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Figure 2. Images rendered with 
bilinear 4-ray (top) and 6-ray 
(bottom) cameras. 

Figure 1. (Left) Approximation of catadioptric system with two partial-sphere 
mirrors and a perspective camera, creating first (red and green) and second (yellow 
and blue) order reflected rays. The image is triangulated into simple cameras (ε = 
1pix).  The right image was rendered with the resulting compound camera model. 

 
 

Abstract 
 

Camera models are essential infrastructure in computer 
vision, computer graphics, and visualization. The most 
frequently used camera models are based on the single-
viewpoint constraint. Removing this constraint brings the 
advantage of improved flexibility in camera design. 
However, prior camera models that eliminate the single-
viewpoint constraint are inefficient.  

We describe an approximate model for coherent 
general cameras, which projects efficiently with user 
chosen accuracy. The rays of the general camera are 
partitioned into simple cameras that approximate the 
camera locally. The simple cameras are modeled with k-
ray cameras, a novel class of non-pinhole cameras. The 
rays of a k-ray camera interpolate between k construction 
rays. We analyze several variants of k-ray cameras. The 
resulting compound camera model is efficient because the 
number of simple cameras is orders of magnitude lower 
than the number of rays in the original general camera, 
and because each simple camera provides closed-form 
projection. 
 

1. Introduction 
The invention of synthetic imaging systems and of 

graphics computers has created two research fields for 
which camera models are essential infrastructure. By far 
the most popular camera model in computer vision and 
computer graphics is the planar pinhole camera. One 
reason for this is that manufacturing imaging systems is a 
challenging endeavor and researchers more often than not 
have to rely on cameras developed for applications where 
human-vision-like images are needed. Another reason is 
that many computer graphics applications require a high 
degree of realism, such that the output image is a 
believable replica of what the user would see in a similar 
real world scenario. Finally, the planar pinhole camera 
model is simple, it is well understood, and it can be used 
to efficiently analyze or create images. 

The simplicity of the planar pinhole camera model also 
implies important limitations: the scene is sampled from a 
single viewpoint, the field of view is relatively small, and 
building a physical camera that precisely respects the 
theoretical camera model is difficult. Camera models have 
been developed to remove the field of view limitation by 
sampling the scene from all directions, and to account for 
departures from ideal camera models.  

However, most camera models maintain the constraint 
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that all captured rays have to pass through a common 
point, because such a single viewpoint image can be 
trivially re-sampled into a familiar planar pinhole camera 
image. Although this advantage is certainly important, 
removing the single viewpoint constraint would greatly 
increase flexibility in the design of imaging systems, and 
would allow optimizing exclusively for the requirements 
of the application. One example is designing camera 
models that improve scene coverage in the presence of 
occlusions. Another example is modeling the deviation 
from the single viewpoint theoretical model in the case of 
an actual catadioptric omnidirectional camera. 

Such general camera models also have applicability in 
computer graphics. Rendering accurate reflections on 
curved surfaces presently requires sacrificing interactivity. 
Camera models that capture the rays reflected off the 
specular surfaces in the scene would enable rendering 
reflections accurately with the efficient feed-forward 
graphics pipeline. In image-based rendering the scene is 
rendered from pre-acquired or pre-rendered reference 
images. Using single viewpoint reference images produces 
disocclusion errors, artifacts that occur when a surface is 
visible in the output image but is not sampled in the 
reference images. Reference images that sample the scene 
from more than one viewpoint have the potential to 
alleviate this problem. 

A third domain where general camera models are useful 
is visualization. Artists have known for a long time that 
deviating from the precise rules of perspective viewing 
can enhance the eloquence of an image. This idea is 
exploited in information visualization to devise rules for 
producing visualizations that deemphasize realism and 
focus on maximizing the effectiveness of the information 
transfer. Such visualizations could be produced 
automatically by devising appropriate camera models. 

