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Abstract 

In this paper an efficient estimation procedure to estimate the current population mean in two-occasion successive 
sampling has been developed. An exponential regression type estimator of current population mean is proposed and 
corresponding optimum replacement strategy has been suggested. The superiority of the proposed estimator is 
empirically established over sample mean estimator and natural successive sampling estimator. Results are 
interpreted and suitable recommendations have been made.    
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1. Introduction 

When character under study of a finite population changes over time, one time survey carried out on a single 
occasion provides information about the characteristic of the surveyed population for the given occasion only 
and does not give any information about the nature or pattern of change of characteristic over different 
occasions and the precise estimates of the characteristic over all occasions or on the most recent occasion. To 
overcome this situation, sampling is done on successive occasions for generating reliable estimates of 
population parameters on different occasions. 
 Theory of successive sampling appears to have started with the work of Jessen (1942), he was pioneered in 
using the entire information collected during previous investigations to make current estimates more precise. 
This theory was extended by Pattersons (1950), Rao and Graham (1964), Gupta (1979), Das (1982), among 
others. Sen (1971) developed estimators of the population mean on the current occasion using information on 
two auxiliary variables which were readily available on previous occasion. Sen (1972, 1973) extended his 
work for several auxiliary variables. Singh et al. (1991), and Singh and Singh (2001) used the auxiliary 
information on current occasion for estimating the current population mean in two occasion successive 
sampling. Singh (2003) extended the theory for h-occasion successive sampling. 
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 In many situations, information on an auxiliary variable may be readily available on the first as well as on 
the second occasion, for example, tonnage (or seat capacity) of each vehicle or ship is known in transportation 
survey, more examples may be cited where the information on auxiliary variables are available on both the 
occasions of two-occasion successive sampling. Utilizing the auxiliary information on both the occasions , 
Feng and Zou (1997), Birader and Singh (2001), Singh (2005), Singh and Priyanka (2006, 2007),  Singh and 
Priyanka (2008, 2010), Singh and Karna (2009), Singh and Vishwakarma (2009), Singh and Prasad (2010), 
Singh et al. (2011), Singh and Prasad (2013) and Singh and Homa (2013) among others have proposed 
varieties of estimators of population mean on current (second) occasions in two occasion successive 
sampling. 
 In follow up of the above arguments, the objective of the present work is to propose a more precise 
estimator of current population mean in two-occasion successive sampling using the information on two 
stable auxiliary variables which are readily available on both the occasions.  Utilising the information on two 
auxiliary variables an exponential regression type estimator of current population mean in two-occasion 
successive sampling has been proposed. Properties of the proposed estimator are examined and relative 
comparison of the efficiencies  have been made with sample mean estimator, when there is no matching from 
the previous occasion and the natural successive sampling estimator, when no auxiliary information is used. 
Empirical studies are carried out which show the highly significant improvements in the performances of the 
proposed estimator. Results have been nicely interpreted and suitable recommendations are made. 

2. Formulation of Estimator 

Let U = (U1, U2, -, -, -, UN) be the finite population of N units, which has been sampled over two occasions. 
The character under study be denoted by x(y) on the first (second) occasion respectively. It is assumed that the 
information on two stable auxiliary variables 𝑧1 and 𝑧2 whose population means are known and closely 
related to x and y are readily available on first (second) occasion respectively. Let a simple random sample 
(without replacement) of size n be drawn on the first occasion. A random sub-sample of size m = n λ is 
retained (matched) from the sample on first occasion for its use on the second occasion, while a fresh simple 
random sample (without replacement) of size u = (n-m) = nμ is drawn on the second occasion from the entire 
population so that the total sample size on this occasion is also n. Here λ and μ (λ+μ =1) are the fractions of 
the matched and fresh samples, respectively, on the current (second) occasion. The values of λ or μ would be 
chosen optimally.  

