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Trust evaluation is an e
ective method to detect malicious nodes and ensure security in wireless sensor networks (WSNs). In
this paper, an e�cient dynamic trust evaluation model (DTEM) for WSNs is proposed, which implements accurate, e�cient, and
dynamic trust evaluation by dynamically adjusting the weights of direct trust and indirect trust and the parameters of the update
mechanism. To achieve accurate trust evaluation, the direct trust is calculated considering multitrust including communication
trust, data trust, and energy trust with the punishment factor and regulating function. 	e indirect trust is evaluated conditionally
by the trusted recommendations from a third party. Moreover, the integrated trust is measured by assigning dynamic weights for
direct trust and indirect trust and combining them. Finally, we propose an updatemechanismby a slidingwindowbased on induced
ordered weighted averaging operator to enhance �exibility. We can dynamically adapt the parameters and the interactive history
windows number according to the actual needs of the network to realize dynamic update of direct trust value. Simulation results
indicate that the proposed dynamic trust model is an e�cient dynamic and attack-resistant trust evaluationmodel. Compared with
existing approaches, the proposed dynamic trust model performs better in defending multiple malicious attacks.

1. Introduction

Nowadays, technology development in the elds of micro-
electromechanical system (MEMS) andwireless communica-
tion has facilitated the extensive distribution ofWSNs.WSNs
are composed of a large number of sensor nodes. In general,
sensor nodes are reliable, accurate, �exible, inexpensive, and
easy to deploy. Some areas and industries that are subject to
environmental constraints rely on WSNs for data collection
and monitoring [1]. 	ey are widely used in many applica-
tions such as emergency response [2], healthcare monitoring
[3], military, agriculture [4], environmental monitoring, and
smart power grid [5]. However, due to the characteristics
of working environments (usually deployed in remote and
unattended) and the way of wireless communication, WSNs
are prone to sudden accidents failures and su
er from
attacks of malicious nodes. Once a node is compromised, the
availability and integrity of the network can be destroyed. In

addition, it is di�cult to predict themalicious attacks. Hence,
network security is a vital issue, which needs to be addressed
to guarantee correct operation of the whole network.

Recently, in the security eld of wireless network, a
great deal of research [6–8] has been carried out commonly
using cryptography, authentication, and hash functions to
improve the security of network. Undoubtedly, the present
achievements have greatly promoted related research in
improving security of network, especially the condentially,
integrity, authentication, availability, and no-repudiation of
data in the network. But in the security eld of WSNs, the
above traditional security mechanisms such as cryptography
and authentication are not mostly suitable for processing
capability constrained and energy limited WSNs due to the
complexity and huge computing memory [9]. Furthermore,
the traditional security mechanisms are widely and availably
used to deal with external attacks but cannot solve insider or
node misbehavior attacks e
ectively which are caused by the
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captured nodes [10]. In pursuit of the security of WSNs, trust
and reputation mechanisms have proven to be more resilient
against insider or node misbehavior attacks [10, 11].

Trust in the eld of wireless communication networks
may be dened as the degree of belief on the future behavior
of other nodes, which is based on past experience and
observations of the nodes’ action [11]. So, we give the
denition of trust in WSNs as follows: node �’s trust in
node � describes the belief or expectation or assurance
of sincerity, competence, and integrity of node �’s future
action/behavior [12]. 	e basic idea of trust based scheme is
to quantify trust to describe the trustworthiness, reliability,
or competence of individual nodes [5]. Trust management
system can be implemented in various applications for
security management such as secure protocol [8], secure data
aggregation [13], trusted routing [14], and intrusion detection
system [15]. In recent years, lots of state-of-the-art models
[5, 12–31] have been proposed in this eld. Undoubtedly, the
present achievements have greatly promoted related research
in improving security of WSNs. Even so, trust evaluation
in WSNs is still a challenging issue. Some limitations are
exhibited which need more attention to be solved.

Considerable research has been done on modeling and
managing trust and reputation in WSNs. Many current
studies [18–20] have been done for trust establishment
just only based on the communication interaction records
between nodes without considering the data consistency, so
they cannot be against attacks on data. While other studies
[25–28] combine multifactors to calculate the trust value,
the multitrust sums up in weighted manner to compute
the integrated trust. But the weights are obtained by expert
opinion method or average weight method. 	e results of
the prediction are subjective, which a
ect the scientic and
�exibility of the trust decision. In addition, trust evaluation
is a dynamic phenomenon and changes with time and
environment condition. In many current trust models [23,
24], the trust value is updated by a sliding time window
using forgetting or aging mechanism. But the number of
sliding windows is dened by expert opinion method. Once
the number of the sliding time windows is conrmed, it is
di�cult to change. It makes the trust models unable to adapt
to the dynamic changes of the network environment, which
a
ects the accuracy of the result. To our knowledge, there
is no literature that can dynamically adjust the number of
the sliding time windows and the parameters to achieve a
dynamic update mechanism. Moreover, some existing trust
models [18, 23, 27] rarely consider the in�uence of the
energy consumption. Due to these reasons, there is a growing
demand for adequate provision of an e�cient dynamic trust
evaluation model for WSNs; it can achieve accurate trust
evaluation dynamically according to the environment and
requirements and can realize the identication and defense
of various types of malicious attack.

In this paper, an e�cient dynamic trust evaluation model
(DTEM) for WSNs is proposed that aims to address the
above problems. In the proposed trust model, the trust value
is calculated considering multitrust factors; it can achieve
accurate trust evaluation. Moreover, DTEM can dynamically
adjust the weights of direct trust and indirect trust. It

re�ects the dynamic adaptability of the trust computing. It
also can dynamically adjust the parameters of the update
mechanism to update the trust value to meet the actual
needs of the network environment.	eDTEM can be against
various types of malicious attack and can be congured and
e
ectively applied to di
erent environments with di
erent
requirements.	emajor contributions of this paper are listed
as follows:

(1) To improve the accuracy of trust evaluation, against
attacks on data, the trust value is calculated con-
sidering direct trust and indirect trust. 	e direct
trust is calculated considering multitrust including
communication trust, data trust, and energy trust
with the punishment factor and regulating function to
meet the following: character “trust is hard to acquire
and easy to lose.” 	e indirect trust is evaluated
conditionally by the trusted recommendations from
a third party.