We are not the first to point out the usefulness of 
general cameras, nor are we the first to propose a general 
camera model. The contribution of this paper is to 
introduce an efficient general camera model, which has the 
potential to make general cameras practical for many 
applications. We describe an algorithm that accepts as 
input a camera given by its rays and an error threshold ε 
measured in pixels. The algorithm produces an 
approximate model of the input camera, which projects 
efficiently with an error bounded by ε. 

We assume that the input camera projects a 3D point to 
a finite number of image locations—cameras with non-
zero aperture can be modeled as a collection of such 
cameras. Another precondition on the input camera is 
coherence. We informally define a coherent camera as a 
camera for which the number of pixel discontinuities is 
O(√N), where N is the number of rays. A camera is 
discontinuous at a pixel if the origin or direction of the ray 
is substantially different from that of the rays at 

neighboring pixels. 
Coherence is a condition readily met by most physical 

cameras. We would like to point out however that looking 
beyond the technological challenges of building a non-
coherent camera, such a camera could prove to be useful. 
For example, a camera that samples randomly and 
dynamically the five dimensional space of rays in a scene 
with complex occlusions could have attractive statistical 
scene-coverage properties. 

The algorithm exploits the coherence of the input 
camera to partition its rays into groups, each handled by a 
simple camera. A group is sufficiently small such that 
replacing it with the simple camera respects the projection 
error threshold ε. An obvious choice for the model of the 
simple cameras is the pinhole camera model. However, 
pinholes poorly approximate the non-concurrent input 
rays, which results in a large number of simple cameras 
and an increased complexity of the overall compound 
camera. Instead, we model simple cameras as k-ray 
cameras, a novel class of non-pinhole cameras that 
interpolate between k given rays. We analyze several 
instances of k-ray cameras and show that up to k = 6, the 
k-ray cameras have closed-form projection, which makes 
them well suited for use as simple cameras. k-ray cameras 
are a generalization of general linear cameras (GLCs) [Yu 
2004]; a GLC is equivalent to the 3-ray camera, the first 
member of the k-ray class. 

A 3D point is projected with the simple cameras that 
contain it. Efficient projection with user controllable 
accuracy is useful for many basic operations such as 
projecting a 3D scene marker during calibration or 
tracking, finding the locus of possible correspondences of 
an image point in a second image, or finding the output 
image projection of a triangle vertex that is first reflected 
in a curved surface. 

The paper is organized as follows. The next section 
reviews prior work. Section 3 gives an overview of the 
algorithm. Section 4 introduces the k-ray camera class and 
analyzes several types of such cameras. Section 5 
describes an extension to ensure C0 projection continuity 
between two neighboring k-ray cameras. The last section 
discusses our results. 

2. Prior work 
The first limitation of the planar pinhole camera model 

addressed was the limited field of view. One approach is 
the use of fisheye lenses [Wood 1906, Miyamoto 1964]. 
Another approach is to rotate a planar pinhole camera 
about its center of projection [McMillan 1995, Chen 
1995] and to stitch a wide field of view image from the 
individually captured frames.  

The catadioptric approach employs mirrors to extend 
the field of view of a regular camera. Conical [Yagi 
1990], spherical [Hong 1991], hyperboloidal [Yamazawa 
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1995], faceted [Nalwa 1996], and paraboloidal [Nayar] 
mirrors are used in conjunction with perspective or 
orthographic cameras to capture coherent 2D arrays of 
pixels that sample the scene in all directions. The early 
conical and spherical variants do not respect the single 
viewpoint constraint, whereas the improved 
hyperboloidal, faceted and paraboloidal mirror systems 
generate concurrent reflected rays. 

Although the lack of a single effective viewpoint was 
originally viewed as a disadvantage, researchers have 
begun investigating the geometry and useful properties of 
camera models that have a continuum of view points. We 
generically call such cameras non-pinholes. Examples of 
non-pinhole cameras are the pushbroom [Gupta 1997], 
which collects rays in parallel planes by sweeping a line, 
and the two-slit camera [Pajda 2002], which captures all 
rays passing through two non-coplanar lines. The 
pushbroom, two-slit, planar pinhole, and orthographic 
cameras, are subclasses of the general linear camera 
(GLC) that collect linear combinations of three rays [Yu 
2004]. 

