatively smaller size and one reward subpopulation 

with a relatively larger size. Each indicator 

subpopulation has a constituent mutation strategy and 

the reward subpopulation is allocated to the mutation 

strategy with current best performance as an extra 

reward. Therefore, better mutation strategies can 

adaptively get more computational resources during 

the evolution process. Awad et al. presented a new 

ensemble parameters DE variant name EsDEr-NR 

which combines a Cauchy distribution and two 

sinusoidal formulas to tune the control parameters [28]. 

EsDEr-NR also uses a restart method at later stage to 

improve the quality of the obtained solutions. Besides, 

a novel approach niching-based reduction scheme is 

used to adapt the population size. The authors used two 

CEC test suites to verify the performance of the 

EsDEr-NR. 

3.4 Stagnation of DE 

As described in the introduction section, DE suffers 

from the problems of stagnation and premature 

convergence. Stagnation is the status that the algorithm 

is incapable of generating better candidate solutions 

even if the population maintains a certain degree of 

diversity. In this study, the stagnant individual is 

identified by the consecutive unsuccessful update 

(i 1,2,...,NP)
i

CUU = , and it can be defined as follows. 

 
, ,

, 1

0 ( ) ( )

1

i g i g

i g

i g

if f U f X
CUU

CUU otherwise+

+

                    ≤⎧⎪
= ⎨

+    ⎪
 (10) 

where 
,i g

CUU  represents the consecutive unsuccessful 

update for the thi  individual of the population, and its 

initial value is set as 0. If 
,

,

i g
CUU T>  where T  

denotes the user-defined threshold of stagnation, it 

indicates thi  individual is in stagnation [22, 34, 49]. 

This study T  is set to 90, according to the literature 

[22]. 

To address the stagnation and premature convergence 

problems, some effective approaches have been 

proposed. Guo et al. proposed a DE variant, called 

SPS-DE, which solved the stagnation problem of DE 

by employing a successful parent selection framework 

[49]. In this approach, when an individual falls into 

stagnation, the current successful individuals which are 

stored in the archive will be chosen as the parent to 

produce offspring. Zhou et al. proposed a guiding 

archiving framework to help DE escape from the 

stagnation status. (GAR-DE) [50]. In this approach, 

some high-quality individuals are saved in a guiding 

archive during evolution. If an individual drops into 

stagnation, GAR-DE selects another individual from 

the guiding archive to take the place of the base vector 

in the mutation operation to guide the evolution. Cui et 

al. solved the stagnation and premature convergence 

issues with a novel shift mechanism (SM) [23]. In SM, 

if stagnation occurs, some inferior individuals will be 

shifted to a neighborhood of one of the top p NP⋅  

solutions to promote convergence. If premature 

convergence occurs, some inferior individuals will be 

unconditionally shifted to random positions to improve 

the diversity of the population. Cui et al. proposed 

Tracking Mechanism (TM) along with Backtracking 

Mechanism (BTM) framework to deal with the 

stagnation and premature convergence problems [34]. 

This approach uses TM to promote convergence if the 

population drops into stagnation. This approach uses 

BTM to improve the population diversity if the 

population drops into premature convergence. Zheng et 

al. proposed a variant of DE powered by collective 

information (CPIDE) [22]. In CPIDE, m best 

individuals are weighted combined to form a new 

collective vector which works as a part of the 

difference vector in mutation. When the population 

drops into stagnation, this collective vector takes part 

in the crossover operation to help DE escape from the 

stagnation status. 
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4 DE with Top Collective Information and 

p-Best Information (CIpBDE) 

In this part, the main idea of CIpBDE which using 

top collective information and p-Best information is 

described in detail. First, we introduce the combined 

mutation strategy adopted in CIpBDE and then we 

describe the crossover operation utilized in CIpBDE. 

Finally, the new proposed parameters control scheme 

is discussed. 

4.1 Combined Mutation Strategy in CIpBDE 

Empirically, the optimization performance of the DE 

algorithm is influenced heavily by the mutation 

strategy. Generally, the purpose of mutation operation 

for DE is to control the search direction, and the 

different DE mutation operations have different 

characteristics. “DE/rand/1” and “DE/rand/2” are 

essentially random strategies. Both the base and 

difference vectors of these two strategies are chosen in 

a random way. Hence, their exploration ability is 

strong, but their convergence speed may be slow. 

“DE/best/1” and “DE/target-to-best/1” employ the 

reliable information of the best individual found so far. 

The base vector of these strategies is the current or the 

best vector, and the difference vector is constructed in 

a random way. Hence, these strategies have a good 

exploitative ability and have a fast convergence speed, 

but may lose their diversity and cause premature 

convergence. Due to some shortcomings of above 

mutation strategies, a very powerful mutation strategy 

“DE/target-to-pbest/1” with or without archive was 

proposed in [21], which is given below.  

, , , . r1, r 2.
( ) ( )i g i g pbest g i g g gV X F X X F X X= + ⋅ − + ⋅ −   (11) 

where 
,pbest gX  is randomly selected from the top 

*p NP  best individuals of the population, and p  is in 

the interval (0,1] . 
r 2.g

X  is randomly chosen from the 

union of the current population and the external 

archive. This mutation strategy has two advantages. (1) 

It uses one of the top *p NP  best individuals to trade 

off the greediness of the mutation and the convergence 

speed. (2) It can improve the population diversity by 

exploring inferior individuals in the archive, and the 

archive provides the information which denotes 

promising progress directions toward the global 

optimum. 

Another powerful and effective mutation strategy, 

“DE/target-to-ci_mbest/1” using the collective 

information of m  top ranking individuals from the 

population is proposed [22], which is given below. 