(2) To ensure that the trust model makes a decision
more scientically, dynamically, and adaptively, we
dene a dynamic balance weight factor function
which is changed dynamically with the number of
communication interactions. 	e adaptive dynamic
balance weight factor dynamically adjusts the weight
of the direct trust and indirect trust.

(3) To make sure that the proposed trust model can
be congured and e
ectively applied to di
erent
environmentswith di
erent requirements and against
on-o
 attack, we give an update mechanism by
a sliding time window based on induced ordered
weighted averaging operator (IOWA) to enhance �ex-
ibility. We can dynamically adapt the parameters and
the interactive history windows number to change
the weight sequence to update the trust value to
adapt with di
erent environments and requirements.
Meanwhile, on-o
 attacks can be handled e�ciently.

At last, compared to the existing trust models (RFSN [18]
and BTMS [24]), simulation results show that the proposed
trust model has remarkable enhancements in the accuracy of
trust decision and has a better capability to capture dynamic
malicious nodes behaviors.

	e remainder of this paper is organized as follows.
Section 2 gives an overview of related works. Network model
and attack model are described in Section 3. Section 4 gives
the overview and process of the DTEM. Section 5 discusses
trust model and trust evaluation mechanism in DTEM. In
Section 6, the experiment is made under simulative envi-
ronments and the performance of the DTEM is evaluated.
Section 7 concludes this paper.

2. Related Works

In most current trust model researches focus on sensor radio
communication behaviors. Sensor nodes build node trust
model through wireless radio transaction with neighboring
nodes. Ganeriwal and Srivastava [18] rst proposed a repu-
tation based framework for sensor networks (RFSN) where
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nodes used reputation to evaluate other’s trustworthiness.
	e framework uses watchdog mechanism to monitor com-
munication behavior of neighboring nodes and represents
node reputation distribution using Beta distribution. 	en
the trust value is gured out according to the statistical
expectation of the probability reputation distribution. 	e
trust framework is good robustness and very classic. But
the recommendation trust is not considered; it cannot resist
various internal attacks. In [19], an agent-based trust model
was proposed in WSNs (ATSN); agent node was used to
monitor behaviors of sensor nodes and classify the behaviors
into good or bad ones. Agent nodes count all the number
of good behaviors and malicious behaviors, respectively, and
save the results into a three-tuple. ATSN scheme uses agent
which can save the computational resources and energy
consumption. However, in ATSN, only the direct trust value
is calculated while the recommendation trust is ignored.
In addition, the updating process of the trust value is not
considered. Shaikh et al. [20] proposed a new lightweight
group-based trustmanagement scheme (GTMS) for clustered
WSNs. 	e trust value is obtained through the communi-
cation behavior of neighboring nodes. It works on trust at
three levels: the node level, the cluster head level, and the
base station level. 	e model establishes trust mechanism
from the above aspects to resist the attack of malicious
nodes, respectively. GTMS can e
ectively resist the attacks of
malicious nodes, and it does not require large data storage
and complex computations. However, only observing the
number of successful and unsuccessful interactions cannot
re�ect soundest trust value. Song et al. [21] proposed a
dynamic trust evaluation method based on multifactor. 	e
nodes’ trustworthiness is measured by combining direct trust
with indirect trust dynamically. Besides, both the involved
classication standard and dynamic weight assignment are
dependent on the interaction times between nodes, which are
put forward under the background of Hoe
ding’s Inequality
in Probability 	eory. 	e simulation results show that this
method is sensitive to multiple attacks. But the updating pro-
cess of the trust value is not considered. Li et al. [22] proposed
a lightweight and dependable trust system for the clustered
WSNs. 	e trust decision-making scheme is proposed based
on the nodes’ roles in clustered WSNs. 	ey improve system
e�ciency by canceling feedback between cluster members
or between cluster heads. 	e trust scheme also denes
a self-adaptive weighted method for trust aggregation at
cluster head level. 	is approach surpasses the limitations
of traditional weighting methods for trust factors, in which
weights are assigned subjectively. In [23], He et al. dened
an attack-resistant and lightweight trustmanagement scheme
called ReTrust. 	is system is oriented to medical sensor
network and based on hierarchical architecture, comprised
of master nodes and sensor nodes. ReTrust uses sliding time
window and aging factor to identify and eliminate the on-
o
 attack. Bad-mouthing attack is avoided by eliminating
outliers a�er collecting recommendations. It is resistant to
bad-mouthing and on-o
 attacks. However, the drawback
of this scheme is that master nodes must have abundant
storage and energy. Feng et al. [24] proposed a credible
Bayesian-based trustmanagement scheme (BTMS).	e trust

management scheme takes the direct and indirect trust into
account.	e direct trust is calculated by a modied Bayesian
equation with punishment factor and updated by a sliding
window using an adaptive forgetting factor. Moreover, the
indirect trust computation is invoked from a third party.
BTMS performs better in resisting attacks.

While in above-mentioned trust models data security is
neglected, in existing trust models many of them focus on the
trust of data as the main work. In [25], Zhan et al. proposed
a resilient trust model with a focus on data integrity and
sensor node trust for hierarchical WSNs. 	e sensor node
current trust level is evaluated through the past history and
recent risk. And then it employs Gaussian model to rate data
integrity in a ne-grained style. 	e model is proven to be
resilient against faulty data and malicious data manipulation.
But the energy consumption on node is not considered. In
[26], a wireless sensor network based on multiangle trust
of node was proposed. 	e method considers the sensing
data and the node’s energy in the factors of trust assessment;
the integrated trust value is calculated through the average
weight of the communication trust, energy trust, and data
trust. It is more reliable and e
ective against Dos attack
and data forgery attack. But the trust update mechanism is
ignored. Jiang et al. [27] proposed an e�cient distributed
trust model (EDTM) for wireless sensor networks. In EDTM,
the direct trust and recommendation trust are selectively
calculated according to the number of packets received by
sensor node. 	e direct trust value is calculated through
the average weight of the communication trust, energy
trust, and data trust. In addition, trust reliability and trust
familiarity are dened to improve recommendation accuracy.
EDTM can evaluate trustworthiness of sensor nodes more
precisely and identify the malicious nodes more e
ectively.
In [28], a consensus-aware sociopsychological trust model
for WSNs was proposed. 	e trust model uses the concept
of consensus and consistency in understanding the behavior
of the sensor nodes for detecting fraudulent nodes in WSN.
	e factors of ability, benevolence, and integrity are used
for the computation of trust. 	e approach can deal even
in the presence of higher number of fraudulent nodes than
benevolent nodes. It is more reliable and e
ective against
attacks on data in WSNs. But, communication faults that
delay the rate at which packets are sent are not considered.

