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An efficient digital twin based on machine learning SVD autoencoder and generalised latent
assimilation for nuclear reactor physics
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• A real-time operational digital twin is proposed for the prediction of power field in the core.
• A non-intrusive forward model is built based on SVD-autoencoder and machine learning prediction methods.
• An inverse model is realised based on a generalised latent assimilation method to overcome the bottleneck of

efficient parameter identification.
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A B S T R A C T
This paper proposes an approach that combines reduced-order models with machine learning in
order to create an digital twin to predict the power distribution over the core during the operation
stage. The operational digital twin is designed to solve forward problems given input operation
parameters, as well as to solve inverse problems given some observations of the power field.
The forward model is non-intrusive and realised using SVD autoencoder reduced order model
with the combination of machine learning methods, namely, k-nearest-neighbors and decision
trees to build the input-output map. For model parameter estimation, the inverse model is based
on a generalised latent assimilation method. The proposed approach is able to make use of
the non intrusive reduced order model and the online measurements of the power field. The
effectiveness in the sense of accuracy and real-time solver of the digital twin is illustrated through
a real engineering problem in nuclear reactor physics - reactor core simulation in the life cycle
of HPR1000 affected by input parameters, i.e., control rod inserting step, burnup, power level
and inlet temperature of the coolant, which shows potential applications for on-line monitoring
purpose.

1. Introduction
The concept and model of digital twins was introduced by Grieves [37]. Since then, digital twins are permeating

across nearly all academic, engineering or industrial disciplines, interested readers are referred to the reviews work
of [38, 44]. Since the application is quite broad and varied, the definitions, enabling technologies, challenges and
opportunities of digital twins are quite different, see [21, 66, 71] for a comprehensive review.

Related works on digital twins in nuclear engineering are recent, for instance, [51, 32, 65]. For example. The work
in [32, 31] entrusts digital twins a specific role when dealing with the broader concepts of secure embedded intelligence
and integrated state awareness. In [53], the authors mention digital twins focusing on advancing the concept of a nuclear
power plant as a Human-Cyber-Physical System. The review article [51] focuses on uncertainty quantification (UQ)
and software risk analysis of machine learning (ML) generated digital twin for the nearly autonomous management
and control of nuclear power systems for prognostics and diagnostics supporting purposes. A more detailed discussion
on digital twin concepts with uncertainty for nuclear power applications can be found in [47]. Additionally, the work
[65] focuses on the development of technologies that enable digital-twinning efforts in nuclear proliferation detection.
The technical reports [59, 58] released by Argonne National Lab (ANL) describe the development of a digital twin
predictive model for Pressure Water Reactor (PWR) components, in a physics-infused and AI/ML-based framework.
Varé and Morilhat [73] developed digital twins for models fed by operational online data and to benefit from data
analytics to support long term operation of critical nuclear equipment. The work [43] aims to develop flexible modeling
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software package to simulate dynamic processes occurring in Nuclear Power Plant (NPP) power units with VVER-
1000 reactors, meanwhile the authors insist that the flexible software package is the kernel of the digital twin of an
NPP power unit.

Digital twin is defined as a virtual representation of a physical asset (e.g. a reactor core) enabled through data
and simulators amenable to better understanding the behavior of nuclear reactor systems. This concept can be used
for real-time prediction, optimization, monitoring, controlling, and improved decision making [64]. In this regard, the
objective of a digital twin in nuclear reactor domain can generally be taken as gains in economical efficiency and
safety goals in nuclear power applications, particularly in reactor operations. The early application in reactor physics
[36] proposes a prototype of reactor physics operational digital twin (RPODT) to predict neutron flux and power
distributions in nuclear reactor cores for on-line monitoring purpose. The effectiveness of the proposed digital twin
was illustrated through a real engineering problem based on HPR1000 reactor core. In general, there are three main
problems associated with building a RPODT:

(i) building a forward solver to efficiently compute approximations to any high-dimensional physical field 𝑢(𝝁) for
any given parameter 𝝁;

(ii) building an inverse solver to estimate the field 𝑢(𝝁) from (possibly sparse) data observation 𝑌o when the true
parameter 𝝁 is unknown;

(iii) building an inverse solver to estimate the parameter 𝝁 that can give rise to an observed state 𝑌o and the related
field 𝑢(𝝁).

The work in [36] suggested a non-intrusive reduced order model with machine learning methods to realize the first goal.
Considering the quick response of this forward solver, a naive approach based on Latin Hypercube Sampling (LHS)
direct search is used in building the inverse solver to tackle the second and third problems. Consequently, additional
work in modelling and analysis is needed to realise a more practical RPODT. This is what we discuss next.

This paper is organised as follows. Section 2 introduces the related work and highlight the contribution of this
paper. In Section 3, the forward model with machine learning based singular value decomposition (SVD) autoencoder
(AE) and the inverse model with generalised latent assimilation are introduced. In Section 4, we introduce the detail
applications to nuclear reactor physics. We first set up the reactor physics operation problems, then show the application
of the forward model in Section 4.2 and show in Section 4.3 the application of the inverse model for parameter
identification. The computational performance of the proposed RPODT is presented in Section 4.4. At last, some
conclusion and perspectives are drawn in Section 5.