The following notations have been considered for further use:  
𝑋� (𝑌�): The population mean of the study variable x (y) on the first (second) occasion respectively. 
𝑍̅1,  𝑍̅2 : Population means of the auxiliary variables 𝑧1 and 𝑧2 respectively. 
𝑥̅𝑛, 𝑥̅𝑚, 𝑦�𝑢, 𝑦�𝑚, 𝑧𝑗̅𝑗, 𝑧𝑗̅𝑗, 𝑧𝑗̅𝑗, (𝑗 = 1, 2) : The sample means of the respective variables based on the 
sample sizes shown in suffices. 
𝜌𝑦𝑦 , 𝜌𝑦𝑧1, 𝜌𝑦𝑧2, 𝜌𝑥𝑧1, 𝜌𝑥𝑧2, 𝜌𝑧1𝑧2  : Population correlation coefficients between the variables shown in suffices. 
𝑏𝑦𝑦

(𝑚), 𝑏𝑦𝑧1
(𝑚) and 𝑏𝑦𝑧2

(𝑚)  : Sample regression coefficient between the variables shown in suffices and based on the 
sample size shows in braces 
𝑆𝑥2 = (𝑁 − 1)−1  ∑ (𝑥𝑖 − 𝑋�)2𝑁

𝑖=1  : Population variance of the variable x. 
𝑆𝑦2, 𝑆𝑧1

2 , 𝑆𝑧2
2  : Population variances of the variables y, 𝑧1, 𝑧2 respectively. 

 To estimate the population mean 𝑌� on the current (second) occasion, two independent estimators are 
suggested. One is exponential type estimator based on a sample of size u (= nµ) drawn afresh on the second 
occasion. 

 ( )
2

1
exp ; 1,2j ju

u u
j j ju

Z z
T y j

Z z=

 − = = 
+  

∑  (1) 
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Second estimator is an exponential regression type estimator based on the sample of size m (= nλ) common to 
both the occasions and is defined as  

 𝑇𝑚 =  𝑦�𝑚 + 𝑏𝑦𝑦
(𝑚)(𝑥̅𝑛∗ − 𝑥̅𝑚∗ ) + 𝑏𝑦𝑧1

(𝑚)(𝑍̅1 − 𝑧1̅𝑚) + 𝑏𝑦𝑧2
(𝑚)(𝑍̅2 − 𝑧2̅𝑚) (2) 

where  

 ( )
2

*

1
exp ; 1,2j jn

n n
j j jn

Z z
x x j

Z z=

 − = = 
+  

∑  

and 

 ( )
2

*

1
exp ; 1,2j jm

m m
j j jm

Z z
x x j

Z z=

 − = = 
+  

∑ . 

Combining the estimators 𝑇𝑢 and 𝑇𝑚, we have the final estimator of 𝑌� as  

 𝑇 =  𝜑𝑇𝑢 + (1 − 𝜑)𝑇𝑚  (3) 

where 𝜑(0 ≤ 𝜑 ≤ 1) is an unknown constant (scalar) to be determined under certain criterion. 

3. Properties of the Proposed Estimator 

3.1 Bias and Mean Square Error 

Since the estimators 𝑇𝑢 and 𝑇𝑚  are exponential and exponential regression type estimators, they are biased 
estimators of the population mean 𝑌�. Therefore, the resulting estimator T is also a biased estimator of 𝑌�. The 
bias B(.) and mean square error M(.) of the estimator T is derived up to the first order of approximations under 
large sample assumption and shown in the following theorems: 
 
Theorem 1. Bias of the estimator T to the first order of approximations is obtained as 

 𝐵(𝑇) = 𝜑𝜑(𝑇𝑢) + (1 − 𝜑)𝐵(𝑇𝑚 ) (4) 
where 

  𝐵(𝑇𝑢) = �1
𝑢
− 1

𝑁
��

�𝛼0100 −
1
2
𝑌� �𝛼0010

𝑍�1 
+ 𝛼0001

𝑍�2 
�� − 1

2
𝛼0110

 𝑍�1
− 1

2
𝑌�𝛼0102
𝑍�1𝑍�2 

+

3
8
�𝛼0020

𝑍�12
+ 𝛼0002

𝑍�22
�

� (5) 

