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AN EFFICIENT DYNAMIC SLOT SCHEDULING ALGORITHM FOR WSN MAC:
A DISTRIBUTED APPROACH

MANAS RANJAN LENKA∗AND AMULYA RATNA SWAIN†

Abstract. In the current scenario, the growth of IoT based solutions gives rise to the rapid utilisation of WSN. With energy
constraint sensor nodes in WSN, the design of energy efficient MAC protocol along with timeliness requirement to handle collision
is of paramount importance. Most of the MAC protocols designed for a sensor network follows either contention or scheduled based
approach. Contention based approach adapts well to topology changes, whereas it is more costly in handling collision as compared
to a schedule based approach. Hence, to reduce the collision along with timeliness, an effective TDMA based slot scheduling
algorithm needs to be designed. In this paper, we propose a TDMA based algorithm named DYSS that meets both the timeliness
and energy efficiency in handling the collision. This algorithm finds an effective way of preparing the initial schedule by using
the average two-hop neighbors count. Finally, the remaining un-allotted nodes are dynamically assigned to slots using a novel
approach. The efficiency of the algorithm is evaluated in terms of the number of slots allotted and time elapsed to construct the
schedule using the Castalia simulator.
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1. Introduction. In the real world, the widespread use of WSN mainly owes to monitor and control various
devices in several industrial and home automation systems. A sensor network is unique in the sense that the
nodes are battery powered and mostly can not be recharged from time to time. Hence, every application
in a WSN environment must be designed in such a way that energy consumption must be minimal. Along
with energy efficiency, other requirements like timeliness, collision handling, and reduced latency during data
transmission also need to be considered. To handle collision along with the above requirements, the design
of an efficient MAC protocol is of paramount importance. Studies carried out by Ergen et al. [1] revealed
that TDMA base MAC protocols perform better than CSMA based MAC protocols in a WSN to satisfy these
stringent requirements [14, 16, 19, 20, 21, 22].

In TDMA based MAC protocols [15, 17, 18, 24, 25], a schedule with several time slots is prepared where
each sensor node is assigned to a particular time slot. The assignment of slots to each sensor node is carried
out in such a manner that collision is handled with reduced data delivery latency. Further, to minimise energy
consumption, the nodes are put to sleep for it’s allocated time slot as proposed in [2, 3, 26]. The delivery
latency is reduced through proper scheduling of the TDMA slots as proposed by Moriyama et al. [4], Ahmad
et al. [5], and Ahmad et al. [6]. The collision during data transmission is handled in such a way that the
nodes interfering with each other are not assigned to the same slot. Most of the TDMA based slot scheduling
algorithms prepare an optimal schedule that normally takes more time to prepare a schedule. However, in the
case of correlated contention, preparing an optimal schedule may not be of much use as the contention exists
for a short duration. Hence, a feasible schedule needs to be prepared in a quick time to handle the correlated
contention, as proposed by Lenka et al. [7], Lenka et al. [8], and Bhatia et al. [9].
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Preparing a feasible schedule in a quick time may lead to latency during data transmission. Therefore,
design of a scheduling algorithm has to take care of both correlated contention and the latency during data
transmission to enhance efficiency. Based on the above facts, this paper proposed an efficient TDMA based
dynamic slot scheduling algorithm that handles both correlated contention and delivery latency. The proposed
algorithm uses the average two-hop neighbors count as opposed to the maximum two-hop neighbors count used
in earlier approaches. The maximum two-hop neighbors count varies significantly from the average two-hop
neighbors count in most of the sensor networks due to the random deployment of the sensor nodes. As a result,
the use of average two-hop neighbors count helps to reduce the number of slots to be attached to a schedule.
However, the use of average two-hop neighbors count to prepare a schedule may leave a few nodes to remain
un-allotted. The remaining un-allotted nodes are then dynamically assigned to the best possible slots using a
novel message passing technique in a quick time to prepare the final schedule. Finally, the proposed algorithm
is implemented using Castalia simulator to evaluate its performance. The performance analysis shows that our
proposed scheme outperforms DRAND, RD-TDMA, and HDSS in terms of number of slots and time to allocate
the slots in a schedule.