2. Related work and contribution
In this section, we present the related work regarding neutron field modelling and simulation tools, reduced-order-

modelling and data assimilation for digital twins.
2.1. Neutron field modeling and simulation tools

One of the key components of the RPODT is the simulation models. For the modeling and simulation of a
reactor core, the most unique and important physical field one concerns is neutron field and the related core power
distribution. The behavior of the neutron field is characterized by physical laws, which are often represented by
governing equations in the form of Partial Differential Equations (PDEs), i.e., neutron transport equations, or their
approximations [49, 40, 69].

In a classical computational setting, numerical models discrete the governing equations, approximating the solution
fields in different ways. The current mature industrial standard codes use different nodal methods to represent the field
with node average value followed by pin power reconstruction in each node, such as CORCA-3D [2], COCAGNE
[17], SIMULATE-5 [9], ANC9 [14], PARCS [30], DONJON4 [39], DYN3D [10], SCOPE2 [72], Bamboo-Core [77],
DIF3D-VARIANT [68] etc. The typical computational time for one simulation of the whole core amounts to 30 seconds
as reported in [4].

The recent programs such as CASL [70], NURESIM [15] and NURESIM [20] apply different strategies to develop
the next generation high-fidelity simulation tools for NPP. Many of the codes developed are finite element-based
with high-fidelity model and even coupled with other codes. For example, under CASL, the core simulator portion of
VERA-CS [48], uses the advanced method of characteristics (MOC) to solve the neutron transport equations (MPACT
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code), coupled with the sub-channel analysis code CTF and the fuel performance code BISON directly. However,
even with High-Performance Computing (HPC), the computational demand of such high-fidelity codes is far too
high for a routine industrial application [74]. Thus the scientifically attractive approach remains a perception that
it’s immediately industrial adoption is currently impractical, due to the required computer power and the often strict
time schedules for design and operation usage. However, this does not imply that the high-fidelity scheme is not viable
in the long-term, especially in cases where there are no strict time constraints, e.g., to create a detailed understanding
of design/operational effects, such as validation of a new type core [48].

In general, these tools quoted above meet the criteria for a digital model, but they are far from the level of
constructing an real-time operational digital twin on their own. However, they can still serve a role in support of
operational digital twin as a basis using reduced-order modelling (ROM) techniques. Particularly, further advances in
ROM may help the investments in high-fidelity simulation give much return in the digital twin framework.
2.2. Reduced order models for digital twins

The reduced order modelling [11] offers new opportunities in reduction of computational effort that neutron
simulation codes demand, without significant loss of precision. Therefore ROM is another key technology for real-time
operational digital twin development for operation support. We refer to the recent surveys [3, 12, 28] for a thorough
introduction to ROM.

Typically ROM is intrusive, requiring full knowledge of the governing equations and the numerical strategy of
the full model of the underling physical system. A general way to construct the intrusive ROM is to project the (high-
fidelity) full-order model onto the reduced space [12]. In most of nuclear engineering applications, access(probe) to the
detail numerical frame of proprietary/commercial codes is generally unavailable. Thus the full model code is always
viewed as black-box solver by users, which in turn limits the implementation of traditional ROM. In contrast, non-
intrusive ROM aims to construct reduced order model by building the input-output map of the input parameter and the
reduced basis through interpolation [55, 75], regression [7, 8, 76], machine-learning [42, 54, 18] or other approaches
[57, 60, 13, 19]. Thus non-intrusive ROM is amenable to representation simulation components of the digital twin as
primarily real-time.
2.3. Data assimilation with ROM for digital twins

ROM also offers new opportunities for the integration of simulation models and physically observable quantities,
which may be in a small-data scenarios. These approaches are also regard as data assimilation with ROM [6], where
the data is incorporated into a reduced model, see recent works [41, 4, 24, 29] for detail description of this framework.
This framework makes the combination of simulation model with measurement data more efficient to realise real-time
operational digital twin. In more detail, simulation models of the digital twin are represented by reduced basis, while
the coefficients of the reduced basis and the caused input parameters are determined with observations in an inverse
framework. In the offline phase, ROM provides a way to learn the behaviour of the underline physical system, thus
allows extracting the principal component information of the system and further more providing a guideline to set
the amount and locations of instruments needed for economical consideration [4]. In the online phase, ROM speeds
up computations allowing better explorations of the parameter space at an acceptable computational cost to meet the
real-time requirement of operational objective.
2.4. Previous work

Our previous work [36] constructed a prototype of RPODT, that combines reduced-order models with machine
learning to predict neutron flux and power distributions in a real-time level. The digital twin is not only able to solve
forward problems given an input parameter, but also to solve inverse problems given some extra measurements. In the
offline phase, the proper orthogonal decomposition (POD) is used to extract the reduced models, while the machine
learning techniques, namely, K-nearest neighbours (KNN) and Decision tree (DT) are used to learn the map of the
input-parameters and coefficients of the reduced basis. Thereafter the high-fidelity fields are able to be solved in a
non-intrusive ROM way. In the online phase, the real time input parameters are used to rapidly reconstruct the neutron
field with the digital twin. Further more, the input parameters can be adapted based on the real time measurements in
an inverse framework. The effectiveness of the framework is illustrated based on HPR1000 [50] reactor core modelled
by two-group neutron diffusion equations affected by the general input parameters of the reactor, such as control rod
inserting step, burnup, power level and temperature of the coolant, etc. However, the investments in efficient forward
and inverse methods in the digital twin may need further advances. For example, building a forward model with non-
linear machine learning is worth trying, in order to catch the non-linear dependence of the parameter. In building the
Gong et al.: Preprint submitted to Elsevier Page 3 of 19



inverse model, the naive approach shall be replaced with more meaningful methods with theoretical guidance, and the
robustness with respect to observation noise shall also be investigated.
2.5. Contributions of this work