and 

𝐵( 𝑇𝑚 ) = �1
𝑚
− 1

𝑁
� �� 𝛼0100 −

𝛼0010𝛼0110
𝛼0020

+ 𝛼0120
𝛼0020

− 𝛼0030𝛼0110
 𝛼00202 − 𝛼0001𝛼0101

𝛼0002
− 𝛼0102

 𝛼0002
+ 𝛼0003𝛼0101

𝛼00022  
 �� +

 � 1
𝑚
− 1

𝑛
� � 1

𝑍�1

𝛼0010𝛼1100
𝛼2000

+ 1
𝑍�2

 𝛼0001 𝛼1100
𝛼2000

+  𝑋
�
𝑍�1

 𝛼1110
𝛼2000

+ 𝑋�
𝑍�1

𝛼1101 
  𝛼2000

− 𝑋�
𝑍�1

𝛼2010𝛼1100
𝛼20002  

− 𝑋�
𝑍�2

𝛼2001𝛼1100
𝛼2000 

� − 1
4
𝛼0011𝛼1100

𝑍�1𝑍�2
−

 3
8

 � 𝑋
�
𝑍�12

𝛼0020𝛼1100
𝛼2000 

+ 𝑋�
𝑍�22

𝛼0002𝛼1100
𝛼2000 

� + 𝛼3000𝛼1100
𝛼20002  

− 𝛼1000𝛼1100
𝛼2000 

− 𝛼2100
𝛼2000

                                (6) 

where  

 𝛼𝑝𝑝𝑝𝑝 = 𝐸[(𝑥𝑖 − 𝑋�)𝑝(𝑦𝑖 − 𝑌�)𝑞(𝑧1𝑖 − 𝑍̅1)𝑟(𝑧2𝑖 − 𝑍̅2)𝑠] ;    ((𝑝, 𝑞, 𝑟, 𝑠) ≥ 0 are integers). 
 
Theorem 2. Mean square error of the estimator T to the first degree of approximations is obtained as 

 𝑀(𝑇) = 𝜑2𝑀(𝑇𝑢) + (1 − 𝜑)2𝑀(𝑇𝑚 ) + 2𝜑(1 − 𝜑)𝐶(𝑇𝑢, 𝑇𝑚 ) (7) 
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where 

 𝑀(𝑇𝑢) = �1
𝑢
− 1

𝑁
�𝑆𝑦2 �

3
2
− 𝜌𝑦𝑧1 − 𝜌𝑦𝑧2 +  1

2
𝜌𝑧1𝑧2� (8) 

 𝑀(𝑇𝑚 ) = �1
𝑚
− 1

𝑁
� 𝑆𝑦2�1 − 𝜌𝑦𝑧1

2 − 𝜌𝑦𝑧2
2 + 2𝜌𝑦𝑧1𝜌𝑦𝑧2𝜌𝑧1𝑧2� +  

                    � 1
𝑚
− 1

𝑛
� 𝑆𝑦2 �𝜌𝑦𝑦2  �3

2
− 𝜌𝑥𝑧1 − 𝜌𝑥𝑧2 + 1

2
𝜌𝑧1𝑧2� + 2𝜌𝑦𝑦�𝜌𝑥𝑧1𝜌𝑦𝑧1 + 𝜌𝑥𝑧2𝜌𝑦𝑧2� −

                                                                        𝜌𝑦𝑦𝜌𝑧1𝑧2�𝜌𝑦𝑧1 + 𝜌𝑦𝑧2� − 2𝜌𝑦𝑦2 �                                                  (9) 

and  

 𝐶(𝑇𝑢, 𝑇𝑚) = − 1
𝑁
𝑆𝑦2 �1 − 𝜌𝑦𝑧1

2 − 𝜌𝑦𝑧2
2 + 1

2
𝜌𝑧1𝑧2�𝜌𝑦𝑧1 + 𝜌𝑦𝑧2�� (10) 

 
Remark 1. The above results are derived under the assumptions that the coefficients of variation of variables  
𝑥, 𝑦, 𝑧1 and 𝑧2 are approximately equal. 

3.2 Minimum mean square errors of the estimator T 

Since the mean square error of the estimator T in equation (7) is the function of the unknown constant (scalar) 
φ, therefore, it is minimized with respect to φ and subsequently the optimum value of φ is obtained as  

 𝜑𝑜𝑜𝑜 = 𝑀(𝑇𝑚 )−𝐶(𝑇𝑢,𝑇𝑚 )
𝑀(𝑇𝑢)+𝑀(𝑇𝑚 )−2𝐶(𝑇𝑢,𝑇𝑚 ) . (11) 

From equation (11), substituting the value of 𝜑𝑜𝑜𝑜 in equation (7) we get the optimum mean square error of 
the estimator T as 