The GLC has proven to be a powerful tool for locally 
characterizing reflections on arbitrary surfaces [Yu 2005]. 
A GLC centered at a reflected ray is used to probe the 
reflective properties of the surface at the point where that 
ray originates. The focus of the framework developed by 
Yu and McMillan is analysis of the complex distortions 
caused by arbitrary mirror surfaces, whereas our goal is 
replacing the rays of a complex imaging system with a 
small set of powerful but efficient simple cameras. 

In computer graphics camera model extensions have 
been called upon to address challenging problems. One 
such problem is the problem of disocclusion errors. The 
layered depth image [Shade 1998], the multiple-center-of-
projection camera [Rademacher 1998], and the occlusion 
camera [Mei 2005] are examples of camera models which 
produce reference images less prone to disocclusion 
errors. None of these camera models are sufficiently 
flexible to approximate general cameras.  

Another problem that would benefit from an efficient 
general camera model is that of rendering reflections on 
arbitrary surfaces. The reflectors in a scene and the 
desired view planar pinhole camera can be seen as a 
dynamic large-scale catadioptric imaging system, used by 
the reflection rendering algorithm to synthesize images. 
The classical approach to high-quality reflections is ray 
tracing [Glassner 1980], which evaluates each ray of the 
catadioptric system individually.  

The approach is inefficient since only a few of the 
ray/geometric-primitive pairs yield a valid intersection. A 
variety of acceleration schemes have been developed to 
avoid considering invalid ray-primitive pairs, but 
efficiency is hindered by the high complexity of the rays 
and the scene. When the reflector surface is smooth, the 

reflected rays are coherent and our approach can be used 
to replace the set of reflected rays with a considerably 
smaller set of simple cameras. The simple cameras can be 
readily integrated in most ray tracing acceleration 
schemes. Consequently, the efficient general camera 
model we describe has the potential to accelerate accurate 
reflection rendering. 

Heidrich et al. propose an image-based lens model 
[Heidrich 1997] for adding depth-of-field effects to 
computer rendered imagery. The non-zero aperture is 
sampled from several points. For each point, the rays 
captured by the lens system are grouped in simple 
cameras. The approach is similar to ours, the difference is 
that the simple cameras are modeled as pinhole cameras, 
resulting in a much coarser approximation of the imaging 
system. The higher approximation error is acceptable in 
their case since the contribution of all the aperture sample 
points is averaged, but would produce unacceptable 
results in the case of a sharply focused catadioptric 
system. 

Several general camera models have been proposed. 
The light field [Gortler 96, Levoy 96] samples a 4D subset 
of the plenoptic function [Adelson 1991]. Although most 
imaging systems could be modeled with light fields, for 
many of them, the uniform sampling of the 4D ray space 
is unnecessary. Grossberg and Nayar describe a general 
camera model that stores only the actual rays of the 
imaging system [Grossberg 2001]. They present a 
calibration procedure that takes an unknown imaging 
system and produces a camera model expressed as a 
collection of N raxels, where N is the number of pixels in 
the image. A raxel is a 7-dimensional vector that 
associates a ray (ox, oy, oz, θ, φ) to a pixel (u, v).  

3. Algorithm overview 
Our algorithm takes as input a general camera and a 

desired projection accuracy  ε. The camera can be given 
by an analytical 
 
M(u, v) = (ox(u, v), oy(u, v), oz(u, v), θ(u, v), φ(u, v))  (1) 
0 < u < w, 0 < v < h 

 
or discrete, raxel like, 

 
M(ui, vi) = (oxi, oyi, ozi, θi, φi), i = 1 to N,       (2) 
 
pixel to ray mapping. The image resolution is w x h = N. 
Not all pixels need to be assigned a ray, which allows 
modeling, for example, catadioptric systems where the 
mirrors do not cover the entire image. The output of the 
algorithm is a set of n simple cameras 

 
M*={SC1, SC2, …, SCN}             (3) 
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with the property that M and M* produce the same 
number of projections for any 3D point P, and for any 
projection p produced by M there is a projection p* 
produced by M*, such that |p-p*| < ε. 