In the previous work of [36], the general POD is used to construct the reduced model in a linear framework.
Several works [45, 62, 63] have highlighted the connection between AE and SVD (or POD), additionally, by choosing
nonlinear activation functions, AE with SVD paves a way to perform nonlinear dimensionality reduction. Particularly,
recent works [62, 63] provide a novel hybrid SVD AE in developing the reduced-order model to solve eigenvalue
problems of neutron diffusion equations, and its efficiency is illustrated numerically via a one dimension and two
dimension benchmark problems. Though the SVD AE was implemented in an intrusive way as a projection-based
ROM in [62], it is more suitable for implementation in a non-intrusive way directly. One of our main contribution in
this work it to adapt the SVD AE to build a non-intrusive ROM which is able to couple with any industry code in
building the real-time operational digital twin. The non-intrusive property is achieved again by KNN or DT to map
the input parameter to the latent space i.e., the coefficients of the reduced basis. As we will show later, the SVD AE
provides more accurate result than linear POD does.

Further more, because of the high-efficiency of the machine learning based ROM forward model, when constructing
the inverse model to infer the input parameter with online sensor data, we proposed a relatively naive approach in [36]
to approximate the model parameters from an ensemble of samplings generated using LHS around the initial guess.
Meanwhile, the latest progress of data assimilation in latent space [61, 1, 16, 27, 52] (also called latent assimilation)
with machine learning make it possible to further simplify our inverse problem instead of the naive sampling approach.
Thus our second contribution in this work it to adopt the generalised latent assimilation to solve the inverse problem,
which ensures the high efficiency of the operation digital twin. Further more, the robust of the inverse algorithm with
respect to observation noise is also tested, which shows a satisfactory result for engineering usage.

3. Digital twin architecture and methodology
A typical architecture of RPODT involves forward and inverse models. The forward model is a non-intrusive

reduced order model, which permits to solve the forward problem for a given input parameter in a second or even less to
meet real time properties. Particularly, we propose a machine learning based SVD AE to build the forward model in this
work. Meanwhile, the CORCA-3D code, referred to as the high-fidelity model, is used to provide high-fidelity solutions
for training the reduced order model. The inverse model is realized in a generalised latent assimilation framework, with
a combination of the non-intrusive reduced order model and online observations from a nuclear reactor core, to identify
which input parameter should comprise the current state.
3.1. Forward model: machine learning based SVD AE

This section briefly describes the key stages of constructing a non-intrusive reduced order model, including
preparing high-fidelity snapshots, computing the reduced basis and SVD AE, learning the map from input parameter
space to reduced space with machine learning, and constructing a projection-based reduced-order model.
3.1.1. High-fidelity snapshots

Consider a reactor core that maps an input parameter 𝝁 onto the power distribution field 𝑢, i.e., the power field
𝑢 varies in space, and depends on the input parameter of the system. Thus we have 𝑢 ∶ Ω ×  → ℝ, with the input
parameter domain  ⊂ ℝ𝑝 of dimension 𝑝 and the spatial domain Ω ⊂ ℝ𝑑 which represents the reactor core of
dimension 𝑑. In our practical nuclear engineering applications, the power field 𝑢(𝒓,𝝁) is solved with the proprietary
CORCA-3D code package[2]. The solution manifold  ∶= {𝑢(𝒓,𝝁)| 𝒓 ∈ Ω,𝝁 ∈ } is composed of solutions of
all possible input parameters from . For brevity, in the left part of this work, we omit 𝒓 and denote by 𝑢(𝝁) the
parameter-dependent field unless otherwise specified.
3.1.2. Computing the reduced basis

The ROM aims to provide an efficient low-dimensional representation of the snapshots. Such a representation can
be achieved using reduced basis [56, 4, 24], particularly the POD basis [67, 34], which is typically computed using
discrete sampled training data, i.e., snapshots sampled from . Consider a collection of 𝑁 snapshots  = {𝒖(𝝁𝑘)}𝑁𝑘=1corresponding to a discrete parameter set 𝑁 = {𝝁1, ...,𝝁𝑁} ⊆ , where the 𝑀-dimensional vector 𝒖 ∈ ℝ𝑀 is the

Gong et al.: Preprint submitted to Elsevier Page 4 of 19



discrete version of the power field 𝑢. Define the snapshot matrix 𝑺 ∈ ℝ𝑀×𝑁 which contains the snapshots 𝒖(𝝁𝑘) as
its columns. The correlation matrix 𝐂 is then-formed by computing the inner product between each pair of snapshots,
i.e.,

𝐂𝑖,𝑗 =
1
𝑁

(𝒖𝑖, 𝒖𝑗), ∀1 ≤ 𝑖, 𝑗 ≤ 𝑁. (1)