 𝑀(𝑇)𝑜𝑜𝑜. = 𝑀(𝑇𝑢)𝑀(𝑇𝑚 )−{𝐶(𝑇𝑢,𝑇𝑚 )}2

𝑀(𝑇𝑢)+𝑀(𝑇𝑚∗ )−2𝐶(𝑇𝑢,𝑇𝑚 ). (12) 

Further substituting the values from equations (8)-(10) in equations (11) and (12), the simplified values of 
𝜑𝑜𝑜𝑜 and 𝑀(𝑇)𝑜𝑜𝑜. are obtained as  

 𝜑𝑜𝑜𝑜 =   𝜇(𝐴12+𝜇𝐴11)
𝐴1−𝜇𝐴14+𝜇2𝐴15

 (13) 

and 

 𝑀(𝑇)𝑜𝑜𝑜. = �𝐴22+𝜇
2𝐴21−𝜇𝐴23

𝐴1+𝜇2𝐴15−𝜇𝐴14
�  𝑆𝑦

2

𝑛
 (14) 

where 

 𝐴1 = �3
2
− 𝜌𝑦𝑧1 − 𝜌𝑦𝑧2 + 1

2
𝜌𝑧1𝑧2� ,  𝐴2 = �1 − 𝜌𝑦𝑧1

2 − 𝜌𝑦𝑧2
2 + 2𝜌𝑦𝑧1𝜌𝑦𝑧2𝜌𝑧1𝑧2� 

 𝐴3 = �𝜌𝑦𝑦2 �3
2
− 𝜌𝑥𝑧1 − 𝜌𝑥𝑧2 + 1

2
𝜌𝑧1𝑧2�� , 𝐴4 = �2𝜌𝑦𝑦2 + 𝜌𝑦𝑦𝜌𝑧1𝑧2(𝜌𝑦𝑧1 + 𝜌𝑦𝑧2)� ,  

 𝐴5 = �2𝜌𝑦𝑦�𝜌𝑦𝑧1𝜌𝑥𝑧1 + 𝜌𝑦𝑧2𝜌𝑥𝑧2�� , 𝐴6 = �1 − 𝜌𝑦𝑧1
2 − 𝜌𝑦𝑧2

2 + 1
2
𝜌𝑧1𝑧2(𝜌𝑦𝑧1 + 𝜌𝑦𝑧2)�  

 𝐴7 = [ 𝐴6 − 𝐴2 ] , 𝐴8 = [𝐴2 + 𝐴3 − 𝐴4 + 𝐴5] , 𝐴9 = [𝐴3 − 𝐴4 + 𝐴5] , 𝐴10 = [𝐴8 − 𝐴9]  
 𝐴11 = [𝐴9 − 𝑓𝐴7] , 𝐴12 = [𝐴10 + 𝑓𝐴7] , 𝐴13 = [ 𝐴6 − 𝐴1] , 𝐴14 = [𝐴1−𝐴2 − 𝑓𝐴13 ] , 
 𝐴15 = [ 𝐴11 − 𝑓𝐴13] , 𝐴16 = [𝐴1𝐴2 + 𝐴1𝐴9] , 𝐴17 = [𝐴1𝐴2 ] , 𝐴18 = [𝐴1𝐴9 ]  
 𝐴19 = [ 𝐴62 − 𝐴1𝐴2 ] , 𝐴20 = [𝑓𝐴16 − 𝑓𝑓17 − 𝑓𝑓18 − 𝐴18] , 𝐴21 = [𝑓𝑓18 + 𝑓2𝐴19 ] ,  

 𝐴22 = [𝐴16 − 𝐴18 − 𝑓𝐴17 ] , 𝐴23 = [𝑓2𝐴19 + 𝐴20] and 𝑓 = 𝑛
𝑁

 . 
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4. Optimum Replacement strategy of the estimator T 

The optimum mean square error 𝑀(𝑇)𝑜𝑜𝑜. in equation (14) is a function µ (fraction of sample to be drawn 
afresh on the second occasion). It is an important factor in reducing the cost of the survey, therefore,  to 
determine the optimum value of µ so that 𝑌� may be estimated with maximum precision and minimum cost, 
we minimize 𝑀(𝑇)𝑜𝑜𝑜. with respect to µ which results in a quadratic equation in µ,  which is shown as 

 𝜇2𝐷1 + 2𝜇𝐷2 + 𝐷3 = 0 (15) 

Solving the equation (15) for 𝜇, the solutions of  𝜇 (say 𝜇̂ ) are given as 

 𝜇̂ =
−𝐷2±�𝐷22−𝐷1𝐷3

𝐷1
  (16) 

where  
 𝐷1 = (𝐴15𝐴23 − 𝐴14𝐴21) , 𝐷2 = (𝐴1𝐴21 − 𝐴15𝐴22) , 𝐷3 = (𝐴14𝐴22 − 𝐴1𝐴23) . 