The algorithm subdivides the image in quad tree 
fashion. The subdivision halts if the current image tile is 
smaller than a minimum acceptable size, if it is empty, or 
if it can be approximated well enough with one or two 
simple cameras. A tile is empty if none of its pixels 
contains a valid ray. The approximation of a tile with 
simple cameras is described in Section 4.5. If the 
approximation is successful, the one or two newly created 
simple cameras are added to the list M*. If none of the 
halting conditions are met, the tile is subdivided in 4 and 
the algorithm proceeds recursively on each of the 4 
quarters. 

4. The k-ray camera class 
The goal is to devise a camera model that is sufficiently 

powerful to closely approximate a large set of contiguous, 
coherent, but non-concurrent rays, yet is simple enough to 
provide efficient projection. Although in theory numerical 
non-linear optimization methods could be employed to 
solve for arbitrarily complex projection equations, we 
have opted for camera models that offer closed-form 
projection. In addition to efficiency and robustness, 
closed-form projection also has the advantage of being 
suitable for hardware implementation. The projection 
equations of the cameras developed in this paper can 
already be implemented on modern GPUs by taking 
advantage of vertex-level programmability. Future 
hardware could support them at full speed as part of the 
“fixed” pipeline. 

4.1. The k-ray camera 
A k-ray camera is computed from k construction rays 

(oxi, oyi, ozi, θi, φi), i = 1 to n as follows. The first step is to 
compute the image plane Π by least squares fitting a plane 
to the k ray origins (oxi, oyi, ozi). Then a coordinate system 
local to the camera is computed. The z axis is given by the 
normal of Π (Figure 3). The axis is oriented such that all k 
ray tips lie in the positive z half-space. If this is not 
possible, the construction rays are degenerate and the 
construction fails. In practice the maximum angle between 
two rays is small (the rays have similar directions), and 
the construction typically succeeds. The x and y axes, and 
the origin of the local coordinate system O are chosen 
arbitrarily in Π. 

The next step is to transform the input rays to the local 
coordinate system and to compute the (qi, ri) and (si, ti) 
intersections of each ray with the local planes z = 0, and z 
= 1, respectively. The ray at image plane coordinates (q, r) 
is given by two points (q, r, s(q, r), t(q, r)), where s and t  

 

Π

 
Figure 3 k-ray camera construction (k = 4), and projection of 

point P at local image plane location (q, r). 

are expressions in q and r. The coefficients of s(q, r) and 
t(q, r) are computed by solving the system of 2k 
equations: 

 
si = s(qi, ri), ti = t(qi, ri), i = 1 to k        (4) 

 
In order for the construction to succeed, the system of 

equations has to be fully determined and have 2k 
unknowns, which means that the expressions s(q, r) and 
t(q, r) must total 2k coefficients. Many expressions are 
possible. This means that each value of k defines a 
subclass of cameras. We choose polynomials in q and r 
with k coefficients each: 

 
s(q, r) = Ps(a1, a2, …, ak, q, r) 
t(q, r) = Pt(b1, b2, …, bk, q, r)          (5) 
 
Polynomials have the advantage that the model camera 

system of equations (4) is linear, and the coefficients can 
be computed trivially. 

In order to project a 3D point P, the point is first 
transformed to the camera’s local coordinate system. Let 
(x, y, z) be its local coordinates. The projection equation is 
given by the system of 3 equations and 3 unknowns (q, r, 
w): 
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The third equation provides w so the projection 

equation is simplified to a system of 2 equations and 2 
unknowns: 
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Since z is constant, the order of the projection equations 
(7) is given by the order of the polynomials s(q, r) and t(q, 
r).  

For most imaging systems the precise modeling of the 
minimum distance from the image plane for a point to 
have a valid projection is not important, and the 
approximation provided by the image plane fitted to the 
origins of the rays is sufficient. If the tails of the rays have 
to be taken into account exactly, a hither surface can be 
fitted to the tails (e.g. a polyhedron with triangular faces, 
or a polynomial similar to the expressions of s and t). For 
computer graphics applications a far clipping plane is 
needed to limit the maximum values that are stored in the 
z-buffer, and to improve z-buffering precision. In order to 
simplify the clipping with the lateral faces of the viewing 
volume of the camera, we ensure that 3 of the k 
construction rays form a base triangle that contains the 
other k-3 rays. This way, projections that are outside the 
projection of the base triangle onto the local image plane 
(Figure 3) are easily clipped. 