The eigenvalues {

𝜆𝑖
} and the corresponding eigenvectors {

𝒗𝑖
} of 𝐂 are then computed. The 𝑗-th POD basis 𝒒𝑗 is

given by a linear combination of snapshots

𝒒𝑗 =
𝑁
∑

𝑖=1
𝒗𝑖𝑗𝜙𝑖, (2)

where 𝑣𝑖𝑗 denotes the 𝑖-th element of the 𝑗-th eigenvector. The magnitude of the 𝑗-th eigenvalue 𝜆𝑗 describes the relative
importance of the 𝑗-th POD basis. Assemble the first 𝑛 POD basis in a matrix 𝑽 𝑛 = [𝒒1, ..., 𝒒𝑛] ∈ ℝ𝑀×𝑛. Among all
orthonormal bases of size 𝑛, the POD basis minimizes the least squares error of the reconstruction of snapshot matrix
𝑺,

min
𝑽 𝑛

‖𝑺 − 𝑽 𝑛𝑽 𝑇
𝑛 𝑺‖

2
𝐹 =

𝑁
∑

𝑘=𝑛+1
𝜆𝑘 . (3)

Thus the POD basis provides an efficient low-dimensional representation of the field in the manifold . For any
𝒖(𝝁) ∈ , the 𝑛-dimensional representation of 𝒖(𝝁) is approximated by

𝒖(𝝁)𝑛 =
𝑛
∑

𝑖=1
𝛼𝑖(𝝁)𝒒𝑖 . (4)

3.1.3. SVD autoencoder
Traditional POD with equation 4 provides an linear expansion of 𝑢(𝝁) with POD basis. Autoencoders provide a

nonlinear model reduction alternative to POD/SVD [45], that may capture features of the high-fidelity snapshots more
efficiently. An autoencoder is an unsupervised learning technique in which we leverage a special type of feed-forward
neural network for the task of representation learning. In particular, we build a neural network architecture which forces
a reduced representation of the original input data by imposing a bottleneck .

As shown in Figure 1, the core of a SVD AE is an autoencoder, which is composed of two networks: the encoder
and the decoder, the former maps an input data to the latent variables, and the latter maps from the latent variables to
the output data. If we denote the input data by 𝒙 ∈ ℝ𝑀 , the output data by 𝒙̂ ∈ ℝ𝑀 and the latent variables by 𝒙̃ ∈ ℝ𝑛,
then the autoencoder can be represented as a composition of and encoder and decoder functions,

𝒙̂ = 𝑓AE(𝒙,𝒘AE) = 𝑓DEC(𝒙̃,𝒘DEC) = 𝑓DEC(𝑓ENC(𝒙,𝒘ENC),𝒘DEC), (5)
where 𝑓AE, 𝑓ENC, and 𝑓DEC represent the autoencoder, encoder, and decoder, with associated weights 𝒘AE, 𝒘ENC
and 𝒘DEC respectively. The encoder and the decoder are then trained jointly with the mean square error (MSE) as the
loss function

𝐽 (𝒘ENC,𝒘DEC) = 1
𝑁AE

train

𝑁AE
train
∑

𝑗=1
‖𝒙𝑗 − 𝒙̂𝑗‖2, (6)

where 𝑁AE
train represents the size of the AE training dataset. Figure 1 gives an example of the architecture of SVD

AE with a fully connected autoencoder with three encoder layers and three decoder layers. With this network, a
twelve-dimensional high-fidelity field 𝒖 is first reduced into a six-dimenaional variable 𝒙 in the form of reduced basis
coefficients 𝜶, then this six-dimenaional variable is compressed into one latent variable 𝒙̃ and then expands back to
the original six-dimenaional variable 𝒙̂, with the six-dimenaional variable as coefficients 𝜶̂ of the six reduced basis
{𝒒1, ..., 𝒒6}, the field 𝒖̂ can be reconstructed in the form of 𝒖̂ =

∑6
𝑖=1 𝛼𝑖𝒒𝑖.
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The combination of POD and AE (also known as SVD AE) was introduced in the recent works of [62, 63] for
constructing a reduced-order model of neutron diffusion eigenvalue problems. This method consists of two stages of
dimension reduction. In the first stage, we apply the POD to obtain the principle components of the associated field; in
the second stage, we use the first 𝑛 principle components’ coefficients (corresponding to the first 𝑛 largest eigenvalues)
as input data to train a dense autoencoder with fully connected neural networks to further reduce the problem dimension
by learning the nonlinearity of the field. As pointed out by [62], since the POD considerably reduces the size of the input
data (compared to using high-fidelity data) in AE, applying fully connected neural networks layers is computationally
affordable without concerning over-parameterization. Thus the input data of SVD AE is the first 𝑛 POD coefficients
𝒙 = 𝜶 = (𝛼1, ..., 𝛼𝑛)𝑇 ∈ ℝ𝑛, and the latent variables 𝒙̃ is of dimension 𝑟, with 𝑟 < 𝑛. In this work, we use the 𝛼-leaky
rectified linear unit (𝛼-LReLU) as the activation function of neural networks, where 𝛼 = 0.2 as suggested in [33]. The
detail structure of the SVD AE used in this work is summarised in Table 1.