, , . r1, r 2_ ,
( ) ( )ii g i g i g g gci mbest g

V X F X X F X X= + ⋅ − + ⋅ −   (12) 

where 
_ ,

ici mbest g
X  is called collective vector, which is a 

weighted combination of the top m (m , [0, ]m i∈ , is a 

randomly integer for 
,i g

X ) best individuals of the 

population with fitness values equal to or better than 

,i g
X .

_ ,

ici mbest g
X  is calculated as fellows. 

 
,_ , 1

1

1
, ,

1,2,...,

i

m

k k g k mci mbest g k

k

m k
X w X w

k

k m

=

=

− +
=   =

=

∑
∑  (13) 

where 
k
w  are the weighting factors which represent the 

contributions of different individuals. The experimental 

results of paper [22] demonstrate that it can balance 

exploitative and explorative search and it has better 

performance than mutation strategies “target-to- 

best/1”, “target-to-pbest/1” and “target-to-gr_best/1”. 

However, sometimes the calculated collective vector 

_ ,

ici mbest g
X  is not in a promising position, so it cannot 

guide the population to the global optimal position, as 

shown in Figure 1. From Figure 1, we can see that the 

collective vector 
_ ,

ici mbest g
X  is far away from the global 

optimal. In addition, sometimes the random m  will be 

large for the target vector with poor fitness value. In 

this case, this mutation strategy is not effective. 

 

Figure 1. Illustration of the unpromising position of 

collective vector  

To alleviate these shortcomings abovementioned, we 

design the following combined mutation strategy, 

called CIpBM, by employing two powerful mutation 

strategies “DE/target-to-ci_mbest/1” and “DE/target-

to-pbest/1” with a predefined constant probability. 

, _ , . r1, r2.

,

, , . r1, r2.

( ) ( )

if 0.5

( ) ( )

otherwise

i g ci pbest g i g g g

i g

i g pbest g i g g g

X F X X F X X

rand
V

X F X X F X X

⎧ + ⋅ − + ⋅ −
⎪

  <⎪
= ⎨

+ ⋅ − + ⋅ −⎪
⎪


 (14) 
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where 
_ ,ci pbest gX  is a collective vector which is similar 

to the 
_ ,

ici mbest g
X . 

r 2.g
X  is randomly chosen from the 

union of the external archive and the current 

population. Parameter p is independent of the target 

vector index i  which is a real number, p (0,1]∈ . The 

value for p is linearly adjusted in the following way. 

 
max max min

( ) /( )p p p p gen MaxGen= − − ⋅  (15) 

where gen  denotes the current generation number, 

[1,2,..., ]gen MaxGen= , MaxGen is the maximum 

number of generations. 
max
p  is the maximum value of 

p  and 
min
p  is the minimum value of p . The reduction 

rule of p  is beneficial to exploration at the early stage 

of the evolution and exploitation for the later stage. 

This combined mutation strategy can take advantage of 

two original mutation strategies. 

4.2 Crossover in CIpBDE 

As described in section 3.4, DE has the problem of 

stagnation, which seriously affects the performance of 

DE. When stagnation is happening to DE, it means that 

some target individuals in the current population are no 

longer updated and their consecutive unsuccessful 

update index CUU reaches the threshold .T  To 

address this problem, Zheng et al. proposed a 

collective information-based crossover (CIX) [22]. 

When the thi  target individual falls into stagnation, i.e., 

,i g
CUU T> , CIX is defined as follows: 

 
, , 1

, ,

_ , ,
i

i j g rand

i j g

ci mbest j g

v if rand CR or j j
u

x otherwise

           ≤   =⎧⎪
= ⎨   ⎪

 (16) 

The experiment results of paper [22] demonstrate 

that CIX is an efficient and effective crossover to 

address stagnation problem. However, when the 

calculated collective vector 
_ ,

ici mbest g
X  is not in the 

promising position as shown in Figure 1, it will be 

ineffective crossover operation. In this study, we 

incorporate the crossover operation with p-Best 

crossover [24], named the modified crossover 

operation CIpBX. When 
,i g

CUU T> , T is a threshold, 

CIpBX is defined as follows: 

 

, , 1

, , _ , , 2

, ,

0.5

i j g rand

i j g ci pbest j g

pbest j g

v if rand CR or j j

u x if rand

x otherwise

⎧            ≤   =
⎪

=    <⎨
⎪       

 (17) 

where 
_ , ,ci pbest j gx  is the thj  dimension of collective 

vector 
_ ,ci pbest gX , 

, ,pbest j gx  is the thj  dimension of 

vector 
,pbest gX . 

1
rand  and 

2
rand  are random numbers 

in the interval [0,1] . 

 

4.3 Parameter Adaptation Approach in 

CIpBDE 

The DE’s performance is sensitively affected by 

parameters F  and CR  [38]. In literature [21-22, 27], 

some parameter adaption schemes utilized feedback 

information to solve this issue. To make the proposed 

CIpBDE insensitive to parameters F  and ,CR  a 

modified parameter adaption scheme based on 

literature [21] is used to tune the parameters F  and 

CR  which is described in the following. 

At every generation, the i
F  for each individual ,i g

X
 

is independently generated from a Cauchy distribution 

using location parameter Fµ  and scale parameter 0.1, 

as follows. 

 ( ,0.1)
i i

F randc Fµ=
 (18) 

where Fµ  is initialized to 0.5. 
i
F  is truncated to 1.0 in 

the case of 1.0
i
F > , while 

i
F  is regenerated using Eq. 

(18) in the case of 0
i
F < . At every generation, all 

successful parameter 
i
F  is saved in the set S

F
. At the 

end of every generation, if S
F

 is not empty, Fµ  is 

updated according to the first Equation of Eq. (19). If 

S
F

 is empty, it means that the current parameter Fµ  

may be unsuitable at the current stage. Therefore, we 

update the Fµ  according to the second or third 

Equations of Eq. (19) with a user-defined constant 

probability. 