Since it is our intention to use k-ray cameras to model a 
set of rays of a general camera, the k-ray camera has to 
provide the general camera image location where a 3D 
point projects. For this the construction rays are 
augmented with two scalars (u, v) which specify the final 
image coordinates for the ray. During camera 
construction, we compute two additional polynomials Pu 
and Pv for interpolation of the final u and v values. During 
projection, once the local image plane point (q, r) is 
computed, the final (u, v) values are computed as (Pu(q, r), 
Pv(q, r)). 

4.2. The 3-ray camera 
The simplest k-ray camera is the 3-ray camera. There 

are no construction rays inside the base triangle, since k-
3=0. The s and t polynomials are linear in q and r: 

 
s(q, r) = a1q + a2r + a3 
t(q, r) = b1q + b2r + b3            (8) 
 
The projection equations are also linear: 
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4.3. The 4-ray camera 
A useful variant of the 4-ray camera is the bilinear 4-

ray camera. The 4 construction rays form a convex 
quadrilateral on the image plane. The rays of the camera 
are obtained by bilinearly interpolating the 4 construction 
rays: 

 
q(α,β) = a11αβ + a12α + a13β + a14 
r(α,β) = a21αβ + a22α + a23β + a24 
s(α,β) = a31αβ + a32α + a33β + a34 
t(α,β) = a41αβ + a42α + a43β + a44       (10) 

 
In order to project a point P, α and β are computed from 

the plane through P that is parallel to the local image 
plane. If (si’, ti’) are the intersections of the k rays with 
this plane, α and β are found by inverse bilinear 
interpolation. The frustum of the bilinear 4-ray camera is 
delimited by the conditions that α and β be positive 
fractional numbers. Once α and β are known, the local 
image plane projection (q, r) is computed from equations 
(10) to complete the projection. See Figure 2 (top) and the 
accompanying video for images rendered with the bilinear 
4-ray camera. 

Π

 
Figure 4 Bilinear 4-ray camera projection. The fractional 
quantities α and β are computed as the bilinear interpolation 
coefficients that generate P when applied to the vertices of the 
quadrilateral in plane (s’, t’). 

4.4. The 6-ray camera 
In order to answer the question “what is the most 

powerful k-ray camera with closed form projection?”, 
recall that a system of two equations with two unknowns 
can be solved in closed form if the system degree, 
computed as the product of the total degrees of the 
individual equations, is less than four. 

A complete two-variable quadratic has 6 coefficients, 
thus the most powerful camera model with closed-form 
projection is a 6-ray camera. The 6-ray camera has 6-3=3 
construction rays inside a base triangle. The s and t 
polynomials are: 

 
s(q, r) = a1q2 + a2r2 + a3rq + a4r + a5q + a6 
t(q, r) = b1q2 + b2r2 + b3rq + b4r + b5q + b6   (11) 
 
The projection equations are: 
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Each of the two equations has degree two and all terms 

are present. The system is solved using a resultant, which 
simplifies it to a quartic equation in a single variable. Out 
of the four solutions, the one inside the base triangle is 
kept. The relatively simple reflectors used in our tests did 
not reveal situations where a unique solution could not be 
separated; as future work we will investigate the 
conditions when multiple “valid” projections occur. See 
Figure 2 (bottom) and the accompanying video for images 
rendered with the bilinear 4-ray camera. 

4.5. Error-bounded k-ray camera approximation 
Recall that the recursive image subdivision stops if the 

current rectangular image tile can be approximated with 1 
or 2 k-ray cameras. Our current implementation models all 
simple cameras with a single type of k-ray cameras. The 
3- and 6-ray cameras have a triangular base so the tile is 
first split in two using one of its diagonals. The bilinear 4-
ray camera has a quadrilateral base and maps directly to a 
tile. 