Figure 1: An example of the architecture of SVD AE with a fully connected autoencoder with three encoder layers and three
decoder layers. With this network, a twelve-dimensional high-fidelity field 𝒖 is first reduced into a six-dimenaional variable
𝒙 in the form of reduced basis coefficients 𝜶, then this six-dimenaional variable is compressed into one latent variable 𝒙̃
and then expands back to the original six-dimenaional variable 𝒙̂, with the six-dimenaional variable as coefficients 𝜶̂ of the
six reduced basis {𝒒1, ..., 𝒒6}, the field 𝒖̂ can be reconstructed in the form of 𝒖̂ =

∑6
𝑖=1 𝛼𝑖𝒒𝑖

3.1.4. Non-intrusive reduced order model
Once the reduced space is constructed by POD or SVD AE, the final work to build a non-intrusive ROM is to

construct a map from the input parameter vector 𝝁 to the coefficients of the reduced space. As noted in [36], DT and
KNN are more fit for engineering applications with limited data [46], that is exactly the circumstances we are interested
in this work. We follow the work [36] and use DT and KNN to learn the input-output map, and we further denote the
non-intrusive machine learning forward model by 𝑓ML(𝝁). For SVD AE, in the train stage, the input data is the first 𝑛
POD coefficients 𝜶(𝝁) and the output data is the latent variable 𝒙̃, thus we have

𝒙̃(𝝁) = 𝑓ENC(𝜶(𝝁)). (7)
Once 𝒙̃ is solved by 𝑓ENC(𝜶(𝝁)) for a training set of 𝝁, we can train the map from 𝝁 to 𝒙̃ with DT or KNN algorithm,

𝒙̃(𝝁) = 𝑓ML(𝝁). (8)
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Table 1
Neural network structure of the SVD AE

Layer (type) Output Shape Activation

Encoder
Input 500

Dense (128) 128 0.2-LReLU
Dense (30) 30 0.2-LReLU

Decoder
Input 30

Dense 128 128 0.2-LReLU
Dense 799 500 0.2-LReLU

Then we use the POD basis to recover the high-fidelity field 𝒖ML for a given 𝝁. In the end, 𝒖ML(𝝁) can be represented
by 𝑓ML(𝝁) as follows,

𝒖ML(𝝁) = 𝑓ML(𝝁) = 𝑽 𝑛𝜶̂ML(𝝁) = 𝑽 𝑛𝒙̂ML(𝝁) = 𝑽 𝑛𝑓
DEC(𝒙̃ML(𝝁)) = 𝑽 𝑛𝑓

DEC(𝑓ML(𝝁)). (9)
Note here that, the setting of the hyper-parameters of DT and KNN are the same as used in [36], and we will show
later in the Section 3.3.
3.2. Inverse model with generalised latent assimilation

For the inverse modelling, only partial observations of the entire field are available. Data-driven models such as
data assimilation (DA) approaches can be applied [5, 23]. Recently, latent assimilation techniques are introduced in the
work of [1, 61, 27] where the DA is performed after having compressed the state and the observation data into the same
latent space. However, as noted in the work [25], it is almost infeasible to compress the full state space and observations
into a same latent space in a wide range of DA applications, where only a part of the state are observable. Thus in this
work, the Generalised Latent Assimilation (GLA) is used, in which we split the observations and the background field
into two parts, that only the background field stays in the latent space. In this work, the background state 𝝁𝑏 is of
dimension four and represents the initial guess of the four model parameters. Applying the machine learning forward
model 𝑓ML and the decoder function 𝑓DEC, a background prediction of the full physical space can be obtained,

𝒙𝑏 = 𝑓DEC(𝑓ML(𝝁𝑏)). (10)
Denote by full the transformation function which links the full physical field 𝑽 𝑛𝒙 to observations 𝒚, i.e.,

𝒚 = full(𝑽 𝑛𝒙) + 𝜖𝑦, (11)
where 𝜖𝑦 is the observation error, supposed to be centered Gaussian in this paper. Applying variational assimilation to
estimate the model parameters 𝝁 will lead to the loss function,

𝐽 = 1
2
||𝝁 − 𝝁𝑏||

2
𝑩−1 +

1
2
||𝒚 −full(𝑽 𝑛𝑓

DEC(𝑓ML(𝝁)))||2
R−1 (12)

where B and R denote the prior errors in the state and the observation space, respectively [22]. However, as pointed
out by the recent works of [25, 26], the minimisation of equation (12) can be challenging due to the complexity and
the non-differentiability of ML functions. Following their ideas, we make use of the GLA algorithms by computing
a local polynomial surrogate functions that links 𝝁 and 𝒚. More precisely, LHS is performed to build a polynomial
regression (PR) learning ensemble {𝝁𝑞

𝑏}𝑞=1..𝑛𝑠 around the background state within certain range 𝑟𝑠. We then fit the
forward model and the decoder fundction by a local polynomial function ̃𝑝, i.e.,

̃𝑝 = argmin
∈𝑃 (𝑑𝑝)

(

𝑛𝑠
∑

𝑞=1
||𝑝(𝝁𝑞

𝑏) −full(𝑽 𝑛𝑓
DEC(𝑓ML(𝝁𝑏))||22

)1∕2, (13)
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where 𝑃 (𝑑𝑝) denotes the set of polynomial functions of degree 𝑑𝑝 and {𝑑𝑝, 𝑛𝑠, 𝑟𝑠} are the hyperparamters of the GLA
algorithm. Thus, the cost function 𝐽GLA of GLA problems reads:

𝐽GLA = 1
2
||𝝁 − 𝝁𝑏||

2
𝑩−1 +

1
2
||𝒚 − ̃𝑝(𝝁)||2

𝑹−1 , (14)

𝒙𝑎 = argmin
𝒙

𝐽GLA. (15)
A flowchart of the GLA is illustrated in Figure 2 and the algorithm is summarised in Algorithm 1.

Figure 2: Flowchart of the inverse model for parameter identification using GLA.

