An Efficient Distance Bounding RFID Authentication Protocol: Balancing False-Acceptance Rate and Memory Requirement

Gildas Avoine¹ and Aslan Tchamkerten²

¹Université catholique de Louvain, Louvain-la-Neuve, Belgium ²Telecom ParisTech, Paris, France

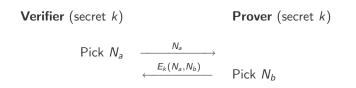
Information Security Conference, Pisa, Italy, Sept. 2009

- A brief introduction to RFID.
- Authentication and Mafia fraud.
- Key-references in distance bounding.
- Our Protocol.

RFID in a Nutshell

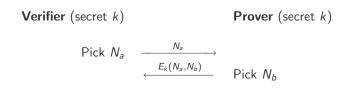
- RFID = Radio-Frequency IDentification.
- Tags and Readers (possibly connected to a back-end system).
- Tags are low-capability devices, passive.
- With or without microprocessor.
- Communication distance: a few cm to a few meters.
- Tags answer without agreement of their holders.
- Implicit agreement = being in the reader's field.

RFID Applications


- Pet identification.
- Supply chain.
- Electronic passports.
- Mass transportation.
- Access control.
- Payment.

Authentication

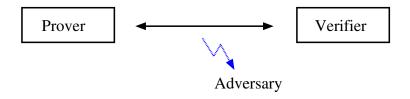
"Entity authentication is the process whereby one party is assured (through acquisition of corroborative evidence) of the identity of a second party involved in a protocol, and that the second has actually participated (i.e., is active at, or immediately prior to, the time the evidence is acquired)"


Handbook of Applied Crypto, Menezes, Oorschot, Vanstone.

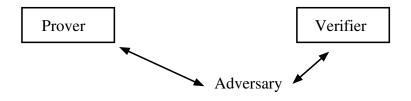
ISO 9798-2 Protocol 3 Unilateral

Protocol secure under some common assumptions on E, k, and N_{a} .

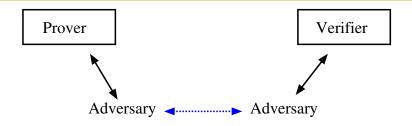
ISO 9798-2 Protocol 3 Unilateral

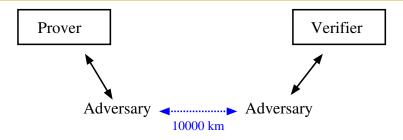


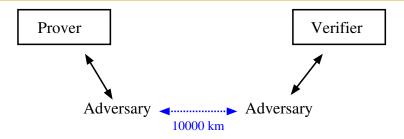
Protocol secure under some common assumptions on E, k, and N_a .



Mafia fraud.


- Desmedt, Goutier, Bengio [Crypto87].
- Shamir about Fiat-Shamir protocol [Crypto86]: "I can go to a Mafia-owned store a million successive times and they still will not be able to misrepresent themselves as me." (The NY Times, February 17, 1987, James Gleick).


- Mafia fraud.
- Desmedt, Goutier, Bengio [Crypto87].
- Shamir about Fiat-Shamir protocol [Crypto86]: "I can go to a Mafia-owned store a million successive times and they still will not be able to misrepresent themselves as me." (The NY Times, February 17, 1987, James Gleick).


- Mafia fraud.
- Desmedt, Goutier, Bengio [Crypto87].
- Shamir about Fiat-Shamir protocol [Crypto86]: "I can go to a Mafia-owned store a million successive times and they still will not be able to misrepresent themselves as me." (The NY Times, February 17, 1987, James Gleick).

- Mafia fraud.
- Desmedt, Goutier, Bengio [Crypto87].
- Shamir about Fiat-Shamir protocol [Crypto86]: "I can go to a Mafia-owned store a million successive times and they still will not be able to misrepresent themselves as me." (The NY Times, February 17, 1987, James Gleick).

- Mafia fraud.
- Desmedt, Goutier, Bengio [Crypto87].
- Shamir about Fiat-Shamir protocol [Crypto86]: "I can go to a Mafia-owned store a million successive times and they still will not be able to misrepresent themselves as me." (The NY Times, February 17, 1987, James Gleick).

- Mafia fraud.
- Desmedt, Goutier, Bengio [Crypto87].
- Shamir about Fiat-Shamir protocol [Crypto86]: "I can go to a Mafia-owned store a million successive times and they still will not be able to misrepresent themselves as me." (The NY Times, February 17, 1987, James Gleick).

Mafia Fraud: Example in a Queue

Gildas Avoine and Aslan Tchamkerten - Distance Bounding RFID Authentication Protocol

Do-ability of Mafia Fraud

Successful attacks.

- Co-axial cable over 50 cm (T. Gross 06).
- Radio link over 50 meters (G. Hancke 05).
- Reader starts a timer when sending a message.
 - To avoid semi-open connections.
- ISO 14443 "Proximity Cards".
 - Used in most secure applications.
 - Standard on the low-layers (physical, collision-avoidance).
 - Default timer is around 5 ms.
 - Prover can require more time, up to 4949 ms.

Do-ability of Mafia Fraud

Successful attacks.

- Co-axial cable over 50 cm (T. Gross 06).
- Radio link over 50 meters (G. Hancke 05).
- Reader starts a timer when sending a message.
 - To avoid semi-open connections.
- ISO 14443 "Proximity Cards".
 - Used in most secure applications.
 - Standard on the low-layers (physical, collision-avoidance).
 - Default timer is around 5 ms.
 - Prover can require more time, up to 4949 ms.