The rest of the paper is structured as follows. A review of the related works has been summarised in Section
2. Section 3 describes our proposed algorithm. The correctness of the algorithm has been analysed through
various scenarios in Section 4. The simulation results are analysed in Section 5. The conclusion is drawn in
Section 6.

2. Related Work. In today’s world, the recent trend is to automate everything for living a relaxed and
comfortable lifestyle. WSN plays a vital role in achieving the same. In a resource constraint sensor network, the
design and development of an efficient application has to deal with several challenges such as energy efficiency,
collision handling, reduction in latency, reliability, etc. In this paper, we mainly focus on TDMA based slot
scheduling approach that helps to handle the collision and reduce the latency during data transmission.

Ahmad et al. [6] proposed a centralised TDMA scheduling for clustered based tree topology in WSN. This
algorithm prepares a collision-free clustered based schedule to satisfy the timeliness for several data flows. The
timeline for each data flow is expressed based on the length of the schedule period. The algorithm takes care of
minimum utilisation of energy by putting the nodes into low power mode to the maximum possible extent. As
opposed to the centralised approach, Ahmad et al. [10] proposed a distributed version of the clustered based
TDMA algorithm, where each cluster is capable enough to prepare its time slot for the TDMA schedule. This
distributed nature of the algorithm aid to the WSN as the resources in the WSN environment is scarce.

Severino et al. [11] proposed a self-adaptive clustered based dynamic scheduling algorithm for WSN. Based
on the nature of the traffic flow, this algorithm adapts different required bandwidth and latency by changing
the scheduling algorithm attached to the clusters. This adaption happens in quick time by exerting a small
downtime for the WSN.

Wang et al. [18] proposed a deterministic TDMA based slot scheduling approach to avoid collision during
data transmission. In this algorithm, each sensor node calculate it’s own time slot in a distributed manner
as per the available neighborhood information. However, each sensor node need synchronisation among each
other to calculate their own time slot and as a result the collision handling model was not too realistic.

Long et al. [12] proposed a multi-hop TDMA scheduling algorithm for WSN that extends the one-hop
TDMA scheduling to multi-hop scheduling. This extension helps in balancing the energy consumption among
the nodes in a WSN which ultimately prolongs the network lifetime.

Rhee et al. [13] proposed a distributed version of RAND, a centralised random slot scheduling algorithm.
In this algorithm, each node presents in one of the four states, i.e. REQUEST, RELEASE, IDLE, and GRANT.
Each node starts with IDLE state and goes for a lottery. The node that wins the lottery sends a request message
for allotment of a slot and enters into the REQUEST state. The node that receives this request message enters
into GRANT state provided the node is in IDLE or RELEASE state. In case, the receiver node is either in
REQUEST or GRANT state while receiving this request message then it sends back a reject message to the
sender. When the sender node receives a reject message, it goes back to IDLE state. Once a node, who has
started the slot allotment request, receives a grant message from all of its neighbors then it enters into the
RELEASE state and the requested slot is allocated to that node.

Li et al. [23] proposed a distributed TDMA slot scheduling that improves upon the DRAND algorithm.
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This algorithm prepares the TDMA schedule based on the residual energy and topology associated with a
sensor network. In order to reduce the energy consumption and execution time of a schedule, initially it defines
the energy-topology factor and then applies the same to arrange the priority of the time of a slot in a schedule
to deal with the energy consumption and execution time.

Most of the slot scheduling algorithms focus on preparing an optimal schedule to handle the collision during
data transmission. In case of co-related contention (i.e. the collision that occurs at the receiver end for a very
short period), preparing an optimal schedule may not help a lot. Keeping the above requirement in mind
Bhatia et al. [9] proposed a feasible slot scheduling algorithm named RD-TDMA that handles the co-related
contention and at the same time reduces the latency during data transmission.