Recently, several techniques are used in computing the
trust of sensor nodes, such as the fuzzy logic approach, the
Bayesian network approach, the game theoretic approach,
swarm intelligence, and the cloud method. In [29], Feng et
al. rst established various trust factors depending on the
communication behaviors to evaluate the trustworthiness
of sensor nodes. 	e direct and indirect trust are obtained
through calculating weighted average of trust factors. Mean-
while, the fuzzy set method is applied to measure how much
the trust value of node belongs to each trust degree. And
then the evidence di
erence is calculated between the direct
and indirect trust, which links the revised D-S evidence
combination rule to nally synthesize integrated trust value
of nodes. Zhang et al. [30] proposed a trust evaluation
method for clustered wireless sensor networks based on
cloud model. 	e method considers multifactors including
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communication factor, message factor, and energy factor to
get factor trust cloud. And the trust cloud is calculated by
assigning weights for each factor trust cloud and combining
them. 	e nal trust cloud is measured by synthesizing the
recommendation trust cloud and immediate trust cloud and
is converted to trust grade by trust cloud decision-making.
	e method can detect malicious nodes according to di
er-
ent secure requirements under di
erent WSNs applications,
which provides a safe running environment for di
erent
applications. Shen et al. [31] studied the trust decision and
its dynamics that played a key role in stabilizing the whole
network using evolutionary game theory. 	e evolutionary
game theory is used for the area of trust evolution in WSNs.
It sets up a WSNs trust game concerning the dynamics of
trust evolution during sensor node’s decision-making. When
sensor nodes are making their decisions to select action trust
or mistrust, a WSNs trust game is created to re�ect their
utilities. It can nd out the conditions that will lead sensor
nodes to choose action trust as their nal behavior to ensure
WSNs’ security and stability.

Our work is partly motivated by those related works
above; however, there are some distinctions compared with
them. In our trust model, the trust value is calculated consid-
ering multitrust factors including communication trust, data
trust, and energy trust. Not like the works in [18–20], the trust
values are just only based on the communication interaction
records, so they cannot be against attacks on data. While
other studies [25–28] combine multifactors to calculate the
trust value, they do not consider the following character:
“trust is hard to acquire and easy to lose.” In our proposed
trust model, we add the punishment factor and regulating
function to realize the punishment and adjustment of trust
value against bad-mouth attack and collusion attack. 	en,
in most trust models such as in [18, 25–28], the direct trust
and indirect trust sum up in weighted manner to compute
the integrated trust. But the weights are obtained by expert
opinionmethod or average weight method in [25–28]. In our
proposed trustmodel, we dene an adaptive dynamic balance
weight function to dynamically adjust the weight of the direct
trust and indirect trust. Although the works in [21, 22] have
given various computation methods of the dynamic balance
weight, the trust decision of our proposed trustmodel ismore
scientic and �exible. Furthermore, themost important thing
is the dynamic of the trust evaluationmodel. Inmany current
trust models [23, 24], the trust value is updated by a sliding
time window using forgetting or aging mechanism against
on-o
 attack and other malicious attacks, but the number of
sliding time windows is predened. Once the number of the
sliding time windows is conrmed, it is di�cult to adapt to
the dynamic changes of the network. In our proposed trust
model, we centrally focus on setting up a dynamic update
mechanism. To our knowledge, there is no literature that can
dynamically adjust the number of the sliding time windows
and the parameters to achieve a dynamic update mechanism.
In our proposed e�cient dynamic trust model, an update
mechanism is dened by a sliding time window based on
induced ordered weighted averaging operator (IOWA) to
enhance �exibility. We can dynamically adapt the parameters
and the interactive history windows number to change the

weight sequence to meet the actual needs of the network.
Based on the above analysis, the proposed trust model can
be dynamically adjusted according to the environment and
requirements to achieve accurate trust evaluation and can
realize the identication and defense of various types of
malicious attack. It has a powerful capability of the trust
estimation for WSNs.

3. Network Model and Attack Model

3.1. Network Model. In this paper, we consider a scenario in
which all the sensor nodes are randomly deployed in a two-
dimensional space. Nodes are neither added nor removed
from network a�er deployment. It assumes that sensor nodes
have the same capabilities of computing, communicating,
and storing, initial energy level, and communication range,
only when the two nodes enter the communication range of
each other to start communication. Based on these assump-
tions, WSNs can be abstracted as a graph � = (�, �), where
� is the set of all nodes and � is the set of all edges. Each edge
�(�, 	) ∈ � denotes that the two nodes are located within each
other’s transmission range. Each node keeps a list of neigh-
boring nodes which stores their unique ID, communication
information, and trust relationship. It assumes that neither
the source nor the destination is malicious. Malicious nodes
do not collude themselves and all communication links are
bidirectional. And the communication channel is secure.

3.2. Attack Model for WSNs. With the open and remote
deployment environment, WSNs are generally susceptible to
various internal attacks, including black hole attack, worm-
hole attack, Sybil attack, and grey-hole attack. 	e attack
behavior of those malicious nodes shows diversity [6], such
as discarding routing packets, injecting large amounts of
redundant information and error information, maliciously
modifying data packets, and providing unreal recommen-
dation trusted data information. According to the attack
behavior and target of malicious attack, we divide the various
attacks into three categories: attacks on routing protocols in
WSNs [32, 33], attacks on communications data or messages,
and attacks on trust models in WSNs [34]. 	e target of the
rst kind of malicious attack is the routing protocol. 	e
malicious attack behavior of this type discards all the routing
packets or drops part of the routing packets, which makes
the data packets unable to be forwarded properly between
nodes. 	is type of attack includes black hole attack, grey-
hole attack, and wormhole attack. Due to the vulnerability
of the wireless communication channel, the second type
of malicious attack is that the malicious nodes can easily
capture transmitting data information through a wireless
link. 	e target of this type of malicious attack is communi-
cations data or messages. 	e transmitting data can be easily
conducted with eavesdropping, forgery, and tamper. 	is
type of attack includes Dos attack and message tampering
attack. 	e third type of malicious attack is a special kind
of attack, whose target is the trust management. 	is type
of malicious attack can destroy the trust model by providing
false information. 	is type of attack includes on-o
 attack,
con�icting behavior, selsh attack, and bad-mouthing attack.
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Figure 1: 	e process of the proposed trust model.