1

(1 c) (S ) S

(1 c) (1 ) S

L F F

F

F c mean if

F c rand F if
F

and rand

F otherwise

µ

µ µ
µ

τ

µ

− ⋅ + ⋅           ≠ ∅⎧
⎪ − ⋅ + ⋅ ⋅ −     = ∅ ⎪

= ⎨
 <⎪

⎪                                              

 (19) 

where the control parameter c  is the learning rate [21], 

the term ( )
L

mean ⋅  represents the Lehmer mean, the 

parameter 
1
τ  is a user-defined constant probability. 

The parameter 
1
τ  is set to 0.1 through experiment. 

Similarly, at every generation, the 
i

CR for every 

individual 
,i g

X  is independently generated from a 

Gaussian distribution with mean CRµ  and standard 

deviation 0.1, as follows. 

 ( ,0.1)
i i

CR randn CRµ=  (20) 

where CRµ  is initialized to 0.5. 
i

CR  is truncated to 

1.0 in the case of 1.0
i

CR > , while 
i

CR  is truncated to 

0 in the case of 0
i

CR < . At every generation, all 

successful parameter 
i

CR  is saved in the set S
CR

. At 

the end of every generation, if S
CR

 is not empty, CRµ  

is updated according to the first Equation of Eq. (21). 

If S
CR

 is empty, it means that the current parameter 
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CRµ  may be unsuitable at the current stage. Therefore, 

we update the CRµ  according to the second or third 

Equation of Eq. (21) with a user-defined constant 

probability. 

2

(1 c) (S ) S

(1 c) (1 ) S

A CR CR

CR

CR c mean if

CR c rand CR if
CR

and rand

CR otherwise

µ

µ µ
µ

τ

µ

− ⋅ + ⋅           ≠ ∅⎧
⎪ − ⋅ + ⋅ ⋅ −    = ∅ ⎪

= ⎨
 <⎪

⎪                                              

 (21) 

where the control parameter c  is the learning rate [21], 

the term ( )
A

mean ⋅   represents the usual arithmetic 

mean, the parameter 
2
τ  is a user-defined constant 

probability. The parameter 
2
τ  is set to 0.1 through 

experiment. 

The pseudo code of the whole CIpBDE algorithm is 

given in Algorithm 1. Its flowchart is given in Figure 2. 
 

Algorithm 1. Pseudo-code of the CIpBDE 

1. Initialization: Randomly generate initial 

population ,P  set 1,Gen =  10000* ,FESmax D=  

0,FES =  90,T =  min
0.1,p =  

max
0.2,p =  1 2

0.1,τ τ= =  

0.5,Fµ =  0.5,CRµ =  0.1,c =  1:
0

i NP
CUU

=
=   

2. Compute the fitness value of the population P ; 
;FES FES NP= +  

3. while maxFES FES≤ do  

4.  F
S =∅ , CR

S =∅ ; 

5.  Sort the population P according to the fitness  

6.  Update parameter p  using Eq (15) 

7.  for 1; ;i i NP i = ≤ + + do 

8.    Generate 
i
F  using Eq (18), 

i
CR  using Eq (20); 

9.    Generate mutant vector 
,i g
V  using Eq (14); 

10.   if 
i

CUU T<  then 

11.     Generate trial vector 
,i g
U  using Eq (8); 

12.   else 

13.     Generate trial vector 
,i g
U  using Eq (17); 

14.   end if 

15.  Compute the fitness value ( )
i

f U ; 1;FES FES= +

16.   if ( ) ( )
i i

f U f X≤  then 

17.    , 1 ,i g i g
X U

+
= ; 0

i
CUU = ; i F

F S→ ; i CR
CR S→ ; 

18.   else   

19.     , 1 ,i g i g
X X

+
= ; 1

i i
CUU CUU= + ; 

20.   end if   

21.  end for  

22.  Update Fµ  using Eq. (19); Update CRµ  using 

Eq.(21); 

23.  1Gen Gen= + ; 

24. end while 

 

 

Figure 2. The flowchart of the proposed CIpBDE 

5 Experimental Analysis 

In this part, CIpBDE was assessed on 28 functions 

proposed for IEEE CEC2013 [51]. Among these 28 

functions, the first five functions F1-F5 are unimodal, 

the following fifteen functions F6-F20 are basic 

multimodal, and the last eight functions F21-F28 are 

composition. All these benchmark functions are treated 

as black-box test problems, and the search ranges of 

them are confined to [ ]100,100
D

−  (D is decision 

variables number). The detailed definitions of these 28 

benchmark functions are given in [51]. All these 

benchmark functions are shifted to the same global 

optima 
1 2

O={o ,o ,...,o }T
d

. 

In the experiment, the number of dimension D  for 

all functions is set to 30. The maximal number of 

function evaluation is set as 4
10D×  (NFE= 4

10D× ). 

The contrasted algorithms run 51 times independently 

on each function. Both the best and the mean/standard 

deviation (Std) of the function errors *

i i
f f f∆ = −  are 

reported. Symbols “-”, “=” and “+” in parentheses 

behind the values represent “worse performance”, 

“similar performance” and “better performance” than 

our approach respectively. The Wilcoxon signed-rank 

test with significance level 0.05α =  is used for 

comparing the “Mean/Std”. We use the rule “The 

smaller the better” to compare the “Best” values in 

form of arithmetic values. All the experiments were 

conducted on a computer with Intel(R) Core(TM) i5 

3.3 GHz dual-core CPU and 8.0 GB of RAM in 

Operating System Windows 7. All the algorithms were 

implemented in Matlab 2016a. 
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The proposed CIpBDE is compared with several 

powerful state-of-the-art DE variants including CIPDE 

[22], CobiDE [40], CoDE [45], JADE [21], jDE [27], 

SaDE [29], and SHADE [42] on F1-F28 benchmark 

functions. These DE variants are chosen for their 

competitive performance and popularity. Table 1 gives 

all these contrasted algorithms’ parameter settings 

according to the references. Table 2 and Table 3 report 

the best and the mean/standard deviation of the 

function errors respectively. Due to limited space, the 

comparisons of convergence speed for the contrasted 

algorithms are given in the supplementary file. 