Lenka et al. [8] proposed a HDSS algorithm that initially prepares a feasible schedule based on maximum
two-hop neighbors count using the DRAND algorithm. The number of slots attached to the prepared feasible
schedule is further reduced by reallocating certain nodes based on the ratio of average two-hop neighbors
count to the maximum two-hop neighbors count. Finally, a sub-optimal schedule, with less number of slots as
compared to DRAND and RD-TDMA, is prepared in quick time which ultimately handles the collision due to
co-related contention and at the same time reduces the latency during data transmission.

Although the existing HDSS algorithm performs better as compared to DRAND and RD-TDMA with
respect to the number of slots attached to a feasible schedule, still this paper finds a way to further fine-tuned
the slot scheduling approach in a novel way to reduce the number of slots. The proposed approach focuses
on preparing a feasible schedule based on the average two-hop neighbors count instead of maximum two-hop
neighbors count as used in HDSS. Moreover, the proposed approach uses a novel dynamic slot scheduling
technique to allot slots for the remaining nodes in the best possible way to achieve the desired goal.

3. Proposed Dynamic Slot Scheduling Algorithm. In the earlier proposed HDSS algorithm for WSN
MAC, a feasible schedule is prepared based on the maximum two-hop neighbors count. Each sensor node in
WSN is assigned to a particular slot in the feasible schedule and all its two-hop neighbors are assigned to
different slots so that the collision during data transmission will be avoided. Nevertheless, in the real scenario,
during the deployment of the sensor nodes, there is every chance that some of the regions of WSN may have
very high node density as compared to other regions. In such scenarios, there will be a significant difference
between the maximum two-hop neighbors and the average two-hop neighbors count due to the presence of the
outliers (i.e. specific regions with high node density). Therefore, preparing a feasible schedule based on the
maximum two-hop neighbors count leads to a significant rise in the number of slots required for the same. In
order to get rid of the above issue, in the proposed approach, the schedule is initially prepared based on the
average two-hop neighbors instead of maximum two-hop neighbors count.

To start with, in the proposed approach a feasible schedule is initially prepared based on the average two-
hop neighbors count. As per the earlier discussion, since there is more possibility of higher density in some
regions of WSN, the actual two-hop neighbors count in those regions will be more than the average two-hop
neighbors count in the whole network. Hence, there is every possibility that some sensor nodes may remain
un-allotted due to the lack of availability of slots as the feasible schedule is initially prepared based on the
average two-hop neighbors count. The nodes which remain un-allotted during the preparation of the feasible
schedule, those nodes will be allotted to a feasible slot through these following three phases:

1. Slot Allotment Request
2. Slot Allotment Message Handler
3. Slot Allotment Status

The notations used for the set of information maintained at each node for slot allocation in the proposed
algorithm is summarises in Table 3.1.

3.1. Phase 1: Slot Allotment Request. Let NAvg is the average two-hop neighbors count calculated
during the preparation of feasible schedule at the very beginning and a node i has not been allotted to a feasible
slot during the preparation of feasible schedule. In order to get a feasible slot, the node i selects a slot k, where
k = NAvg + 1 and verifies at its end whether this slot k has already been allotted to any one of it’s one-hop
or two-hop neighbor nodes. In case, the slot k has already been allotted then it tries with the next slot, i.e.
k + 1 and so on till the chosen slot is fit for him. Once the node i finds a feasible slot say k then it stores the
information, i.e. Orig(i,k), Sac(j,k), HopCnt(i,k), SlotReqT ime(i,k) into a vector V at it’s own end. Finally, node
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Table 3.1

Set of information maintained at each node for slot allocation of the remaining nodes.

Notation Description

Orig_{(i,k)} Node i, the originator of dynamic allotment procedure for slot k

Sac_{(j,k)} Intermediate node j, who sacrificed the slot k for another node

HopCnt_{(i,k)} Hop distance at node i for slot k

SlotReq Slot requested for Allotment

SlotReqTime_{(i,k)} Time at which the request for allotment of slot k has been

initiated by node i

V A Vector of size S containing Orig(i,k),Sac(j,k),

HopCnt(i,k), SlotReqT ime(i,k)

i broadcasts a ’DynamicSlotAllocation’ message that contains the stored information to all its neighbors.
The slot allotment request of ith node is given in Algorithm 5.