As we know, trust management system can deal with most
of the existing attacks and improve the security of the
network. However, it is di�cult to detect these malicious
nodes completely by conventional trust model.	e proposed
DTEM can evaluate trustworthiness of sensor nodes more
precisely and identify the di
erent malicious nodes more
e
ectively.

4. Overview of the Efficient Dynamic Trust
Evaluation Model

To e�ciently compute the trust values on sensor nodes, we
rst need a clear understanding of the trust model process.
	e DTEM runs at the middleware of every sensor node.
Every node maintains the trust value about other nodes;
there is no central repository for storing trust values of
every entity in the system. 	e process of DTEM is shown
in Figure 1; the direction of the arrow represents the �ow
of information between them. And the specic process is
as follows.

(1) Information gathering: we use watchdog mechanism
to monitor neighboring nodes’ activities periodically
as RFSN [18] to collect evidence information. 	e
available neighbor nodes’ information is stored in the
routing table of the node.

(2) Trust value calculation: in the proposed trust models,
when a subject node wants to obtain the trust value
of an object, it rst checks its recorded list of neigh-
bor nodes. 	e direct trust and recommendation
are used to evaluate the trustworthiness of sensor
nodes based on the recorded list. 	e direct trust is
directly calculated based on the communication, data
consistency, and energy. However, due to malicious
attacks, using only direct trust to evaluate sensor
nodes is not accurate. 	us, the recommendation
from other sensor nodes is needed to improve the
trust evaluation. Due to the dynamic behavior of
WSNs and the impact of some special malicious
attacks like on-o
 attack, the calculation of trust value
should be based upon history interaction records and
updated periodically.

(3) Trust value integration: to ensure that the trust model
makes a decisionmore scientically, dynamically, and
adaptively, we dene a dynamic balance weight factor
to realize the integration trust value of direct trust and
indirect trust.

Trust evaluation process is a complex process. 	e infor-
mation on a sensor node’s prior behavior is one of the
most important aspects in trust model. Hence, every node
maintains the trust value about other nodes in routing table;
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the process of the trust model is periodic. 	e evaluation
results of trust values depend on historical records of each
node.

5. The Efficient Dynamic Trust
Evaluation Model

In this section, we present the composition of the proposed
e�cient dynamic trust evaluation model and the calculation
procedure of trust in detail.

5.1.�e Composition of the E�cient Dynamic Trust Evaluation
Model. 	e e�cient dynamic trust model proposed in this
paper consists of the following four modules: direct trust
module, indirect trust module, integrated trust module, and
trust update module. 	e direct trust is calculated based
on the Beta trust model. 	e direct trust value of sensor
node is calculated by taking communication trust, data
trust, and energy trust into account. 	e indirect trust is
evaluated based on the trusted recommendations from a
third party. And then the integrated trust is calculated by
assigning adaptive dynamic balance weights for direct trust
and indirect trust and combining them. Finally, we give an
update mechanism by a sliding time window based on IOWA
to complete the updating of direct trust value according
to historical interaction records. 	e relationship among

the four modules is shown in Figure 2. And the specic
implementation process is as follows.

5.2. �e Calculation of Direct Trust. As we know, the evalu-
ation of trust in WSNs is a complex process, which includes
a lot of factors. In the proposed trust model, the direct trust
value is calculated by taking communication trust, data trust,
and energy trust into account. 	e communication trust
measures whether sensor nodes can cooperatively perform
the intended protocol. 	e data trust measures the trust of
data created and manipulated by sensor node, which can
assess the fault tolerance and consistency of data. 	e energy
trust measures whether a node has enough residual energy to
complete new communications and data processing tasks.We
consider the communication behavior and data consistency
to establish a trust environment against errors and attacks
and combine the energy factor to prevent the low competitive
nodes from participating in the network operation to ensure
network security and reliable operation. Next, we give the
detailed calculation procedure of direct trust.

5.2.1. �e Communication Trust Based on Data Consistency.
We assume that a node can monitor neighboring nodes’
activities within its communication range using watchdog
mechanism [18]. For example, a node can monitor its neigh-
bors’ transmissions, and in this way we can detect whether
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the node is forwarding or dropping the packets. In most
current trust models, they dene trust as the probability
that node � holds on node 	 to perform as expected [24].
Assume that Beta distribution is employed as the prior dis-
tribution of interactions among sensor nodes. 	ey monitor
the communication interaction record information based on
watchdog mechanism to count the number of well behaviors
or malicious behaviors between nodes to calculate the trust
value. 	e trust model at every node uses Beta probability
density function [35] to evaluate expected probability of well
behavior of neighboring nodes because trust modeling prob-
lem is characterized by uncertainty. And the Beta probability
density function can be represented as

� ( | �, �) = 1
� (�, �)

�−1 (1 − )�−1 , (1)

where 0 ≤  ≤ 1, � > 0, � > 0, and � and � are two indexed
parameters.

If the number of successful (well behavior) outcomes is
represented by � and � represents the number of unsuccessful
(malicious behavior) outcomes between nodes, the probabil-
ity for outcomes can be obtained by setting the values for �
and � as follows:

� = � + 1,
� = � + 1. (2)

	e probability expectation value for Beta probability
density function is dened as

� () = �
� + � =

� + 1
� + � + 2 . (3)

Equation (3) can be used for the computation of the prob-
ability expectation of successful outcomes between nodes.
	e probability expectation value is dened as the trust value.

Based on the above discussion, we assume that the way
of future interaction is the same as that of the previous
one; the probability expectation function can be represented
by the mathematical expectation of Beta distribution as the
communication trust. In our proposed model, the commu-
nication trust, denoted by ����(�), is derived from the direct
observations of node � on node 	 at time �, which is dened
as

���� (�) = � + 1
� + � + 2 (1 −

�
�)(1 −

1
� + �) , (4)

where � and � denote the total amount of successful and
unsuccessful interactions between nodes � and 	 during �,
respectively. But they are di
erent from the above discussion
that just considered whether the node is forwarding or drop-
ping the packets. In (4), the node’s successful or unsuccessful
interaction is accessed by communication behavior and data
consistency together. 	e expression (1 − �/�) [24] is called
punishment factor, where � is the total number of e
ect
interaction records. 	e punishment factor punishes trust
value by the dynamic change of the number of malicious
behaviors between nodes. 	e expression (1 − 1/(� + �)) is

called regulating function, which approaches 1 rapidly with
the increasing of the number of successful interactions, where
� is a positive constant that can be tuned to control the speed
of reaching 1. It would take longer time for a node to increase
its trust value for another node. 	e detailed realization of
each part is as follows.