From equation (16) it is clear that the real values of 𝜇̂ exist, iff, the quantities under square root is greater than 
or equal to zero. For any combination of correlations, which satisfy the condition of real solutions, two real 
values of 𝜇̂ are possible. Hence, while choosing the values of 𝜇̂, it should be remembered that 0 ≤ 𝜇̂ ≤ 1, and 
all other values of 𝜇̂ are said to be inadmissible. If both the values of 𝜇̂ are admissible, the lowest one is the 
best choice as it reduces the cost of the survey. From equation (16), substituting the admissible value of 𝜇̂ (say 
𝜇0) in equation (14), we have the optimum value of mean square error of the estimator T, which is shown 
below: 

 𝑀(𝑇)𝑜𝑜𝑜∗ =  �𝐴22+ 𝜇02𝐴21−𝜇0𝐴23
𝐴1+𝜇02𝐴15−𝜇0𝐴14

� 𝑆𝑦
2

𝑛
 . (17) 

 
5. Efficiency Comparison 

The percent relative efficiencies of the estimator T with respect to (i) sample mean estimator 𝑦�𝑛 when there is 
no matching and (ii) natural successive sampling estimator 𝑌�� = 𝜑∗𝑦�𝑢 + (1 − 𝜑∗)𝑦�𝑚∗  , where 

( )* ( )m
m m yx n my y b x x= + − , when no auxiliary information is used on any occasion have been computed for 

different choices of correlations and presented in Tables 1-4. Following Sukhatme et.al (1984) the variance of 
y�n and optimum mean square error of Y�� are given by  

 𝑉(𝑦�𝑛) = �1
𝑛
− 1

𝑁
�𝑆𝑦2 (18) 

 𝑀(𝑌��)𝑜𝑜𝑜 = �1 + �1 − 𝜌𝑦𝑦2 �
𝑆𝑦2

2𝑛
− 𝑆𝑦2

𝑁
. (19) 

Since, the optimum mean square error  of the estimator T derived in equation (17) involve six correlations 
𝜌𝑦𝑦, 𝜌𝑥𝑧1, 𝜌𝑥𝑧2, 𝜌𝑦𝑧1, 𝜌𝑦𝑧2, 𝜌𝑧1𝑧2, therefore, for simplifying the expressions and to show the empirical results in 
tabular form we have considered the assumptions 𝜌𝑥𝑧1 =  𝜌𝑦𝑧1 = 𝜌0 and  𝜌𝑥𝑧2 =  𝜌𝑦𝑧2 = 𝜌1. These 
assumptions are intuitive which were also considered by Cochran (1977) and Feng and Zou (1997). Under the 
above assumptions, finally, we have only three  correlations 𝜌𝑦𝑦, 𝜌0 and 𝜌1  and subsequently, the values of 
𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐴6take the following forms:  

 𝐴1 = �3
2
− 𝜌0 − 𝜌1 + 1

2
𝜌𝑧1𝑧2�  ,  𝐴2 = �1 − 𝜌02 − 𝜌12 + 2𝜌0𝜌1𝜌𝑧1𝑧2� 

 𝐴3 = �𝜌𝑦𝑦2 �3
2
− 𝜌0 − 𝜌1 + 1

2
𝜌𝑧1𝑧2�� , 𝐴4 = �2𝜌𝑦𝑦2 + 𝜌𝑦𝑦𝜌𝑧1𝑧2(𝜌0 + 𝜌1)�, 

 𝐴5 = �2𝜌𝑦𝑦( 𝜌02 +  𝜌12)� , 𝐴6 = �1 − 𝜌02 − 𝜌12 + 1
2
𝜌𝑧1𝑧2(𝜌0 + 𝜌1)�  
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Table 1. Optimum values of 𝜇0 and PRE’s of T with respect to 𝑦�𝑛 and 𝑌�� for f=0.1 and 𝜌𝑧1𝑧2 = 0.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        Note: “*” indicate 𝜇0  do not exist.