As shown in Table 2, our proposed CIpBDE has 

better performance than or at least comparable to the 

contrasted algorithms from the best value perspective 

of view. Our proposed CIpBDE algorithm exhibits 

either better or similar performance improvement in 20 

out of 28 functions in comparing with CIPDE, 

improvement in 20 out of 28 functions in comparing 

with CobiDE, improvement in 25 out of 28 functions 

in comparing with CoDE, improvement in 23 out of 28 

functions in comparing with JADE, improvement in 24 

out   of   28   functions   in   comparing   with   jDE, 

Table 1. Recommended Parameter settings for all of 

these contrasted algorithms 

Algorithms Parameters settings 

CIPDE 
100,c 0.1, F 0.7,NP µ= = =  

CR 0.5,T 90µ = =  

CobiDE 
100,pb 0.4,ps 0.5,

0.65 1.0, CR 0.1 0.95

NP

F or orµ µ

= = =

=   =   

 

CoDE 
30, 1.0,CR 0.1, 1.0,

CR 0.9 0.8,CR 0.2

NP F or F

or F

= = =   =

=   = =

 

JADE 
100,c 0.1, F 0.5,

CR 0.5, 0.05

NP

p

µ

µ

= = =

= =

 

jDE 
1 2 1

100, 0.9,

0.1,F 0.1, 0.9
u

NP CR

Fτ τ

= =

= = = =

 

SaDE 
50, ~ (0.5,0.3), 0.5,

~ ( ,0.1), 50

NP F N CR

CR N CR LG

µ

µ

= =

=

 

SHADE 
100, F 0.5,

CR 0.5, 0.2,H 100

NP

p

µ

µ

= =

= = =

 

CIpBDE 
max min 1 2

100,c 0.1, F 0.5, CR 0.5,

p 0.2,p 0.1, 0.1,T 90

NP µ µ

τ τ

= = = =

= = = = =

 

 

Table 2. Comparison results of the best value of 51-run fitness error for CIpBDE with seven DE variants 

30D CIPDE CobiDE CoDE JADE jDE SaDE SHADE CIpBDE 

1 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00 

2 4.0521E+02(+) 9.2336E+01(+) 2.9736E+04(-) 6.4544E+02(-) 2.0178E+04(-) 6.0096E+03(-) 3.6789E+02(+) 5.3458E+02 

3 1.5916E-12(+) 2.7367E+01(-) 6.7000E-06(-) 9.0949E-13(+) 6.7997E-05(-) 2.6990E-07(-) 9.0949E-13(+) 2.0464E-12 

4 1.9980E-06(-) 5.3888E-11(+) 1.7493E-03(-) 1.2913E-09(+) 2.6065E+00(-) 4.3635E-01(-) 5.7094E-10(+) 1.5253E-08 

5 0.0000E+00(=) 2.2737E-13(-) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 1.1369E-13(-) 0.0000E+00 

6 1.1369E-13(=) 1.2479E+00(-) 1.5875E-06(-) 1.1369E-13(=) 9.5362E+00(-) 9.1836E-08(-) 0.0000E+00(+) 1.1369E-13 

7 6.1241E-02(+) 1.9670E+00(-) 2.1909E+00(-) 1.6698E-01(-) 3.3133E-01(-) 7.2550E-01(-) 2.7149E-01(-) 9.1763E-02 

8 2.0845E+01(-) 2.0798E+01(+) 2.0384E+01(+) 2.0410E+01(+) 2.0773E+01(+) 2.0819E+01(-) 2.0223E+01(+) 2.0817E+01 

9 1.3444E+01(-) 4.6535E+00(+) 8.1665E+00(+) 2.0315E+01(-) 9.4606E+00(-) 8.3679E+00(+) 2.3098E+01(-) 9.1733E+00 

10 9.8573E-03(-) 5.6843E-14(+) 7.3960E-03(=) 0.0000E+00(+) 7.3960E-03(=) 2.7101E-02(-) 0.0000E+00(+) 7.3960E-03 

11 0.0000E+00(=) 1.8713E+00(-) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00(=) 0.0000E+00 