The k construction rays are given by the vertices of the 
base in the case of the 3-ray and bilinear 4-ray camera. 
For the 6-ray camera the 3 additional construction rays are 
chosen at base triangle barycentric coordinates (a, (1-a)/2, 
(1-a)/2) and permutations, for a uniform sampling of the 
base triangle. A typical value for a is 0.7. If the 
construction succeeds, the projection approximation 
introduced by the k-ray camera is evaluated at a few 
original rays inside the k-ray camera frustum.  

The projection error is 0 at the construction rays since 
they are original camera rays and since they are also part 
of the k-ray camera. The error grows with the distance to 
the construction rays. Since the rays are coherent, it is 
generally sufficient to measure the projection error for one 
or a few rays. A conservative algorithm would test at all 
rays replaced by the k-ray camera. We choose the test ray 
at the center of the base. The projection error at a test ray 
is estimated by projecting the origin and the tip of the ray 
using the k-ray camera, and computing the distance to the 
true projection, as indicated by the (u, v) values of the ray. 
A distance smaller than ε indicates that the k-ray camera 
captures the original well enough and the recursion stops. 

5. C0-continuous projection 
We have shown how the projection error is controlled 

within a k-ray camera, which also limits the overall 
projection error. In addition to the small absolute error, 
another desirable property of the overall projection  

 
Figure 5 Projection discontinuity between two 3-ray cameras 
with a shared edge and different image planes. In the 3D view 
(left), the blue 3D line projects in both 3-ray cameras (red and 
green segments). The 2D view (right) magnifies the intersection 
region to visualize the discontinuity. 

function is continuity between adjacent simple cameras. 
When the image planes of the two adjacent k-ray cameras 
are the same, the rays generated on the shared edge are the 
same, and the projection is C0-continuous. When the field 
of view of the overall camera is small, it is possible to use 
the same two planes for all simple cameras, chosen to be 
perpendicular to the view direction. However, it is not 
always possible to use the same planes. For example, in 
the case of a pinhole aimed at a sphere, the reflected rays 
cannot be parameterized with the same two planes. When 
the image planes of the adjacent k-ray cameras are 
different, the rays at the endpoints of the shared edge have 
different length, and the projection is discontinuous 
(Figure 5). 

A continuous projection can be obtained if the 3-ray 
camera is modified to interpolate between rays of unit 
length (Figure 6). This way the rays at the endpoints of the 
shared edge are exactly the same. The normalized rays 
imply that the second parameterization plane (s, t) is not 
parallel to the image plane. The projection equation of the 
continuous 3-ray camera is more complicated.  

Π

 
Figure 6 Continuous 3-ray camera. 

When projecting a point P, the first step is to find the 
plane that passes through P and cuts segments of same 
length on the 3 construction rays. Let the construction rays 
have origins oi and directions di in local camera 
coordinates. The 3 intersections hi with the construction 
rays, and then the plane’s normal n are given by: 
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Figure 7 Projection with adjacent continuous 3-ray cameras. 

hi = oi + diw, i = 1, 2, 3 
n = (h1 - h0) x (h2 - h0)            (13) 
 
where w is the length of the construction ray segments 

and can be found from equation 14. 
 
(P-h0)n=0                (14)  
 
Equation 14 is cubic in w, with one real solution in 

front of the image plane and inside the frustum of the 3-
ray camera. Once w is known, the points hi are known, the 
barycentric coordinates of P are computed in the triangle 
h0h1h2, and are used to find the image plane projection (q, 
r). In conclusion, the projection discontinuity is removed 
(Figure 7, Figure 8) at the price of a more expensive 
projection equation. For k > 3, the continuous k-ray 
camera does not have closed-form projection. 

 

 

 
Figure 8. Images rendered with two adjacent 3-ray 
cameras (top), and two adjacent continuous 3-ray cameras 
(bottom). 