𝜌0 𝜌1 𝜌𝑦𝑦 0.6 0.7 0.8 0.9 
 
 
 
 

0.4 

0.4 𝜇0 
𝐸1 
𝐸2 

0.3663 
132.78 
118.03 

0.4658 
139.32 
117.19 

0.5425 
149.92 
116.61 

0.6326 
168.88 

115.957 
0.5 𝜇0 

𝐸1 
𝐸2 

0.3881 
144.61 
128.54 

0.4843 
152.08 
127.93 

0.5535 
164.33 
127.81 

0.6404 
186.81 
128.26 

0.6 𝜇0 
𝐸1 
𝐸2 

0.2343 
160.87 
142.99 

0.4617 
168.63 
141.85 

0.5395 
182.22 
141.73 

0.6258 
207.56 
142.51 

0.8 𝜇0 
𝐸1 
𝐸2 

0.6109 
209.73 
186.43 

0.7156 
217.57 
183.02 

* 0.4037 
268.87 
184.61 

 
 
 
 

0.5 

0.4 𝜇0 
𝐸1 
𝐸2 

0.3881 
144.61 
128.54 

0.4843 
152.08 
127.93 

0.5535 
164.33 
127.81 

0.6404 
186.81 
128.26 

0.5 𝜇0 
𝐸1 
𝐸2 

0.5134 
158.43 
140.83 

0.5382 
167.02 
140.49 

0.5782 
181.04 
140.81 

0.6512 
207.33 
142.35 

0.6 𝜇0 
𝐸1 
𝐸2 

* 0.6170 
187.14 
157.42 

0.5921 
202.46 
157.46 

0.6440 
231.69 
159.08 

0.8 𝜇0 
𝐸1 
𝐸2 

0.4351 
243.59 
216.53 

0.4520 
253.93 
213.60 

0.4815 
272.12 
211.65 

0.5350 
305.72 
209.91 

 
 
 
 

0.6 

0.4 𝜇0 
𝐸1 
𝐸2 

0.2343 
160.87 
142.99 

0.4617 
168.63 
141.85 

0.5395 
182.22 
141.73 

0.6258 
207.56 
142.51 

0.5 𝜇0 
𝐸1 
𝐸2 

* 0.6170 
187.14 
157.42 

0.5921 
202.46 
157.46 

0.6440 
231.69 
159.08 

0.6 𝜇0 
𝐸1 
𝐸2 

0.2284 
199.23 
177.09 

* 0.6820 
230.76 
179.48 

0.6528 
262.27 
180.08 

0.8 𝜇0 
𝐸1 
𝐸2 

0.3284 
293.80 
261.16 

0.3282 
304.99 
256.56 

0.3084 
324.79 
252.61 

* 

 
 
 
 

0.7 

0.4 𝜇0 
𝐸1 
𝐸2 

0.7220 
180.09 
160.08 

0.0152 
193.05 
162.39 

0.4638 
205.64 
159.94 

0.5773 
232.83 
159.86 

0.5 𝜇0 
𝐸1 
𝐸2 

0.3863 
203.59 
180.97 

0.1655 
212.35 
178.63 

0.6163 
231.19 
179.82 

0.6176 
262.44 
180.19 

0.6 𝜇0 
𝐸1 
𝐸2 

0.3008 
234.84 
208.75 

0.2300 
244.03 
205.28 

* 0.6855 
305.28 
209.60 

0.8 𝜇0 
𝐸1 
𝐸2 

0.2521 
389.79 
346.48 

0.2527 
402.30 
338.41 

0.2479 
425.68 
331.08 

0.1987 
465.21 
319.41 

 
 
 
 