12 5.9698E+00(+) 1.1940E+01(-) 1.9899E+01(-) 1.4413E+01(-) 3.9706E+01(-) 1.9899E+01(-) 9.9893E+00(-) 6.9647E+00 

13 5.7106E+00(+) 2.4202E+01(-) 2.2088E+01(-) 2.3824E+01(-) 6.0785E+01(-) 2.2939E+01(-) 1.0491E+01(-) 5.9755E+00 

14 2.5013E-01(-) 5.8417E+02(-) 3.1251E-01(-) 1.8190E-12(+) 0.0000E+00(+) 1.6088E+01(-) 1.8190E-12(+) 7.6098E-02 

15 1.4961E+03(+) 1.5984E+03(+) 2.2583E+03(-) 2.2913E+03(-) 4.3157E+03(-) 5.4454E+03(-) 1.9267E+03(-) 1.6186E+03 

16 3.1495E-01(-) 1.7165E-02(+) 6.6695E-02(+) 8.2394E-01(-) 1.7730E+00(-) 1.6740E+00(-) 1.3400E-01(+) 2.3525E-01 

17 3.0467E+01(-) 4.7724E+01(-) 3.0434E+01(=) 3.0434E+01(=) 3.0434E+01(=) 3.2747E+01(-) 3.0434E+01(=) 3.0434E+01 

18 3.3732E+01(+) 5.4198E+01(-) 4.3145E+01(-) 6.0021E+01(-) 1.0107E+02(-) 1.3118E+02(-) 5.5312E+01(-) 3.5539E+01 

19 8.1537E-01(-) 5.1213E+00(-) 7.7061E-01(-) 1.1453E+00(-) 1.2914E+00(-) 3.1550E+00(-) 9.5468E-01(-) 6.0195E-01 

20 8.1967E+00(+) 9.0441E+00(-) 9.4752E+00(-) 9.2622E+00(-) 1.0737E+01(-) 1.0153E+01(-) 9.6223E+00(-) 8.4302E+00 

21 2.0000E+02(=) 2.0000E+02(=) 2.0000E+02(=) 2.0000E+02(=) 2.0000E+02(=) 2.0000E+02(=) 2.0000E+02(=) 2.0000E+02 

22 1.0610E+02(-) 1.0945E+03(-) 1.4737E+01(-) 1.8720E+01(-) 5.8446E+01(-) 1.2510E+02(-) 7.3716E+00(+) 1.2420E+01 

23 1.5038E+03(-) 1.5159E+03(-) 2.6974E+03(-) 2.2767E+03(-) 3.7809E+03(-) 5.0174E+03(-) 2.1034E+03(-) 1.2788E+03 

24 2.0127E+02(-) 2.0260E+02(-) 2.0434E+02(-) 2.0061E+02(-) 2.0007E+02(+) 2.0457E+02(-) 2.0083E+02(-) 2.0013E+02 

25 2.4268E+02(-) 2.3644E+02(+) 2.4114E+02(-) 2.4236E+02(-) 2.3573E+02(+) 2.0054E+02(+) 2.3383E+02(+) 2.4003E+02 

26 2.0000E+02(-) 2.0000E+02(-) 2.0000E+02(-) 2.0000E+02(-) 2.0000E+02(-) 2.0000E+02(-) 2.0000E+02(=) 2.0000E+02 

27 3.0999E+02(-) 3.4275E+02(-) 3.2663E+02(-) 3.1107E+02(-) 3.2123E+02(-) 3.2658E+02(-) 3.0372E+02(+) 3.0540E+02 

28 3.0000E+02(=) 3.0000E+02(=) 3.0000E+02(=) 3.0000E+02(=) 3.0000E+02(=) 3.0000E+02(=) 3.0000E+02(=) 3.0000E+02 

-/=/+ 14/6/8 17/3/8 18/7/5 16/7/5 17/7/4 21/5/2 11/6/11 -/-/- 
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Table 3. Comparison results of mean and Std of 51-run fitness error for CIpBDE with seven DE variants 

CIPDE CobiDE CoDE JADE 
30D 

Mean/Std Mean/Std Mean/Std Mean/Std 

1 0.0000E+00/0.0000E+00(=) 0.0000E+00/0.0000E+00(=) 0.0000E+00/0.0000E+00(=) 0.0000E+00/0.0000E+00(=) 
2 9.3962E+03/7.1722E+03(-) 1.3243E+04/1.054E+04(-) 8.2127E+04/4.5164E+04(-) 7.1972E+03/5.6487E+03(-) 
3 6.3986E+05/2.1860E+06(-) 1.1023E+03/2.3348E+03(-) 6.9114E+05/2.2153E+06(-) 2.3499E+05/9.3590E+05(=) 
4 6.1405E+03/9.9447E+03(=) 4.5506E-10/4.8110E-10(+) 7.9173E-02/9.3842E-02(+) 7.4965E+03/1.4972E+04(+) 
5 9.8083E-14/3.9511E-14(-) 3.7673E-13/1.2555E-13(-) 0.0000E+00/0.0000E+00(+) 9.3624E-14/4.3771E-14(-) 
6 1.0356E+00/5.1769E+00(-) 3.6465E+00/3.3738E+00(-) 2.4244E+00/7.0751E+00(-) 2.0712E+00/7.1703E+00(=) 
7 2.5448E+00/2.4410E+00(=) 7.0694E+00/3.4651E+00(-) 1.1649E+01/7.2934E+00(-) 2.9711E+00/2.8873E+00(=) 
8 2.0947E+01/4.8720E-02(=) 2.0952E+01/5.1050E-02(=) 2.0740E+01/1.1904E-01(+) 2.0915E+01/9.1676E-02(=) 
9 1.9363E+01/2.7813E+00(-) 1.0182E+01/3.3669E+00(+) 1.4752E+01/2.9993E+00(+) 2.6761E+01/1.6755E+00(-) 