Algorithm 5: Slot allotment request for remaining nodes at node i

1 Procedure SLOT_ALLOTMENT_REQUEST
2 begin
3 k = NAvg + 1 ;
4 while (k already allotted to one of it’s one-hop or two-hop neighbors) do
5 k = k + 1 ;

6 HopCnt(i, k) = 0 ;
7 Store (Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k)) into vector v ;
8 Send(DynamicSlotAllocation(Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k))) to all

neighbors ;

3.2. Phase 2: Slot Allotment Message Handler. After receiving the ’DynamicSlotAllocation’ message
from node i, a node j checks whether there exist an entry in the stored vector V at it’s end for the requested
slot k and goes through these following steps.
[Step 1:] In case the entry related to the requested slot k does not exist then the received information is

pushed into the vector V at it’s end but with a updated value for the hop count, i.e. HopCnt(j,k) =

HopCnt(i,k)+1. Then the jth node broadcasts the updated received information to all of it’s neighbors
provided the HopCnt(j,k) is less than 2.

[Step 2:] If the entry related to the requested slot k exist then increment the received HopCnt(i,k) by one and
check whether the updated received HopCnt(i,k) is less than the stored HopCnt(j,k) for the requested
slot k.

[Step 3:] If the above condition holds good then update the existing entry for the slot k with the received
information and broadcast the same to its neighbors.

[Step 4:] If the above condition does not hold then it again checks whether the received SlotReqT ime(i,k) is
less than the stored SlotReqT ime(j,k) for the slot k. If it is found true then it checks for whether the
receiver node j is the originator of slot allotment procedure for the same slot k or not. In case, the
receiver node j is the originator of slot allotment procedure for the slot k then update the entry in the
vector V with the received information but with modified Sac(j,k) value.

[Step 5:] If the receiver node j is not the originator of slot allotment process for the slot k then it checks
whether Sac(i,k) information in the received message is either same as the information stored at the
originator or the sacrificed intermediate node. If it matches then the existing entry for the slot k is
updated with the received information but with increment the value of the HopCnt(i,k) by one and
broadcast the same to it’s neighbors provided the incremented HopCnt(j,k) value is less than 3.
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Algorithm 6: Slot allotment process after receive of slot allotment request message at node i

1 Procedure SLOT_ALLOTMENT_MESSAGE_HANDLER
2 begin
3 msg = Receive_Message();
4 if (msg == DynamicSlotAllocation(Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k))) then
5 for m← 0 to S − 1 do
6 if (V [m].SlotReq == k) then
7 break;

8 if ((S == 0) ∥ (requested slot k /∈ V )) then
9 HopCnt(i, k) = HopCnt(i, k) + 1 ;

10 push the updated received information into the vector v ;
11 if (HopCnt(i, k) < 2) then
12 Send(DynamicSlotAllocation(Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k))) to

all neighbors ;

13 else
14 HopCnt(i, k) = HopCnt(i, k) + 1 ;
15 if (HopCnt(i, k) < V [m].HopCnt(n, k)) then
16 func1();

17 else
18 if (SlotReqT ime(i, k) < V [m].SlotReqT ime(n, k)) then
19 if (V [m].HopCnt(n, k) == 0) then
20 func2();

21 else
22 if (Sac(j, k) == V [m].Orig(i, k)) ∥ (Sac(j, k) == V [m].Sac(j, k)) then
23 if (HopCnt(i, k) < 2) then
24 func3();

25 else
26 remove the entry at index m from the vector v ;

1 Procedure func1()
2 begin
3 HopCnt(i, k) = HopCnt(i, k) + 1 ;
4 Update the existing entry in vector V for slot k with the received information but modified

HopCnt(i, k) value ;
5 if (HopCnt(i, k) < 2) then
6 Send(DynamicSlotAllocation(Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k))) to all

neighbors ;