In (4), successful or unsuccessful communication
between nodes is judged by the communication behaviors
and data consistency together.	e successful communication
means that a node not only forwards the packets to its next
hop neighbor but also requires forwarding the packets
reliably in its true form. Otherwise, it will be considered as
unsuccessful communication. 	e evaluated node forwards
the packets to its next hop successfully based on thewatchdog
monitored [18]. 	e data consistency based on the detection
algorithm is as follows.

Following the idea introduced in [36], the data trust
a
ects the trust of the sensor nodes that created and manip-
ulated the data. 	e data packets have spatial correlation in
WSNs; that is, the packets sent among neighboring nodes are
always similar in the same area. And the di
erence among
nodes is reduced to zero. In our proposed paper, we use
the detection algorithms [37] to assort abnormal and honest
data in the network. 	e detection algorithm compares a
localized threshold ��(�) to the di
erence produced by each
node data and its neighbors.	enode �makes ameasurement
independently and transfers the measurement data value
�(�) to its neighboring node 	. 	en, node � compares the
data value �(�) to its neighbor’s node 	’s value �(�). It is
denoted as normal if |�(�) − �(�)| < ��(�) is satised,
and else if |�(�) − �(�)| ≥ ��(�) is satised, it is denoted
as abnormal. According to commutation behavior and data
consistency, we can get � and �, which denote the total
amount of successful and unsuccessful interactions between
nodes during �, respectively.

Considering that the malicious node injection false data
has a large deviation from the sensing data of authentic nodes,
we can detect the attacker by comparing the threshold with
the di
erence between the neighbors and the node �. 	e
equation of the threshold ��(�) of each node � as follows:

�� (�) = 1���� ����� ∑�∈��
���������� (�) −

� (�) + ∑�∈�� � (�)���� ����� + 1
��������� , (5)

where  � represents the neighbor set of node �. 	e number
of element in � is denoted by | �|.

In (4), the punishment function shows strict punishment
to trust value according to the number of malicious behav-
iors. Once the number of misbehavior behaviors increases,
the trust value drops rapidly. It re�ects the following trust
character: “trust is easy to lose.” It can quickly and accurately
identify the malicious behavior.

We choose the regulating function in (4) instead of a
linear function since such a function would approach very
slowly to 1 with the increasing of successful interactions
which is similar to literature [20]. According to the regulating
function, it would take longer time for a node to increase
one’s trust value. 	is design can e
ectively restrain the
trust value rapidly increasing with the sudden increasing
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number of successful communication interactions. It re�ects
the following trust character: “trust is hard to acquire.” It can
restrain the collusion or on-o
 attack.

5.2.2. �e Energy Trust. 	e energy trust is introduced
mainly to complete the assessment on the performance of a
node itself. By introducing the energy factor, we can e
ec-
tively avoid the low competitiveness of nodes participating in
network operation. When the energy consumption of a node
is lower than a certain energy threshold �th, the node can
only complete simple basic operation to prolong the network
lifetime and balance energy consumption betweennodes.	e
energy trust is dened as

��� (�) = {{{
0, if �res < �th,
1, else,

(6)

where �res represents the residual energy of a node. �th
represents the energy threshold.

5.2.3. �e Direct Trust. Based on the communication trust
����(�) and the energy trust ���(�), we can obtain the direct
trust between two neighbor nodes as

�&�� (�) = {{{
���� (�) , if ��� (�) = 1,
0.5 ∗ ���� (�) , else ��� (�) = 0.

(7)

5.3.�e Calculation of Indirect Trust. Similar tomost existing
related works, we also consider the indirect trust to evaluate
the trust value in the proposed trust model. 	e indirect
trust value is evaluated by the recommendations from a third
party. 	e recommendations are composed of the common
neighboring node * of node � and node 	, symbolized as �.
As we know, trust has the property of transitivity. In the most
existing trust models, the trust value �V�� from node � to node
	 is calculated by the recommendation  

V
( 

V
∈  �) and is

notated as

�V�� = ��V × �V�, (8)

where �V�� is the trust value of node � to node V to node 	. ��V is
the direct trust value of node � to the common neighbor node
 

V
;�

V� is the direct trust value of the common neighbor node
 

V
to 	. But not all the recommendations are reliable. How to

detect and get rid ofmalicious recommendations is important
since it has great impact on the calculation of trust. In order
to judge the credibility of recommendations to calculate
indirect trust more accurately, it needs to detect dishonest
recommendations and exclude thembefore recommendation
aggregation. In our proposed model, we only choose the
recommendation whose trustworthiness is higher than the
specied trust threshold - (0 ≤ - ≤ 1). Suppose there
are * recommendations and their direct trust values held by
node � are notated as ��1, ��2, . . . , ��	, . . . , ��(�−1), ���. If ��	 ≥- (3 = 1, 2, . . . , *), the recommendation from 	 is accepted.
Otherwise, it will be totally neglected.

Due to the above discussion, we can get the trusted
recommendations. In our trust model, we assign di
erent
weights to the selected recommendations by their direct
trust. Intuitively, we should give more weight to the selected
recommendation from recommenders with high reputation.
Hence, we allocate weights based on the trust degree of the
recommenders to avoid individual preference. 	e following
approach is taken to calculate the weight 4	 of the selected
recommendation 	:

4	 = ��	
∑
	=1 ��	 , 3 = 1, 2, . . . , 6, (9)

where ��	 is the direct trust value of node � to the common
neighbor node  	, and 6 is the number of the selected
recommendations. And 0 ≤ 4	 ≤ 1 and ∑
	=1 4	 = 1.