10 6.7910E-02/3.8206E-02(-) 6.1830E-03/8.4526E-03(+) 3.3951E-02/2.7969E-02(=) 3.9991E-02/2.5227E-02(=) 
11 0.0000E+00/0.0000E+00(=) 6.4187E+00/2.0904E+00(-) 0.0000E+00/0.0000E+00(=) 0.0000E+00/0.0000E+00(=) 
12 1.5822E+01/5.5869E+00(=) 3.4693E+01/1.1780E+01(-) 3.8647E+01/9.6328E+00(-) 2.3129E+01/4.1387E+00(-) 
13 1.9491E+01/8.0306E+00(+) 7.0330E+01/2.6487E+01(-) 7.7105E+01/2.7113E+01(-) 4.8141E+01/1.2033E+01(-) 
14 5.9795E-01/3.8020E-01(-) 8.7368E+02/1.3476E+02(-) 3.1456E+00/3.0310E+00(-) 3.3474E-02/2.3948E-02(+) 
15 2.7119E+03/6.1588E+02(=) 2.7427E+03/5.2300E+02(=) 3.3391E+03/5.5662E+02(-) 3.2668E+03/3.3296E+02(-) 
16 2.1522E+00/6.7961E-01(-) 1.9092E+00/9.1874E-01(-) 3.2570E-01/2.0054E-01(+) 1.9073E+00/6.4273E-01(-) 
17 3.0518E+01/3.6992E-02(-) 5.3818E+01/2.4424E+00(-) 3.0440E+01/2.1304E-02(-) 3.0434E+01/8.0389E-15(=) 
18 4.0500E+01/7.5021E+00(+) 1.0602E+02/5.4637E+01(-) 6.3991E+01/1.3373E+01(-) 7.6421E+01/6.3556E+00(-) 
19 1.0603E+00/1.5678E-01(-) 6.3504E+00/5.8271E-01(-) 1.5968E+00/4.4499E-01(-) 1.4762E+00/9.5593E-02(-) 
20 9.7413E+00/7.1374E-01(=) 1.1447E+01/8.5903E-01(-) 1.0678E+01/5.9092E-01(-) 1.0456E+01/5.0898E-01(-) 
21 2.8858E+02/6.7287E+01(=) 3.2919E+02/1.1676E+02(=) 3.2457E+02/8.5823E+01(=) 3.0180E+02/7.8138E+01(=) 
22 1.1436E+02/1.5046E+01(-) 1.5104E+03/2.5912E+02(-) 1.1594E+02/1.8021E+01(-) 9.3145E+01/3.0505E+01(=) 
23 2.6142E+03/7.3241E+02(=) 2.5974E+03/4.5888E+02(=) 3.7686E+03/6.8355E+02(-) 3.5193E+03/4.8098E+02(-) 
24 2.0728E+02/4.8723E+00(=) 2.0459E+02/2.2509E+00(=) 2.2198E+02/9.4856E+00(-) 2.1101E+02/9.5399E+00(-) 
25 2.5954E+02/8.2620E+00(=) 2.4980E+02/7.1605E+00(+) 2.5377E+02/6.3474E+00(+) 2.7306E+02/1.0436E+01(-) 
26 2.1246E+02/3.4403E+01(-) 2.0000E+02/1.2235E-03(-) 2.1046E+02/3.6248E+01(-) 2.1644E+02/4.5559E+01(-) 
27 4.3595E+02/9.9656E+01(-) 4.9396E+02/1.1482E+02(-) 5.8483E+02/1.1247E+02(-) 7.6165E+02/2.1918E+02(-) 
28 3.0000E+02/0.0000E+00(=) 3.0000E+02/2.5404E-09(=) 3.0000E+02/0.0000E+00(=) 3.0000E+02/0.0000E+00(=) 

-/=/+ 13/13/2 17/7/4 17/5/6 15/11/2 

jDE SaDE SHADE CIpBDE 
30D 

Mean/Std Mean/Std Mean/Std Mean/Std 

1 4.4583E-15/3.1839E-14(=) 0.0000E+00/0.0000E+00(=) 4.0125E-14/8.7542E-14(-) 0.0000E+00/0.0000E+00 
2 1.5065E+05/7.8378E+04(-) 3.7940E+04/2.6191E+04(-) 8.0899E+03/7.5145E+03(-) 5.5515E+03/5.2247E+03 
3 6.8292E+05/1.3908E+06(-) 1.9546E+05/8.0087E+05(-) 6.0980E+04/4.3308E+05(=) 3.0852E+05/9.8151E+05 
4 2.4935E+01/2.4692E+01(+) 8.7166E+00/1.1532E+01(+) 2.0449E-06/9.0193E-06(+) 1.0898E+04/8.1146E+03 
5 1.0031E-13/3.6993E-14(-) 0.0000E+00/0.0000E+00(+) 1.1369E-13/0.0000E+00(-) 3.3437E-14/5.2316E-14 
6 1.2582E+01/3.6330E+00(-) 3.0751E+00/2.8582E+00(-) 1.5534E+00/6.2753E+00(+) 1.0356E+00/5.1769E+00 
7 2.6302E+00/2.1628E+00(=) 5.0614E+00/4.2506E+00(-) 3.5178E+00/3.2638E+00(-) 2.3869E+00/2.2740E+00 
8 2.0939E+01/5.6807E-02(=) 2.0949E+01/5.1278E-02(=) 2.0786E+01/2.0506E-01(+) 2.0947E+01/4.9852E-02 
9 2.5244E+01/4.9106E+00(-) 1.5139E+01/5.2516E+00(+) 2.8462E+01/1.6933E+00(-) 1.7265E+01/2.7858E+00 