3.3. Phase 3: Slot Allotment Status. After certain period of time, node i checks the content of vector
V at its own end. In case the vector V contains an entry with a HopCnt(i,k) = 0, then it indicates that the
node i is the originator for the slot k and hence node i is allotted with the slot k. In case no entry with a
HopCnt(i,k) = 0 is found then try with the next slot.
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1 Procedure func2()
2 begin
3 V [m].Sac(j, k) = n ;
4 HopCnt(i, k) = HopCnt(i, k) + 1 ;
5 Update the existing entry in vector V for slot k with the received information but modified

HopCnt(i, k) value and Sac(j, k) node ;
6 Send(DynamicSlotAllocation(Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k))) to all

neighbors ;

1 Procedure func3()
2 begin
3 HopCnt(i, k) = HopCnt(i, k) + 1 ;
4 Update the existing entry in vector V for slot k with the received information but modified

HopCnt(i, k) value ;
5 Send(DynamicSlotAllocation(Orig(i, k), Sac(j, k), HopCnt(i, k), SlotReqT ime(i, k))) to all

neighbors ;

Algorithm 7: Verification of slot allotment status at node i

1 Procedure SLOT_ALLOTMENT_STATUS
2 begin
3 for j ← 0 to S − 1 do
4 if (v[j].HopCnt(i, k) == 0) then
5 Allot the slot k to node i; Send(DynamicSlotAllotementSucceeded(i, k)) to all the nodes

in the whole WSN ;
6 break;

7 if (j == S) then
8 Call SLOT_ALLOTMENT_REQUEST procedure for the next slot k + 1;

4. Proof of the proposed Algorithm. The correctness of the proposed algorithm is verified through
various scenarios as described here.

The above steps for slot allotment are explained through an example given in Fig. 4.1. As per the scenario
given in Fig. 4.1, node x1, x2, and x7 have not been allotted to any feasible slot during the preparation of the
initial schedule based on the average two-hop neighbors count. Here, x1 and x2 are the one-hop neighbors to
each other whereas node x7 is neither one-hop neighbor nor two-hop neighbor of node x1 or x2. Let us assume
that the node x1 first starts the slot allotment procedure for the slot k at time t1 and stores the information
such as originating node, sacrificed intermediate node, hop count, requested slot, and request time stamp as
(x1, x1, 0, k, t1) in the vector V and broadcast this information to its neighbors. When the node x2 receives
the message from node x1 and by that time if node x2 has already started the slot allotment procedure for
the slot k at time t2 which is latter than t1 then it stores information such as the originating node, sacrificed
intermediate node, hop count, requested slot, and request timestamp as (x2, x2, 0, k, t2) in the vector V at its
own end. As per the proposed algorithm, since the received timestamp t1 is less than the stored timestamp t2
at node x2, so the stored information in the vector V at x2 is updated to (x1, x2, 1, k, t1) and broadcast the
updated information to it’s neighbor. Here, the sacrificed intermediate node information remains same as x2

as the node x2 has sacrificed the slot k for node x1 which starts the allocation procedure for slot k earlier than
x2. Hence, x2 can not be allotted to slot k and further it has to try with the next available slot.
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Fig. 4.1. Slot Not Alloted To One-hop Neighbors

At another instance of time t3, which is later than t2, node x7 has started its slot allocation procedure
for slot k by storing the information (x7, x7, 0, k, t3) into the vector V and broadcast this information to its
neighbors. When a node x5 received the message from node x7, by that time the node x5 has already stored the
information (x1, x2, 2, k, t1) in its vector V . According to the proposed algorithm, as the incremented received
hop count is less than the stored hop count at node x5, the stored information in the vector V at node x5 is
updated to (x7, x7, 1, k, t3) and broadcast the updated information to its neighbor. Finally, node x1 and x7 are
allotted to the same slot k as both these nodes are not neighbors to each other. Whereas, node x2 is allotted
to a slot other than k as it is a one-hop neighbor of x1.