 

6. Results and discussion 
We have described how to subdivide coherent general  

 
Figure 9. Visualization of 6-ray cameras created for
table entry 1,484 (fragment). Rays (1, 2, 3) and (4, 5,
6) are shown with black and white triangles, respectiv.

 
cameras in disjoint simple cameras. To model simple 
cameras efficiently we have introduced k-ray cameras, a 
novel class of non-pinhole cameras. We have developed 
three novel cameras part of this class: the bilinear 4-, the 
6-, and the continuous 3-ray camera. The k-ray cameras 
have closed-form projection. The projection times for 1 
million vertices are 0.42s, 0.55s, 0.72s, 0.85s, and 3.47s, 
for the planar pinhole, 3-, 4-, continuous 3-, and 6-ray 
camera, respectively. Timing measurements were 
performed on a 3.4GHz 2GB Pentium 4 Xeon. 

We tested our algorithm on 4 simulated catadioptric 
systems with non-concurrent reflected rays. Three systems 
consisted of a spherical mirror and a planar pinhole 
camera (horizontal field of view 60o, resolution 720x480). 
The mirror radius and the distance from the camera to the 
mirror surface were (5m/0.15m, 1m/0.15m, and 
0.1m/0.05m). Although spherical, the mirrors are modeled 
as triangle meshes, with normals computed at a vertex by 
averaging the normals of triangles that share the vertex. 

The fourth system had two spherical mirrors with radius 
0.1m, and produced both first and second order reflected 
rays (see Figure 1). Table 1 reports the number of simple 
cameras for each of the imaging systems. As expected, the 
complexity of the compound camera model is lower for 
lower curvature reflectors, for higher projection error 
thresholds, and for the more sophisticated simple camera. 
 

ε = 5pix ε = 1pix ε = 0.1pix 
 

3-ray 6-ray 3-ray 6-ray 3-ray 6-ray 

R = 5m 48 12 48 12 498 48 

R = 1m 48 12 204 48 2,442 192 

R = 0.1m 204 48 1,020 144 10,536 732 

2 x (R = 0.1m) 3,360 956 5,660 1032 17,500 1,484 

Table 1 Number of simple cameras of compound camera model. 

The original set of over 300,000 rays is simplified to 
fewer than 20,000 3-ray simple cameras, or to fewer than 
2,000 6-ray simple cameras, while the projection accuracy 
is better than 0.1pixels. The improvement brought by the 
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6-ray camera over the 3-ray camera is even larger for 
small ε values. Figure 9 and Figure 10 visualize the simple 
cameras constructed by the algorithm. 

Many of the simple cameras are created to follow the 
curves that delimit the first order reflected rays from the 
second reflected rays and from the blind (background) 
pixels. In our experiments we used a minimum tile size of 
2 pixels, which leaves a small gap in the simple camera 
triangulation. Triangle vertices that are seen by missing 
simple cameras do not have a valid projection and the 
triangles that use them are discarded, which causes a gap 
at the borders, in the rendered image (Figure 1). If larger 
gaps can be tolerated, the minimum tile size can be 
increased, which considerably reduces the overall number 
of simple cameras. Borders between first order ray and no 
ray regions can be handled well and inexpensively by 
extending the reflector for the subdivision phase. A coarse 
triangulation can be safely used since the jagged borders 
are off the actual surface of the reflector. 

 

 
Figure 10. Visualization of 3-ray cameras. R = 0.1m, ε =
1pix (left). R = 0.1m, ε = 0.1pix (right). 

 
The k-ray camera class and the approach to modeling 

complex camera models show that models that deviate 
from the single view point constraint can be practical. The 
camera models developed here are only the beginning. 
Many interpolation functions are possible and most are yet 
to be explored. A possible enhancement for catadioptric 
systems is to decouple final image coordinate 
interpolation from ray interpolation: the k-ray cameras 
project onto their local image planes, which the planar 
pinhole camera of the system foreshortens appropriately, 
increasing accuracy. 

The camera models developed here can be readily used 
in a variety of applications. A possibly more important 
contribution is the argument made for considering 
cameras flexible tools that can be adjusted to best address 
a given problem in computer vision, computer graphics, or 
visualization. 
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