10 3.7285E-02/1.9657E-02(=) 7.4572E-02/5.5460E-02(-) 2.4286E-02/1.7553E-02(+) 3.5551E-02/2.1304E-02 
11 0.0000E+00/0.0000E+00(=) 0.0000E+00/0.0000E+00(=) 3.3437E-15/1.3508E-14(=) 0.0000E+00/0.0000E+00 
12 6.0004E+01/1.0484E+01(-) 3.6587E+01/1.1787E+01(-) 1.5091E+01/2.6538E+00(=) 1.7714E+01/7.2898E+00 
13 8.8767E+01/1.5304E+01(-) 6.6737E+01/1.9722E+01(-) 3.1289E+01/1.1550E+01(-) 2.6830E+01/1.0763E+01 
14 2.8576E-03/7.2355E-03(+) 5.7645E+01/2.0876E+01(-) 1.1430E-02/1.4005E-02(+) 1.7682E-01/4.7684E-02 
15 5.2690E+03/3.9840E+02(-) 5.9452E+03/2.4500E+02(-) 3.0519E+03/3.3287E+02(-) 2.5980E+03/5.4586E+02 
16 2.3339E+00/2.4729E-01(-) 2.3020E+00/2.5910E-01(-) 8.1608E-01/2.2588E-01(+) 1.5029E+00/8.5180E-01 
17 3.0434E+01/1.6979E-10(=) 3.5004E+01/1.1533E+00(-) 3.0434E+01/6.2106E-14(=) 3.0434E+01/2.4964E-10 
18 1.5786E+02/1.4910E+01(-) 1.5775E+02/9.7803E+00(-) 6.3599E+01/3.8715E+00(-) 4.3870E+01/5.9574E+00 
19 1.6687E+00/1.2313E-01(-) 3.9242E+00/3.6905E-01(-) 1.1367E+00/8.8781E-02(-) 9.7159E-01/1.6784E-01 
20 1.1794E+01/3.2349E-01(-) 1.1074E+01/3.4347E-01(-) 1.0798E+01/8.3008E-01(-) 9.8922E+00/6.3677E-01 
21 2.7596E+02/6.8258E+01(+) 3.1894E+02/8.2409E+01(=) 3.0231E+02/5.7053E+01(=) 3.1075E+02/6.6173E+01 
22 1.1878E+02/1.6641E+01(-) 2.8270E+02/1.7820E+02(-) 9.1992E+01/3.3980E+01(=) 1.0516E+02/1.3415E+01 
23 5.1992E+03/5.4200E+02(-) 6.0993E+03/4.2019E+02(-) 3.2695E+03/3.9609E+02(-) 2.6564E+03/5.7735E+02 
24 2.1206E+02/9.3564E+00(-) 2.1229E+02/4.7826E+00(-) 2.1097E+02/7.0473E+00(-) 2.0666E+02/5.2553E+00 
25 2.4993E+02/1.0268E+01(+) 2.3885E+02/2.3635E+01(+) 2.5487E+02/1.6331E+01(+) 2.5856E+02/6.6776E+00 
26 2.0230E+02/1.6375E+01(-) 2.0000E+02/1.2099E-03(-) 2.1258E+02/3.4746E+01(=) 2.1130E+02/3.4813E+01 
27 6.6274E+02/1.9553E+02(-) 4.2422E+02/4.2415E+01(-) 4.1820E+02/1.4126E+02(=) 4.1780E+02/1.4498E+02 
28 3.0000E+02/6.4311E-14(=) 3.0000E+02/0.0000E+00(=) 3.0000E+02/0.0000E+00(=) 3.0000E+02/0.0000E+00 

-/=/+ 17/7/4 19/5/4 12/9/7 -/-/- 
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improvement in 26 out of 28 functions in comparing 

with SaDE, improvement in 17 out of 28 functions in 

comparing with SHADE. All of the contrasted 

algorithms can get the global optima on F1, F11. 

CIPDE, CoDE, JADE, jDE, SaDE, and CIpBDE 

algorithms can get the global optima on F5. Only 

CobiDE and SHADE cannot get the global optimum 

on F5. For the other benchmark functions, all the 

contrasted algorithms cannot find the global optima. 

As shown in Table 3, our proposed CIpBDE 

outperforms the contrasted algorithms from the mean 

and the standard deviation perspective of view. Our 

proposed CIpBDE algorithm exhibits either better or 

similar performance improvement in 26 out of 28 

functions in comparing with CIPDE, improvement in 

24 out of 28 functions in comparing with CobiDE, 

improvement in 22 out of 28 functions in comparing 

with CoDE, improvement in 26 out of 28 functions in 

comparing with JADE, improvement in 24 out of 28 

functions in comparing with jDE, improvement in 24 

out of 28 functions in comparing with SaDE, 

improvement in 21 out of the total 28 functions in 

comparing with SHADE. In a word, our CIpBDE 

algorithm outperforms these state-of-the-art DE 

variants.  

6 Our Proposed CIpBDE Algorithm for 

the Feature Selection Problem 

In this part, we present CIpBDE algorithm for the 

feature selection problem. In recent years, feature 

selection has attracted a lot of attention [52-54] since it 

can enhance prediction accuracy and reduce the 

computational cost of data mining. Feature selection is 

an essential step adopted in various tasks, such as data 

mining, cluster analysis, classification, pattern 

recognition. Its purpose is to eliminate the useless 

features without reducing the prediction accuracy, and 

extract the useful feature subset from the original 

feature set [55]. However, find useful feature subset is 

a challenging task because of the huge search space 

and the complicated interaction among features. There 

are 2n  possible subsets for a given dataset having n  

features. Searching all possible solutions for a large n  

is impractical because it is too costly and restrictive. 

Therefore, feature selection can be considered as an 

NP-hard problem [56]. Concerning this issue, Some 

meta-heuristic search algorithms [52-54] were applied 

to solve this problem. In this study, we apply CIpBDE 

to solve the feature selection problem and make a 

comparison with GA, PSO, DE, and ABC algorithms. 

6.1 Encoding of the Individual 

In this paper, we adopt the numerical encode of 

CIpBDE to solve the feature selection problem. Each 

individual indicates the total number of features of a 

given dataset and each element denotes the probability 

of a corresponding feature to be selected. For example, 

for a given data set with D features, the individual with 

D dimensions is given as fellows. 

 
,1 ,2 ,D

(x ,x ,..., x )
i i i i

X = , 1,2,...,NPi =  (22) 

where NP  is the population size, 
,

[0,1]
i j
x ∈  is the 

probability of choosing the thj  feature in the feature 

subset. Each individual is decoded to binary string with 

a user-defined threshold η . When the value of the thj  

element of individual is greater than ,η  the 

corresponding thj  feature is selected to the feature 

subset and the corresponding decoded element is 1. 

Otherwise, the corresponding feature is discarded and 

the corresponding decoded element is 0. An example 

of feature subset solution for a given dataset that has 

14 features is given in Figure 3. In this paper, the 

threshold value of η  is set to 0.5.  

 

Figure 3. An example of feature subset solution 

6.2 Fitness Evaluation  

The goal of feature selection is to determine a 

feature subset with a strong classification capability. In 

this paper, we apply the one nearest neighbor (1-NN) 

algorithm as a classifier to evaluate feature subsets that 

are represented by the individuals. 1-NN is a special 

case of k-nearest neighbor (KNN) [57] when k is set to 

1. The reason we chose KNN algorithm is that KNN is 

very popular and easy to implement. On the other hand, 

a ten-fold cross-validation is adopted to improve the 

reliability of performance evaluation. In k-fold cross-

validation, the given data set is randomly divided into 

k equal-sized folds. One of them is selected as the 

testing set, and the rest k-1 folds constitute the training 

set. This process is repeated k times so that each fold is 

used once as the testing set.  