According to the scenario given in figure 4.2, node x1 and x5 have not been allotted to any slot during the
preparation of the initial schedule based on the average two-hop neighbors count. Here, x1 and x5 are two-hop
neighbors to each other. Assume that the node x1 starts the slot allotment procedure first for the slot k at
time t1 and stores the information such as originating node, sacrificed intermediate node, hop count, requested
slot, and request time stamp information as (x1, x1, 0, k, t1) in the vector V and broadcast this information
to its neighbors. Now, when the node x2 receives the message from node x1 and by that time node x2 has
no stored information regarding the slot k in its vector V then the node x2 stores the received information as
(x1, x1, 0, k, t21) in the vector V at its own end. In another instance at time t2, which is later than t1, the node
x5 has started its slot allocation procedure for slot k and stored the information (x5, x5, 0, k, t2) in vector V
and broadcasted this information to its neighbors. Now, when the node x2 receives the message from node x5,
as per our algorithm, neither the received hop count nor the received timestamp is lesser than the stored one.
Hence, there is no update made at the node x2. Now, when the node x5 receives the message from node x2

and as per our algorithm, since the received timestamp t1 is less than the stored timestamp t2 at the node x5,
so, the stored information in the vector V at node x5 is updated to (x1, x5, 2, k, t1) and broadcast the updated
information to its neighbors. Here, the sacrificed intermediate node information became x5 as the node x5 has
sacrificed the slot k for node x1 which starts the allocation procedure for slot k earlier than x5. Hence, the
node x5 can not be allotted to slot k and try with the next slot. Now, when the node x7 receives the message
from node x5 and as per our algorithm, if the received timestamp t1 is less than the stored timestamp t2 at
node x7 and the received sacrificed intermediate node information is same as stored originator node information
then the stored information at node x7 needs to be removed as node x5 can no more be allotted to the slot k.
Finally, based on our algorithm, the node x1 is allotted to slot k and the node x5 can not be allotted to the
same slot k as both are the two-hop neighbors to each other. This proofs the correctness of our algorithm.
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Fig. 5.1. Number of slots attached to the feasible schedule among various algorithms using uniform random distribution

5. Simulation Results. The simulation of the proposed dynamic slot allotment algorithm is carried out
using the Castalia simulator[27]. The efficiency and correctness of the algorithm are tested in various deployment
scenarios like uniform random distribution, grid, and randomised grid. The correctness of the algorithm is also
carried out in fixed as well as varying node density with the number of sensor nodes varying from 50 to 1000.
Important parameters like sensing range, data transmission range, etc. are taken into account based on the
facts given in the datasheet of cc2420 [28] and TelosB [29].

Figure 5.1 shows the comparison of the efficiency of the proposed algorithm with other protocols with
respect to the number of slots attached to the feasible schedule. This figure indicates that the proposed
algorithm outperforms over others in terms of the number of slots allotted for preparing the feasible schedule.
This result owes to the significant difference in the average two-hop neighbors count and the maximum two-hop
neighbors count in real-time which is depicted in Fig. 5.2.

Figure 5.2 shows that the value of the average two-hop neighbors count and the maximum two-hop neighbors
count differ from each other significantly. This happens because the deployment of sensor nodes in a WSN



An Efficient Dynamic Slot Scheduling Algorithm for WSN MAC: A Distributed Approach 241

 0

 20

 40

 60

 80

 100

50 100 200 500 1000

N
u

m
b

e
r 

o
f 

tw
o

-h
o

p
 n

e
ig

h
b

o
r 

n
o

d
e

s

Number of nodes

Average two-hop neighbor nodes
Maximum two-hop neighbor nodes

Fig. 5.2. Average two-hop neighbors vs maximum two-hop neighbors with variable number of nodes using uniform random
distribution

 10

 30

 50

 70

 90

50 100 200 500 1000

Number of nodes

Proposed algo with dynamic scheduling
Proposed algo without dynamic scheduling

HDSS algo

 20

 25

 30

 35

 40

N
u

m
b

e
r 

o
f 

s
lo

ts
 a

ll
o

c
a

te
d

 p
e

r 
fr

a
m

e

Proposed algo with dynamic scheduling
Proposed algo without dynamic scheduling

Fig. 5.3. Number of slots attached to a feasible schedule with and without applying dynamic slot scheduling algorithm for the
un-allotted nodes

can not be 100% uniform. As there is a significant difference between the average two-hop neighbors and
the maximum two-hop neighbors count, so, preparing the feasible schedule initially based on average two-hop
neighbors will yield a better result in terms of the number of slots in the feasible schedule. This is already
proved in the simulation result of the proposed algorithm as depicted in Fig. 5.1.