Finally, the indirect trust value, denoted by �7��(�), is
obtained:

�7�� (�) =


∑
	=1
4	 ∗ �	��, 3 = 1, 2, . . . , 6, (10)

where 4	 is the weight of �	��. �	�� is obtained using (8), which

represents the trust value from node � to node 	 calculated by
the recommendation 	.
5.4. �e Integration of Trust Value. 	e integrated trust value
���(�), which node � holds about node 	 at time �, is established
via the following formula:

��� (�) = 8�&�� (�) + (1 − 8) �7�� (�) , (11)

where 8 is the balance weight factor, which is referred to as
self-condence factor and 8 ∈ [0, 1]. 	e value of 8 is the
degree of recognition of the direct trust and indirect trust of
� to 	. 8 is dened using a dynamic function; the function
introduced in the literature [38] is given as

8 = � (*) = 12 +
1
9arctan(10 ×

* − COMth

 ) , (12)

where the balance weight factor 8 is changed dynamically
with the number of communication interactions * to defect
caused by allotting weights subjectively.  is the maximum
interaction between � and 	. 	e specic value is determined
according to the network environment and the specic
requirement. COMth is the threshold of communication
interactions.When the communication interactions between
evaluation node and evaluated node are higher than the
threshold COMth, the weight factor becomes much more
and the integrated trust value is more dependent on the
direct trust value. Otherwise, the communication interac-
tions between neighbor nodes are too small; it is di�cult to
decide whether the evaluated node is good or bad, and the
integrated trust value is more dependent on the indirect trust
value. We can dynamically adjust the importance of direct
trust and indirect trust according to the dynamic weight
factor function.

In the process of the integrated trust quantitative cal-
culation, we introduce a dynamic balance weight factor to
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Time slot 1 Time slot m + 2

1 2 3 m m + 1 m + 2

· · ·

· · ·

T1, T2, . . . , Tm−1, Tm

T2, T3, . . . , Tm , Tm+1

T3, T4, . . . , Tm+1, Tm+2

Figure 3: 	e sliding time window.

solve the weight problem of direct trust and indirect trust.
	e balance weight is changed dynamically with the number
of communication interactions, which re�ects the dynamic
adaptability of the trust computing.

5.5. �e Update of the Direct Trust. In our proposed model,
we use a sliding time window to update the trust value [20],
which can re�ect the extent of variation of the trust value in
a particular time interval.

	e sliding time window is used to update the direct
trust value. It consists of several time slots; each slot is a
cycle time. Only interactive records within the sliding time
windows are valid. We dene the length of sliding window as
?, which re�ects evaluator’s emphasis on historical records.
As Figure 3 shows, each sliding time window is divided into
? slots from le� to right.	e update process of the trust value
can be shown as �1, �2, . . . , ��−1, ��; �2, �3, . . . , ��, ��+1;�3, �4, . . . , ��+1, ��+2. However, it is intuitive that old histor-
ical record has less contribution and new historical record
has more in�uence on trust decision. We give an update
mechanism using a sliding time window based on induced
ordered weighted averaging operator (IOWA) [39] to solve
the problem of trust update. We use the IOWA operator to
obtain the weight of each time window, which can give more
accurate evaluation of the direct trust in DTEM.

IOWA is dened as follows: assume ⟨V1, �1⟩, ⟨V2, �2⟩,. . . , ⟨V�, ��⟩ is two-dimensional array for?, and
�� (⟨V1, �1⟩ , ⟨V2, �2⟩ , . . . , ⟨V�, ��⟩)

=
�
∑
�=1
D∗� �V-index(�).

(13)

	e function �� is called the ?-dimensional induced
ordered weighted averaging operator generated by V1,
V2, . . . , V�, abbreviated as IOWA operator, and V-index(�) is
the index of the V1, V2, . . . , V�, . . . , V� in the order from large to

small ones.� = (D∗1 , D∗2 , . . . , D∗�)� is the ordered weighted
vector of IOWA and satises ∑��=1 D∗� = 1, 0 ≤ D∗� ≤ 1, � =1, 2, . . . , ?.

From (13), we can know that the value of �1, �2, . . . , ��
corresponds to the order in which the induced values of
V1, V2, . . . , V� in descending sorting are ordered weighted
averages; the weight coe�cient D∗� has nothing to do with
the size and position of �� but is related to the location of the
induced value V�. Hence, the model can be used to sort the

historical trust value according to the time of occurrence, and
the sliding time window is used as the induced value of the
IOWA operator, and the IOWA operator is completely used
to update the trust value.

In accordance with the occurrence time, the trust evalua-
tion sequence of nodes � on the node 	 is expressed as follows:
� = {�1, �1, . . . , ��, . . . , ��}, 0 ≤ �� ≤ 1, 1 ≤ � ≤ ?, in
which � is the trust evaluation sequence based on the sliding
time window. Each value corresponds to a child window,
and the time parameter is added to each of the � elements:
⟨�1, �1⟩, ⟨�2, �2⟩, . . . , ⟨��, ��⟩, and the two-dimensional trust
sequence is dened as the induced value based on the time
sliding window. 	e trust update depends on both real-time
and historical windows to complete the updating operation. It
means that we know ⟨�1, �1⟩, ⟨�2, �2⟩, . . . , ⟨��, ��⟩, obtaining⟨��+1, ��+1⟩, and this is what IOWA can solve.	e denition
can be expressed as

��+1 = �� (⟨�1, �1⟩ , ⟨�2, �2⟩ , . . . , ⟨��, ��⟩)

=
�
∑
�=1
D∗� �V-index(�),

(14)

where D∗� represents the importance of the trust value of
the �th child window, and ∑��=1 D∗� = 1, 0 ≤ D∗� ≤
1, � = 1, 2, . . . , ?. So the ordered weighted vector �∗ =
(D∗1 , D∗2 , . . . , D∗�)� is �’s weight; the key problem of the
updating mechanism of trust model is how to nd the
classication weight of each window.

Let �∗ = (D∗1 , D∗2 , . . . , D∗�)� be the ordered weighted
vector of any IOWA operator. 	e perfect method of the
weighted vector is based on the maximum degree of disper-
sion [35], which can make full use of all the data information
under given and/or degree [40]. We can get the weight vector
as follows:

E = FG3�HH (�∗) = 1
? − 1

�
∑
�=1
(? − �) D∗� , (15)

D∗� = �−1√D∗1 �−�D∗��−1, 2 ≤ 	 ≤ ?, (16)

D∗1 [(? − 1) E + 1 − ?D∗1 ]�
= [(? − 1) E]�−1 [((? − 1) E − ?)D∗1 + 1] ,

(17)

D∗� = ((? − 1) E − ?)D
∗
1 + 1

(? − 1) E + 1 − ?D∗1 . (18)

In addition, the relationship of trust has time decay. In the
trust sequence of ⟨�1, �1⟩, ⟨�2, �2⟩, . . . , ⟨��, ��⟩, the element
of ⟨��, ��⟩ has the greatest in�uence on ⟨��+1, ��+1⟩, and the
longer the time, the smaller the in�uence on trust decision.
In (18), we can know that the calculation of the weight
coe�cient vector is mainly determined by two parameters:
the parameters E and the number of interactive history
windows ?. According to the literature [41], we know that
when E ∈ [0.5, 1], the distribution of the weight coe�cients
satises the characteristic of time decay. 	e corresponding
weight sequences in di
erent ? and E are shown in Table 1.
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Table 2: Simulation parameters.