The performance of each fold is measured with the 

accuracy evaluation measure, i.e., the percentage of 

samples that are correctly classified, as given in 

Equation (23). 

     

     

Number of correctly classified samples
Accuracy

Total number of all the samples
=  (23) 

The overall performance of the classification is the 

average of the k results obtained by all folds, as given 

in Equation (24) which is also the fitness function of 

the individual. The higher the average accuracy, the 

better is the performance of feature subset, i.e., the 

corresponding individual has better fitness value.  

 
1

 1
k

i

i

fitness Accuracy
k
=

= ∑  (24) 
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The whole flowchart of CIpBDE for feature 

selection problem is illustrated in Figure 4. 

 

Figure 4. The Flowchart of the CIpBDE for feature 

selection 

6.3 Experiments Analysis for Feature Selection 

In this subsection, we evaluate the effectiveness of 

the CIpBDE for feature selection problem on several 

well-known real-world data sets from different 

knowledge fields, including Glass, Heart, Ionosphere, 

Iris, Parkinson, Segmentation, Sonar, Vowel, and Wine. 

These data sets are cited from the UCI Machine 

Learning Repository [58]. We compare the 

experimental results of CIpBDE with GA, PSO, DE, 

and ABC algorithms. The population size of all 

comparison algorithms is set to 20. The maximum 

iteration number is set to 100. The other parameters of 

CIpBDE are the same as section 5. The parameter 

settings for the other comparison algorithms are listed 

in Table 4. The final performance of all the 

experimental results are the average of 10 runs 

independently experiments. The comparison results are 

collected in Table 5.  

Table 4. Parameter settings for experiments 

Algorithm Parameters settings 

GA 
0.8,

0.05

crossover rate

mutation rate

 =  

 =

 

PSO 1 2 max min
2, 0.9, 0.4c c w w= = = =   

DE 0.7, 0.1F Cr=  =   

ABC FoodNumber=1 , lim0 it=10  

 

Table 5. Results for five comparison algorithms on 9 UCI datasets 

GA PSO DE ABC CIpBDE 
Data Set Average 

feature 

Average  

accuracy 

Average

feature

Average  

accuracy

Average 

feature

Average  

accuracy

Average

feature 

Average  

accuracy 

Average 

feature 

Average  

accuracy 

Glass 5.7 80.61% 5.1 81.08% 5.8 81.42% 5.6 79.91% 6 81.54%

Heart 7.8 83.26% 8.4 83.85% 9 84.19% 7.7 82.96% 8.3 84.70%

Ionosphere 13.3 93.33% 13.5 93.91% 11.4 94.42% 14.8 92.40% 11.8 94.71%

Iris 2.1 97.80% 2.3 97.73% 2 98.00% 2 97.60% 2.1 98.00%

Parkinson 11.8 99.13% 11.9 99.33% 12.2 99.49% 12.8 98.56% 12 99.90%

Segmentation 11 97.89% 11.6 97.94% 11.1 98.00% 11.1 97.59% 11.1 98.04%

Sonar 30.7 92.74% 30.7 94.29% 28.7 93.56% 29.5 91.30% 30 94.71%

Vowel 9.1 99.50% 8.8 99.37% 9.3 99.39% 8.9 99.09% 9.1 99.52%

Wine 8.4 99.39% 8.8 99.50% 8.1 99.67% 7.6 99.22% 7.9 99.67%

 

From the Table 5, we can observe that the CIpBDE 

algorithm obtains the best classification accuracy 

among the comparison algorithms. The classification 

accuracy achieved by the CIpBDE algorithm is 81.54%, 

84.70%, 94.71%, 98.00%, 99.90%, 98.04%, 94.71%, 

99.52%, and 99.67% on data sets Glass, Heart, 

Ionosphere, Iris, Parkinson, Segmentation, Sonar, 

Vowel, and Wine, respectively. For the data sets Iris 

and Wine, the CIpBDE and DE algorithms have the 

same performance. For the average size of the selected 

feature subset, the CIpBDE algorithm has no minimum 

size. It should notice that the goal of feature selection 

is to eliminate the useless features without reducing the 

classification accuracy, which means that the smallest 

or largest feature subset size is not equivalent to the 

best or worst classification accuracy.  

7 Conclusions 

In this paper, a novel DE variant was proposed, 

namely CIpBDE, based on hybridizing the top 

collective information and p-best information for 

global optimization problems. In the proposed CIpBDE, 

first, we proposed a combined mutation strategy 

CIpBM by taking advantage of the mutation strategies 

“target-to-ci_pbest/1” and “target-to-pbest/1” to avoid 

trapping local optima. Second, we presented a 

modified crossover operation CIpBX to against the 
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stagnation of DE. The CIpBX uses a collective vector 

or top p-best individual based on probability to execute 

crossover operation when stagnation occurs. Finally, 

we modified the parameter adaptation strategy to tune 

the parameters and values in each generation.  

The performance of CIpBDE is assessed on the 

CEC2013 benchmark test suite with 28 functions. The 

experimental results indicate that CIpBDE gives better 

performance than seven powerful and popular DE 

variants. To further evaluate the effectiveness of 

CIpBDE on a real-world problem, we applied CIpBDE 

to the feature selection problem. The experimental 

results on several standard data sets demonstrate that 

the proposed CIpBDE algorithm outperforms the four 

comparing algorithms in terms of classification 

accuracy. For the future work, we will test the 

proposed CIpBDE algorithm on other real-world 

optimization problems [59-63]. 
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