0.8 
  

0.4 𝜇0 
𝐸1 
𝐸2 

0.6109 
209.73 
186.43 

0.7156 
217.57 
183.02 

* 0.4037 
268.87 
184.61 

0.5 𝜇0 
𝐸1 
𝐸2 

0.4351 
243.59 
216.53 

0.4520 
253.93 
213.60 

0.4815 
272.12 
211.65 

0.5350 
305.72 
209.91 

0.6 𝜇0 
𝐸1 
𝐸2 

0.3284 
293.80 
261.16 

0.3282 
304.99 
256.56 

0.3084 
324.79 
252.61 

* 

0.8 𝜇0 
𝐸1 
𝐸2 

0.1530 
695.75 
618.44 

0.1543 
712.60 
599.43 

0.1559 
747.82 
581.63 

0.1541 
811.09 
556.90 
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Table 2. Optimum values of 𝜇0 and PRE’s of T with respect to 𝑦�𝑛 and 𝑌�� for f=0.1 and 𝜌𝑧1𝑧2= 0.5. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Note: “*” indicate 𝜇0  do not exist. 

𝜌0 𝜌1 𝜌𝑦𝑦 0.6 0.7 0.8 0.9 
 
 
 
 

0.4 

0.4 𝜇0 
𝐸1 
𝐸2 

0.3668 
123.45 
109.73 

0.4611 
129.45 
108.89 

0.5403 
139.06 
108.16 

0.6331 
155.99 
107.10 

0.5 𝜇0 
𝐸1 
𝐸2 

0.4153 
132.09 
117.41 

0.4932 
139.01 
116.94 

0.5612 
150.09 
116.73 

0.6491 
170.09 
116.79 

0.6 𝜇0 
𝐸1 
𝐸2 

0.4276 
143.62 
127.66 

0.5027 
151.19 
127.18 

0.5636 
163.41 
127.10 

0.6459 
185.77 
127.55 

0.8 𝜇0 
𝐸1 
𝐸2 

0.6513 
178.33 
158.51 

0.6576 
213.77 
179.82 

* 0.2622 
260.02 
178.53 

 
 
 
 

0.5 

0.4 𝜇0 
𝐸1 
𝐸2 

0.4153 
132.09 
117.42 

0.4932 
139.01 
116.94 

0.5612 
150.09 
116.73 

0.6491 
170.09 
116.79 

0.5 𝜇0 
𝐸1 
𝐸2 

0.5279 
141.64 
125.90 

0.5536 
149.41 
125.68 

0.5941 
161.81 
125.85 

0.6667 
184.61 
126.75 

0.6 𝜇0 
𝐸1 
𝐸2 

0.7220 
155.65 
138.36 

0.6212 
163.34 
137.40 

0.6198 
176.50 
137.27 

0.6698 
200.99 
138.00 

0.8 𝜇0 
𝐸1 
𝐸2 

0.2317 
192.77 
171.35 

0.3386 
237.92 
200.14 

0.2639 
251.03 
195.25 

0.9230 
285.95 
196.33 

 
 
 
 

0.6 

0.4 𝜇0 
𝐸1 
𝐸2 

0.4276 
143.62 
127.66 

0.5027 
151.19 
127.18 

0.5636 
163.41 
127.10 

0.6459 
185.77 
127.55 

0.5 𝜇0 
𝐸1 
𝐸2 

0.7220 
155.65 
138.36 

0.6212 
163.34 
137.40 

0.6198 
176.50 
137.27 

0.6698 
200.99 
138.00 

0.6 𝜇0 
𝐸1 
𝐸2 

* 0.8416 
182.98 
153.92 

0.6908 
194.63 
151.38 

0.6877 
219.55 
150.75 

0.8 𝜇0 
𝐸1 
𝐸2 

0.0794 
207.52 
184.46 

0.1503 
263.02 
221.25 

0.0443 
269.87 
209.90 

* 

 
 
 
 

0.7 

0.4 𝜇0 
𝐸1 
𝐸2 

0.2456 
159.27 
141.57 

0.4717 
166.86 
140.36 

0.5418 
179.87 
139.90 

0.6211 
203.62 
139.81 

0.5 𝜇0 
𝐸1 
𝐸2 

* 0.8017 
183.21 
154.11 

0.6561 
195.53 
152.08 

0.6645 
220.45 
151.36 

0.6 𝜇0 
𝐸1 
𝐸2 

* * 0.8750 
223.56 
173.88 

0.7223 
244.72 
168.02 

0.8 𝜇0 
𝐸1 
𝐸2 

0.0292 
232.30 
206.49 

0.0341 
302.09 
254.11 

* * 

 
 
 