Parameter Value

Initial energy/J 0.5

Initial trust value 0.5

Packet length/bit 2000

d/m 37

Number of behaviors in each time unit 10

Trust estimation period/s 10

Simulation time/s 1000

- 0.5

? 4

E 0.7

It can be seen from Table 1 that the value of the parameter
E re�ects the forgetting degree of the history interactive
experience in trust model. When E is larger, the historical
experience is easier to forget. And if E = 1, the previous
history is completely forgotten. So, we can dynamically adjust
E to meet the di
erent needs of the trust model. 	e value of
parameter? responds to the number of windows of historical
experience. When ? is larger, the trust value is obtained
more accurately. But it requires more energy consumption
and storage space. So, the determined parameter ? requires
a combination of the actual demand and considers the
restriction of WSNs in accordance with the requirements
denition.

6. Simulation Results and Analysis

Our experiments are performed using Matlab to analyze
the performance of the proposed algorithm similar to the
literature [25, 29]. 	e concrete simulation scene is set
to be 100m × 100m, with 50 randomly deployed nodes.
Some parameters vary with the scenes and the purposes of
experiment and will be explained in detail. 	e other default
simulation parameters that we have chosen are summarized
in Table 2.

In this section, the simulations can be divided into two
parts. First, we analyze the performance of the DTEM, which
includes the e
ect of dynamicweight value on integrated trust
value and the direct trust value update mechanism.	en, we
compare DTEMwith the existing trust models, typical RFSN
[18], and BTMS [24].	e results demonstrate that the DTEM
has a powerful capability of the trust estimation.

6.1.�e Performance of the DTEM. In this section, we analyze
the dynamic performance of the DTEM.

6.1.1. �e E�ect of DynamicWeights on Integrated Trust Value.
	e value of 8 is the degree of recognition of the direct trust
and indirect trust of � to 	. 	e relationship between the
dynamic weight of 8 and the number of interaction times is
shown in Figure 4. As shown in Figure 4, in the early stage of
trust measurement, when the number of interactions is less
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Figure 4: 	e dynamic weights of the direct values 8 and 1 − 8.

than COMth, the trust calculation is much more dependent
on the indirect trust value.With the increasing of the number
of interactions, when the number of interactions is greater
than COMth, the node � is more willing to believe their direct
interactive experience, and the weight 8 of direct trust will
become much larger. Hence, the weight factor 8 is dynam-
ically changed with the interaction times. And the value of
COMth can be adjusted according to the actual demand of
the network to achieve a more reasonable distribution of the
weights between direct trust and indirect trust. In this paper,
we give = 1200, andCOMth =  /3. And giving8= 0.1, 0.5,
0.9 and the dynamic value, the e
ect of 8 on the integrated
trust value is shown in Figure 5, respectively. As shown in
Figure 5, at the beginning, the interactions between nodes
are very few; the e
ect of dynamic weight 8 on integrated
trust value is relatively close to 8 = 0.1. 	at notes when
the number of interactions between nodes is less, the trust
value is more dependent on the indirect trust, and with the
increasing of interaction times, the e
ect of dynamic weight
8 on integrated trust value slowly trends towards 8 = 0.9.
	at means with the increasing of the number of interactions
between nodes, the integrated trust value metric measure is
more dependent on direct trust. 	e results obtained are in
agreement with the previous theoretical analysis. 	e weight
factor8 can be dynamically adjusted according to the number
of the interactions between nodes, which can better ensure
the accuracy of trust measurement.

6.1.2. �e E�ect of Update Mechanism on Direct Trust Value.
From the analysis in Table 1, we can see that the IOWA
operator is determined by? and E. In this section, the e
ect
of di
erent ? and E on the direct trust value is realized.
Figure 6 shows the e
ect of the di
erent E on the update trust
value when? = 4. As shown in Figure 6, with the increasing
of E, the update trust values are much closer to the trust value
without update, which shows that the greater E is, the less
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dependent the update trust value is on historical experience.
Figure 7 shows the e
ect of the di
erent? on the update trust
value when E = 0.7. As shown in Figure 7, with the increasing
of ?, the updated trust value is more accurate, which shows
that the update trust value ismore dependent on the historical
experience. According to dynamic adjusting of ? and E, we
can e
ectively control the impact of historical interactions on
trust value and enhance the accuracy of trust value.

6.2. Comparison of DTEM, RFSN, and BTMS. In this section,
we compare DTEMwith the existing trust models RFSN and
BTMS.	e former is one of the earliest classical trust schemes
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ect of the parameter? under E = 0.7.

forWSNs; the latter is one of the representative classical trust
schemes.

6.2.1.�e Trust Evaluation. In this section, we assess the inte-
grated trust of normal node andmalicious node, respectively.
It is assumed that a normal node always chooses to cooperate,
and a malicious node always chooses not to cooperate. 	e
target of this kind of attack is the routing protocol. As
depicted in Figure 8, the integrated trust increases with the
increasing of successful interactions among normal nodes
anddecreaseswith the increasing of unsuccessful interactions
among malicious nodes in RFSN, BTMS, and DTEM. On
the one hand, we can see intuitively that, for the integrated
trust between normal nodes, the trust value increases faster
than the other two algorithms in RFSN. In BTMS, the trust
value increases more slowly than the other two algorithms
because of the e
ect of the punishing factor at the beginning.
In our proposed model in DTEM, the trust value changes
with the increasing number of the interaction rounds. At the
beginning, the trust value increases faster than BTMS and
more slowly than theRFSN.A�er a few rounds, the increasing
of the trust value becomes the slowest. On the other hand, for
the integrated trust between malicious nodes in DTEM, the
integrated trust value decreases fastest in all the algorithms.
From the above analysis, we can get that the DTEM re�ects
the following character: “trust is hard to acquire and easy to
lose.” Having compared RFSN, BTMS, and DTEM, DTEM
evaluates the trust more accurately among normal nodes. It
re�ects nodes’ commutation behavior changing acutely and
has more sensitive changing of the malicious actions, which
can e
ectively identify routing attacks.