Figure 5.3 shows that the proposed algorithm prepares a feasible schedule with fewer slots as compared to
the HDSS algorithm even if all the remaining un-allotted nodes are assumed to be allotted to separate slots.
This graph also shows that the number of slots attached to the feasible schedule are further reduced when the
dynamic slot scheduling is applied to allot the slot for the remaining un-allotted nodes. The further reduction
in the number of slots is possible as some of the un-allotted nodes may not be the one-hop or two-hop neighbors
to each other.

The time spent in the allocation of slots for the remaining un-allotted nodes in the proposed algorithm is
compared with the reallocation of slots in the HDSS algorithm. This comparison is depicted in Fig. 5.4 which
shows that our proposed algorithm takes very little time as compared to the HDSS algorithm in the allocation of
slots to the remaining nodes. The initial slot allotment process for both the algorithms uses a similar approach
except the proposed algorithm uses average two-hop neighbors count instead of maximum two-hop neighbors
count as used by the HDSS algorithm. Accounting for the above fact, in this figure the initial slot allotment
time is not depicted rather the time where both the algorithms significantly differ from each other is depicted
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Fig. 5.4. Time spent in allocation of slots for the remaining nodes
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Fig. 5.5. Comparison of number of average two-hop neighbors, nodes remain un-allotted, slots allotted to un-allotted nodes
with varying node density for 100 sensor nodes using uniform random distribution

to show a clear distinction between both the algorithms. As the time spent on the allocation of slots by the
proposed algorithm is very less as compared to the HDSS algorithm. Hence, the energy consumption will also
be proportionately less.

Figure 5.5 shows a comparison among the number average two-hop neighbors, nodes remain un-allotted, and
slots allotted to un-allotted nodes with varying node density. Whereas Fig. 5.6 shows a similar comparison with
varying the number of nodes using random uniform distribution. Figure 5.7 and 5.8 give a similar comparison
using Randomised Grid. In all the cases, it is clearly shown that the nodes remain un-allotted are very less as
compared to the average two-hop neighbor nodes as the distribution is randomly uniform. Since the number
of remaining un-allotted nodes is very less, hence the reduction in the number of slots using the dynamic slot
scheduling algorithm is also very less which is already depicted in Fig. 5.3.

6. Conclusion. In this paper, a dynamic slot scheduling algorithm for WSN has been proposed, which
prepares a feasible schedule with less number of slots in a quick time. This ultimately helps to handle the collision
due to correlated contention and at the same time minimizes latency during data transmission. Initially, slots
are allotted to each node based on the average two-hop neighbors count as opposed to the maximum two-
hop neighbors count as used in the earlier proposed HDSS algorithm. The use of average two-hop neighbors
count reduces the number of slots in the schedule to a greater extent. Then the remaining un-allotted nodes
are attached to slots in the best possible way using a novel dynamic slot allocation procedure to prepare the
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final schedule. The algorithm is tested in multiple environments like fixed and variable node density with
uniform random distribution as well as the randomised grid to ensure it’s correctness. The efficiency of the
proposed algorithm has been compared with HDSS, DRAND, and RD-TDMA based on the number of slots.
The comparison clearly shows that our algorithm outperforms others in terms of the number of slots attached
to the final feasible schedule, which ultimately reduces the latency and also handles the collision during data
transmission. The performance of the proposed algorithm is studied in an ideal scenario, i.e., a noiseless
channel. In the future, we will further extend this algorithm to work in a real environment where every packet
transmission is noisy in nature.
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