Algorithm 1: Three-dimensional variational data assimilation (3Dvar) GLA
Inputs: 𝝁𝑏,𝑽 𝑛,𝑩,𝑹, 𝒚, {𝑓ML}
Paramters: 𝑑𝑝, 𝑟𝑠, 𝑛𝑠
{𝝁𝑞

𝑏}𝑞=1..𝑛𝑠 = LHS Sampling{𝑑𝑝,𝑟𝑠,𝑛𝑠}(𝝁𝑏)
for 𝑞 = 0 to 𝑛𝑠 do

𝒚𝑞 = full(𝑽 𝑛𝑓DEC(𝑓ML(𝝁𝑞
𝑏)))

end
̃𝑝 = PRtrain

(input:{𝝁𝑞
𝑏}, output:{𝒚𝑞}, 𝑞 = 1..𝑛𝑠

)

𝝁𝑎 = argmin
𝝁

(

1
2 ||𝝁 − 𝝁𝑏||

2
B−1 +

1
2 ||y − ̃𝑝(𝝁)||2

R−1

)

outputs: 𝜇𝑎

3.3. Hyperparameter tuning
In this study, an ensemble of 18479 CORCA-3D simulations is split into three datasets with 14479, 1000 and 3000

samples, used for training, validation and testing, respectively. The forward machine learning models and ROMs are
trained on the training set. The exact networks for the SVD AE approach are shown in Table 1. To select the most
appropriate model parameters, the hyperparameter tuning is carried out on the validation dataset as shown in Table 2.
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Table 2
Hyperparmater grid search space

Model/Hyperparamters Grid search space Final set

DT
split criteria { ’gini’, ’entropy’} ’gini’

𝑛features { ’log2’,’sqrt’} ’sqrt’

KNN
𝑘 { 5,10,20} 5

Metric {𝐿1, 𝐿2} 𝐿2
GLA
𝑑𝑝 2-6 4
𝑛𝑠 {200, 500, 1000, 2000} 1000
𝑟𝑠 10% − 100% 30%

4. Application to nuclear reactor physics
4.1. Set up of reactor physics operation problems

The realistic engineering background is to reconstruct the power distribution in a reactor core, e.g., during the
operation of the PWR HPR1000 [50]. The core is filled with a total of 177 vertical nuclear fuel assemblies, among
those 44 are instrumented with self powered neutron detectors (SPNDs) which are used to measure the neutronic
activity fields thereafter the power field in the core. In Fig 3, we illustrate a horizontal slice of the HPR1000 core and
an axial slice of an assembly with SPNDs implemented in. Because of the symmetry along the 𝑥 and 𝑦 axis, only one
quarter of the core is given. The fuel assemblies in gray represent the assemblies with control rod, and those marked
with D present the assemblies with SPNDs. We refer to [50] for a glance at HPR1000 and the generic neutronic physical
model of the reactor. For the sake of completeness, we list here the description of the model with minor modification.
This part is original introduced in [35, 36] for the study of data assimilation and then the first work in RPODT.

Figure 3: A quarter of the HPR1000 core in radial direction (white square: fuel assembly with SPNDs, gray square: fuel
assembly with control rods, D: fuel assembly with neutron detectors) [36].

During the normal operation of HPR1000, two types control rods are used to control the reactor, the first one is
compensation rods, which used for coarse control and/or to remove reactivity in relatively large amounts. There are
four subtypes compensation rods, i.e., G1,G2,N1,N2. The second one is regulating rods (R rods), which are used for
fine adjustments and to maintain desired power or temperature [50]. We consider the power evolution induced by i)
the movement of the control rods, ii) the burnup of the nuclear fuel in the whole core, iii) the variation of the power
level of the reactor core and iv) the variation of the inlet temperature coolant. The evolution of the power field 𝑢 is
Gong et al.: Preprint submitted to Elsevier Page 9 of 19



modelled by two-group diffusion equations as shown in [36], and solved numerically with the advanced node core
code package CORCA-3D [2], developed at Nuclear Power Institute of China (NPIC), which is able to solve the 3D
few-group diffusion equations, consider the thermal-hydraulic feedback, and the pin-by-pin power reconstruction.

In this work, we treat CORCA-3D as a black box solver with input parameter 𝝁 and output 𝒖. Specifically, the
power field 𝒖 is limited to depend on the vector of “general” parameters which give the stage of the life cycle:

𝝁 ∶= (𝑆𝑡, 𝐵𝑢, 𝑃𝑤, 𝑇𝑖𝑛). (16)
• 𝑆𝑡: the inserting steps of control rods, which ranges from 0 to 615. Consider the movement of the compensation

rods from all rod clusters out (ARO) to fully inserted (615 steps, considering the overlap steps).
• 𝐵𝑢: the average burnup of the fuel in the whole core. It is a measure of how much energy is extracted from the

fuel so it is an increasing function in time. It ranges between 0 (for the beginning of the life cycle) and 𝐵𝑢,max(the end of the life cycle, in this work, we set 𝐵𝑢,max=2500 MWd/tU) and its exact evolution depends on the
operating history of the reactor.

• 𝑃𝑤: the power level of the reactor core. It ranges between 0.3 and 1 FP (Full Power).
• 𝑇𝑖𝑛: core coolant temperature at inlet. It ranges between 290 and 300 ◦C.