6.2.2. �e Data Attack. We analyze the e�cacy of DTEM
against faulty data and malicious data manipulation. 	e
target of this type of malicious attack is communications data
or messages. We generate a few common types of faults and
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Figure 8: Comparison of the trust value of the normal node and
malicious node.

fake data attacks together against the normal data. Firstly,
we generate random data at randomly selected sensor nodes,
but it does not a
ect the data communication. 	is means
that although the sensor node sends false data, it can be
considered as successful communication. Running RFSN,
BTMS, and DTEM in this scene, the result is shown in
Figure 9. As shown in Figure 9, in BTMS and RFSN, the
trust value does not make any change. It is shown that these
two algorithms do not consider the consistency of the data;
they just only consider communication behaviors between
nodes to calculate the trust value. In DTEM, the trust value
decreases sharply, and thenwith the increasing of the number
of interaction rounds, the trust value increases, but the trust
value is always lower than 0.5. 	e result indicates that
the resilience of DTEM is very good, which can fast and
accurately identify the faulty data manipulation of malicious
node. It ismore sensitive in order to identify data information
attacks compared with RFSN and BTMS.

6.2.3. �e On-O� Attack. In this section, we analyze the
e�cacy of DTEM against the on-o
 attack. 	is type of
malicious attack is a special kind of attack, whose target
is the trust management. 	e on-o
 attack malicious node
alternates its behavior from malicious to normal and from
normal to malicious so it remains undetected while causing
damage [42]. In this paper, we suppose that an on-o
 attacker
behaves well in the rst 30 interaction rounds to build up
good reputation but behaves badly in the next 30 rounds.
A�er that, it behaves well continuously.	e result is shown in
Figure 10. It is not di�cult to see that the trust value increases
in the rst 30 interaction rounds, and themalicious node does
nothing or only performs well. But in the next 30 rounds the
trust value drops when the malicious node launches attacks.
Having compared RFSN, BTMS, and DTEM, the DTEM
can acutely re�ect nodes’ changing and sensitively detect
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Figure 10: Comparison of the direct trust value under on-o
 attack.

on-o
 malicious attack. And more importantly, an on-o

malicious node recovers its trust valuemore slowly andmuch
longer.We can come to a conclusion that DTEMoutperforms
RFSN and BTMS against on-o
 attack. Meanwhile, the
simulation result again veries the character “trust is hard
to acquire and easy to lose” in DTEM. 	is is because
the trusted recommendation node selection mechanism and
dynamic update mechanism are added to the process of trust
evaluation, which makes the evaluation of trust between
nodes more objective and accurate. It can e
ectively identify
trust model attacks such as on-o
 attack and bad-mouth
attack.
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Table 3: Comparison of state-of-the-art trust model.

Trust model RFSN [18] GTMS [20] NBBTE [29] BTMS [24] DTEM (ours)

Estimation method Probabilistic Weight Fuzzy logic Probabilistic Probabilistic

Direct trust module
Transmission factors;

data factors
Transmission

factors

Received packets
rate; successfully
sending packets
rate and so on

Transmission factors
Transmission factors;
data factors; energy

factors

Indirect trust module
Recommendation

nodes
Recommendation
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Figure 11: Comparison of the detection rate.

6.2.4. �e Detection Rate. In this section, the simulated
malicious attacks are selective forwarding attack, on-o

attack, con�icting behavior attack, data forgery attack, and
data tampering attack. We vary the percentage of malicious
nodes from 10 to 50 percent with a 10 percent increment.
As shown in Figure 11, which gives the detection rate in
di
erent trust model, we can see that the performance of the
DTEM is better than RFSN and BTMS. RFSN and BTMS
are vulnerable against data forgery attack and data tampering
attack. So, with the increasing of the number of malicious
nodes, the detection rate decreases rapidly, but the DTEM
keeps high detection rate. Hence, the DTEM is an e�cient
trust evaluation model which can identify di
erent kinds of
malicious nodes and can be dynamically adjusted according
to the specic requirements of the network.

In order to better illustrate the operation mechanism and
performance of DTEM, Table 3 shows the comparison of
state of the art in terms of trust estimation method, direct
trust factors, indirect trust module, integrated trust module,
trust update module, and considered attacks. 	rough the
above proof and analysis of the experiment, we can know
that DTEM is an e�cient dynamic trust evaluationmodel for
WSNs. It can e
ectively identify various malicious attacks.

7. Conclusion

In this paper, we propose an e�cient dynamic trust evalu-
ation model for WSNs. It includes the direct trust module
with multiple trust factors, the trusted recommendation
trust module, the dynamic trust integration module, and
the adjustable trust update module. In the course of the
calculation of direct trust, we take the communication trust,
data consistency, and energy trust into account; it can achieve
accurate trust evaluation against routing attacks and data
information attacks. 	e punishment factor and regulating
function are introduced based on the character “trust is hard
to acquire and easy to lose.” 	e calculation of indirect trust
is invoked conditionally in order to enhance the accuracy
of trust value, which can be against the trust model attacks
such as bad-mouth attack. Moreover, in the process of
the integrated trust quantitative calculation, we dene a
dynamic balance weight factor function to overcome the
defect caused by allotting weights subjectively. A�erwards,
we give the update mechanism based on IOWA to enhance
�exibility. During this process, we can dynamically adapt the
parameters to change the weight sequence to meet the actual
needs of the network. 	e proposed dynamic trust model
enables dynamic, accurate, and objective evaluation of trust
between nodes based on the behavior of nodes.

We have performed several tests to validate the proposed
trust model. Simulation results indicate that DTEM is an
e�cient dynamic and attack-resistant trust evaluationmodel.
It can dynamically evaluate the reputation among nodes
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based on the communication behavior, data consistency, and
energy consumption of nodes. And having compared RFSN,
BTMS, and DTEM, DTEM is of great help in defending
against routing attacks, data information attacks, and trust
model attacks. It can e
ectively identify various malicious
attacks.

	e traditional security mechanisms (cryptography,
authentication, etc.) are widely used to deal with external
attacks. Trust model is a useful complement to the traditional
security mechanism, which can solve insider or node
misbehavior attacks. Hence, trust model is important
to providing security service for upper layer network
application in WSNs, such as secure routing and secure data
fusion. In our future work, we would like to focus on the
application of trust model in routing and data fusion for
WSNs.
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