Distance Bounding (Proximity Check)

Literature

- Beth and Desmedt [Crypto90]
- Brands and Chaum [Eurocrypt93]
- Hancke and Kuhn [SecureComm05]
- ...
- The verifier calculates the round trip time of a message.
 - Message needs to be authenticated.
 - Authentication is time-consuming.
 - Round trip time is noised.

Adversary Model

- Can eavesdrop, intercept, modify or inject messages.
- Cannot correctly encrypt, decrypt, or sign messages without knowledge of the appropriate key.
- Can increase or decrease the clock frequency of a tag and thus the computation speed.
- Can increase the transmission speed on the channel up to a given bound (speed of light).

Adversary Model

- We define a neighborhood as a zone around a reader.
- We consider that a tag present in a neighborhood agrees to authenticate.
- We say that a tag T has been impersonated if an execution of the protocol convinced a reader that it has authenticated T while the latter was not present inside the neighborhood during the said execution.

Brands and Chaum's Protocol

Verifier (secret k)		Prover (secret k)
	Start of fast phase for $i = 1$ to n	
Start Clock	$\xrightarrow{C_i \in_R \{0,1\}} \longrightarrow$	
Stop Clock	$\xleftarrow{R_i \in_R \{0,1\}}$	
Check $\Delta t_i \leq \Delta t_{\sf max}$	End of fast phase	
Check signature	\leftarrow Sign _k (C ₁ R ₁ ··· C _n R _n)	

Brands and Chaum's Drawbacks

• Security of the protocol: $(1/2)^n$.

- On-the-fly authentication should take less than 50 ms.
- Turn-around time does not allow a large *n*.
- Security is degraded.
- There is a final signature.
 - If the protocol is interrupted, no rational decision can be taken by the verifier.

Hancke and Kuhn's Protocol

Verifier (secret *k*) **Prover** (secret *k*) Na Random N_{a} N_{h} Random N_b $v^0 ||v^1 := H_k(N_a, N_b)$ where $|v^0| = |v^1| = n$ Start of fast phase for i = 1 to n $C_i \in R\{0,1\}$ Start Clock $R_i = \begin{cases} v_i^0, \text{ if } C_i = 0\\ v_i^1, \text{ if } C_i = 1 \end{cases}$ Ri Stop Clock End of fast phase Check correctness of R_i 's and $\Delta t_i < \Delta t_{max}$

Hancke and Kuhn's Drawbacks

- The final signature is no longer needed.
- Security of the protocol still depends on *n*.
- Security of the protocol is $(3/4)^n$ instead of $(1/2)^n$.

Open Problem

- Can we design a distance bounding protocol without final signature that resists to the Mafia fraud with probability better than (3/4)ⁿ?
- In HK, if the adversary sends a wrong C_i during the pre-ask phase, she is not penalized for the following rounds.
- Our idea consists in using a tree instead of 2 registers.

Open Problem

- Can we design a distance bounding protocol without final signature that resists to the Mafia fraud with probability better than (3/4)ⁿ?
- In HK, if the adversary sends a wrong C_i during the pre-ask phase, she is not penalized for the following rounds.
- Our idea consists in using a tree instead of 2 registers.

Open Problem

- Can we design a distance bounding protocol without final signature that resists to the Mafia fraud with probability better than (3/4)ⁿ?
- In HK, if the adversary sends a wrong C_i during the pre-ask phase, she is not penalized for the following rounds.
- Our idea consists in using a tree instead of 2 registers.

The Decision Tree

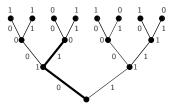
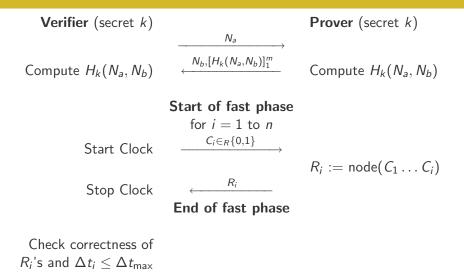



Figure: Decision tree with n = 3. The thick line path in the tree corresponds to the verifier's challenges 0, 1, 0 and the prover's replies 1, 0, 0.

Our Protocol

Success Probability w.r.t. Mafia Fraud

$$\Pr(\tilde{R}^{n} = R^{n}) = \sum_{i=1}^{n} \Pr(\tilde{R}^{n} = R^{n} | t = i) \Pr(t = i)$$

+
$$\Pr(\tilde{R}^{n} = R^{n} | C^{n} = 0^{n}) \Pr(C^{n} = 0^{n})$$

=
$$\sum_{i=1}^{n} 2^{-(n-i+1)} 2^{-i} + 2^{-n}$$

=
$$2^{-n} (n/2 + 1) .$$

False Acceptance Rate

- A FAR of 0.01% can be reached with a single tree of depth 17, which requires 32 Kbytes of memory.
- A FAR of 0.01% can also be obtained by using two trees each of depth 9. This decreases the needed memory down to 256 bytes (0.25 Kbytes).

- The first protocol that requires no signature and with a FAR less than (3/4)ⁿ.
- Are such protocols practicable?
- Which parameters can be modified?
- No practical solution today (except NXP Mifare Plus).