Thus, 𝒖 can be represented by 𝒖(𝝁) = 𝒖(𝑆𝑡, 𝐵𝑢, 𝑃𝑤, 𝑇𝑖𝑛) implicitly thanks to CORCA-3D. There are 177 fuel assemblies
in HPR1000, each assembly is numerically represented using 28 vertical levels. Thus, 𝒖 is a vector of dimension
𝑀 = 4956 (177 × 28). The discrete solution set 𝑺 ∶= {𝒖(𝝁)|𝝁 ∈ 𝑠} consists of 18480 solution snapshots with the
parameter sampling scheme 𝑠 ∶= 𝐵𝑠

𝑢 ⊗ 𝑆𝑠
𝑡 ⊗ 𝑃 𝑠

𝑤 ⊗ 𝑇 𝑠
𝑖𝑛, where 𝑆𝑠

𝑡 = {0, 1, ..., 615}, 𝐵𝑠
𝑢 = {0, 50, 100, 150, 200,

500, 1000, 1500, 2000, 2500}, 𝑃 𝑠
𝑤 = 𝑅𝑈3(30, 100), and 𝑇 𝑠

𝑖𝑛 = 𝑅𝑈3(290, 300), the operator 𝑅𝑈3(𝑎, 𝑏) represents a
random uniform sampling in the closed set [𝑎, 𝑏], (𝑎 < 𝑏) for three times.

The configuration of the observations in node wise can be found in Figure 3, and the observation vector 𝒚 (possibly
with noise) is of dimension 𝑚 = 308 (44×7) in the whole core. In this work, observations used in the analysis process
are not coming from real measurements, but coming from numerical simulations with CORCA-3D. The observations
𝒚 with combination of prior information on the input parameter 𝝁𝑏 are used to improve the quality in estimating the
input parameter 𝝁, thereafter the power field 𝒖. In this work, the case with observation noise is also studied.
4.2. Forward model prediction with reduced order model

We first assess the performance of machine learning based reduced order models to solve the forward problem for
a given input parameter 𝝁. There are four models considered, the KNN POD model, the KNN SVD AE model, the
DT POD model and the DT SVD AE model. In this study, an ensemble of 18479 CORCA-3D simulations is split into
three datasets with 14479, 1000 and 3000 samples, used for training, validation and testing, respectively. The forward
machine learning models and ROMs are trained on the training set. The detail hyperparameter tuning policy is shown
in Table 2.

Figure 4 presents the decay of the first 1000 singular values of the discrete manifold 𝑺 of 18479 CORCA-3D
snapshots. As shown in Table 1, We select the first 500 POD basis and the corresponding coefficients to feed the SVD
AE, to make sure the truncated error over the discrete manifold less than 10−5, which seems to improve three orders
of magnitude than just select the first 30 POD basis to build the reduced model directly. In this regards, we try to
compress a 500 dimensional POD coefficient information into a 30 dimensional latent variable, by further learning the
nonlinearity of the manifold with SVD AE.

For a given input parameter 𝝁 in the test dataset, we first introduce the relative 𝐿2 error 𝑒ML as shown in Equation
17 to evaluate the quality of each model, where the superscript ML presents the four models quoted above, and 𝒖True
presents the field in the test set, which is regarded as the true field.

𝑒ML =
‖𝒖ML − 𝒖True

‖𝐿2

‖𝒖True
‖𝐿2

(17)

To evaluate the overall quality of each model, we then introduce the average relative 𝐿2 error 𝐸ML over the test dataset
as shown in Equation 18, where 𝑁 test = 3000 in this work.

𝐸ML =
∑𝑁 test

𝑖=1 𝑒ML
𝑖

𝑁 test (18)
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Figure 4: The decay of the first 1000 singular value of the snapshots manifold.

We first show in Figure 5 the behaviour of the first three latent variables for KNN SVD AE and DT SVD AE models
in the test dataset. In each figure, the true values are rearranged in ascending order. It is clear that the latent variables
learned by KNN stand closer to the true values than DT does, thus KNN based models provide more accuracy results
than DT. This could also be confirmed by the results shown in Figure 6.

We illustrate in Figure 6 the average error 𝐸ML in the full physical space against the dimension of the latent/reduced
space for the four models, i.e., the KNN POD, KNN SVD AE, DT POD and DT SVD AE models. We investigated
the performance corresponds to the latent/reduced space of dimension 𝑛 = 5, 10, 20, 30. Obviously, compared with
the results of POD based forward machine learning models, the accuracy of SVD AE based forward machine learning
models has been significantly improved. Particularly, with only 20 latents variables, the SVD AE convergences to the
best accuracy, meanwhile, POD needs more than 30 reduced basis, the latter would results more computing resource.
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Figure 5: Prediction results of latent variables (blue) against true values (red) in the test data set.
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Figure 6: Prediction error in the full physical space against the dimension 𝑛 of the latent space.

4.3. Inverse model for parameter identification
In this section, we investigate the performance of the inverse model with GLA, given noisy observations 𝒚 =

full(𝒖) + 𝜖𝑦, where 𝜖𝑦 is the observation error, supposed to be centered Gaussian distribution of standard derivation
𝜎.

Before we start to analyse the performance of the inverse model, we first give in Figure 7 the importance rate of
input variables in the form of gini coefficient in the DT forward algorithm. It is clear that the control rod inserting
step 𝑆𝑡 is the most important parameter that affects the output of the model, followed by the burnup 𝐵𝑢, and the total
power level 𝑃𝑤. The parameter that has the least impact on the model is inlet temperature. This finding is consistent
with common sense in reactor physics from the engineering point of view.

In Figure 8, we illustrate the absolute prior and post errors of the four input parameters for both DT and KNN
methods, for the case of noise level 𝜎 = 3%. This is again consistent with the result shown in Figure 7, that 𝑆𝑡parameter is more sensitive than other three, thus GLA algorithm improves the estimation of 𝑆𝑡 a lot both for DT and
KNN methods. Considering the different importance of each input parameter, we use the average relative 𝐿2 error of
the reconstructed power field 𝒖 defined in Equation 19 to quantify the quality of the inverse model.

𝐸ML
inverse =

∑𝑁noise
𝑖=1 𝑒ML(𝝁𝑎(𝒚𝑖))

𝑁noise , (19)

where 𝑒ML(𝝁𝑎(𝒚𝑖)) is the relative 𝐿2 error defined in Equation 20 for a given observation sample 𝒚𝑖.

𝑒ML(𝒚𝑖) =
‖𝒖ML(𝝁𝑎(𝒚𝑖)) − 𝒖True

‖𝐿2

‖𝒖True
‖𝐿2

(20)

The parameter 𝑁noise is set as follows. If the observation noise level 𝜎 = 0, we set 𝑁noise = 1, i.e., only one sample
is enough. If the noise level 𝜎 ≠ 0, we set 𝑁noise = 50, i.e., we sample the observation 𝒚 for 50 times in Gaussian
distribution, centered at zero with standard derivation 𝜎.

We then show in Figure 9 the prediction results of latent variables with background in blue line and assimilated
in yellow line parameters for the test dataset. The observation error level is set to be 𝜎 = 3% for both DT and KNN
methods. It is clear that even with noisy observations, our proposed inverse model with GLA is able to make use of
observation information, thus improve the estimation of latent variables with respect to a relative bad background (the
initial guess). Further more, KNN model provides better estimation than DT does.

The results for the whole test dataset for noise level 𝜎 = 4% and 𝜎 = 8% for both DT and KNN methods are
illustrated in Figure 10. In these figures, both background error and assimilated error are shown for comparison purpose.
It is easy to find that with GLA, the error of the reconstructed field improves a lot than only using the background
information. In more detail, we present in Figure 11 the error evolution of DT and KNN methods when the observation
noise level varies from zero to 0.14. In this case, the background error is fixed to be ∼ 0.22. From this figure, from the
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Figure 7: Importance rate (gini coefficient) of input variables in the DT forward algorithm.

(a) DT (b) KNN

Figure 8: Prior and Post error of parameter estimation with 3% of observation error.

Table 3
Averaged computational time for offline training and online prediction for different ML methods. The dimension of the
latent space is fixed to be 𝑛 = 30.

offline training online evaluation
SVD AE KNN DT KNN-based DT-based GLA (KNN) GLA (DT) CORCA-3D
542.07s 0.01s 0.14s 0.076s 0.079s 0.885s 0.923s ∼ 40s

engineering point of view, once the observation is more accurate than the background, the inverse model we proposed
is able to provide improved results than just only using the background information.
4.4. Computational performance

The computational work in this paper, including offline training and online predictions are carried out with Intel
CPUs (2.30GHz and 26.75Gb RAM) of Google Colab environment. In fact, thanks to the dimension reduction of SVD
in the first stage, the training of SVD AE doesn’t require the use of GPU which is an important advantage regarding
other deep learning (DL)-based AEs. The high-fidelity snapshots are computed with CORCA-3D code package at
an industry server at NPIC. The averaged computational time for offline training and online prediction for different
ML methods are presented in Table 3. The dimension of the latent space is fixed to be 𝑛 = 30. Particularly, in the
online phase, both forward and inverse models can be solved in one second, thus permits the proposed reactor physics
operational digital twin to be in real time, which is of practical value from engineering point of view.
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Figure 9: Prediction results of latent variables with background (blue) and assimilated (yellow) parameters in the test data
set. The observation error level is set to be 3% for both DT and KNN methods.
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Figure 10: Relative prediction error in the full physical space using background and assimilated parameters on the test
dataset of 3000 samples.
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Figure 11: Relative prediction error against the observation noise level.

5. Conclusion
In this paper, a reactor physics operational digital twin is proposed (developed) to predict the power distribution of

a nuclear reactor core. The operational digital twin is designed to solve forward problems given operational input
parameters, as well as to solve inverse problems given some extra measurements of the power field. Our main
contribution is to implement a SVD AE reduced order model to build a non-intrusive forward model with machine
learning methods such as KNN and DT, which has a better performance than using general reduced order method such
as POD. The second contribution is to apply the generalised latent assimilation method to build the inverse model of
the operational digital twin. Benefits from the rapid response of the machine learning based SVD AE forward model,
which is far less than solving the forward problem using an industrial code directly. The digital twin is able to evaluate
the forward model many times in the iteration process of the GLA based inverse model, thus helps the inverse model
to be solved in one second, to realise the real-time property of the operational digital twin.

The operational digital twin is tested through a real engineering problem in nuclear reactor physics i.e., reactor core
simulation in the life cycle of HPR1000. Numerical results proved the efficiency and accuracy of the forward/inverse
model, even with noisy observations, it is still acceptable from the engineering point view. This work is valuable
because of its systematical structure, easy implementable and satisfactory accuracy and time cost for the prediction
of operational input parameters and the related power field. Thus it successfully supports the implementation of real
engineering scale operational digital twin of nuclear power plants. The framework proposed is general, it can be also
adapted to other industry domain to build the operational digital twin. The next work is to bring out the uncertainty
qualification of the operational digital twin systematically, to push forward the real engineering applications.
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