0.8 
  

0.4 𝜇0 
𝐸1 
𝐸2 

0.6513 
178.33 
158.51 

* 0.4407 
201.54 
156.75 

0.5593 
225.60 
154.90 

0.5 𝜇0 
𝐸1 
𝐸2 

0.2317 
192.77 
171.35 

* 0.8441 
223.34 
173.71 

0.6655 
245.81 
168.78 

0.6 𝜇0 
𝐸1 
𝐸2 

0.0794 
207.52 
184.46 

* * 0.8844 
287.79 
197.60 
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Table 3. Optimum values of 𝜇0 and PRE’s of T with respect to 𝑦�𝑛 and 𝑌�� for f=0.1 and 𝜌𝑧1𝑧2 = 0.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Note: “*” indicate 𝜇0  do not exist.

𝜌0  𝜌1 𝜌𝑦𝑦 0.6 0.7 0.8 0.9 
 
 
 
 

0.4 

0.4 𝜇0 
𝐸1 
𝐸2 

0.3733 
115.46 
102.63 

0.4623 
121.05 
101.83 

0.5416 
129.85 
100.99 

0.6350 
145.10 
100.63 

0.5 𝜇0 
𝐸1 
𝐸2 

0.4348 
121.73 
108.20 

0.5036 
128.20 
107.84 

0.5701 
138.33 
107.59 

0.6580 
156.35 
107.35 

0.6 𝜇0 
𝐸1 
𝐸2 

0.4754 
130.21 
115.74 

0.5277 
137.28 
115.48 

0.5826 
148.40 
115.42 

0.6630 
168.45 
115.65 

0.8 𝜇0 
𝐸1 
𝐸2 

0.4697 
155.73 
138.42 

0.5214 
163.24 
137.32 

0.5597 
175.28 
136.33 

0.6211 
196.54 
134.94 

 
 
 
 

0.5 

0.4 𝜇0 
𝐸1 
𝐸2 

0.4348 
121.73 
108.20 

0.5036 
128.20 
107.84 

0.5701 
138.33 
107.59 

0.6580 
156.35 
107.35 

0.5 𝜇0 
𝐸1 
𝐸2 

0.5402 
128.24 
113.99 

0.5668 
135.37 
113.87 

0.6078 
146.51 
113.95 

0.6798 
166.62 
114.40 

0.6 𝜇0 
𝐸1 
𝐸2 

0.6662 
138.03 
122.70 

0.6300 
145.17 
122.11 

0.6383 
156.74 
121.90 

0.6886 
177.80 
122.08 

0.8 𝜇0 
𝐸1 
𝐸2 

* * 0.7570 
187.91 
146.15 

0.7018 
206.83 
142.01 

 
 
 
 

0.6 

0.4 𝜇0 
𝐸1 
𝐸2 

0.4754 
130.21 
115.74 

0.5277 
137.28 
115.48 

0.5826 
148.40 
115.42 

0.6630 
168.45 
115.65 

0.5 𝜇0 
𝐸1 
𝐸2 

0.6662 
138.03 
122.70 

0.6300 
145.17 
122.11 

0.6383 
156.74 
121.90 

0.6886 
177.80 
122.08 

0.6 𝜇0 
𝐸1 
𝐸2 

0.9917 
153.84 
136.75 

0.7648 
158.00 
132.91 

0.7001 
168.61 
131.14 

0.7089 
189.21 
129.91 

0.8 𝜇0 
𝐸1 
𝐸2 

* * * 0.8236 
229.67 
157.69 

 
 
 
 

0.7 

0.4 𝜇0 
𝐸1 
𝐸2 

0.4995 
141.27 
125.57 

0.5369 
148.70 
125.08 

0.5808 
160.46 
124.80 

0.6512 
181.56 
124.66 

0.5 𝜇0 
𝐸1 
𝐸2 

0.9592 
153.88 
136.79 

0.7287 
158.77 
133.55 

0.6748 
169.82 
132.08 

0.6915 
190.63 
130.89 

0.6 𝜇0 
𝐸1 
𝐸2 

* * 0.8054 
186.82 
145.30 

0.7403 
204.73 
140.56 

0.8 𝜇0 
𝐸1 
𝐸2 

* * * * 

 
 
 

0.8 
  

0.4 𝜇0 
𝐸1 
𝐸2 

0.4697 
155.73 
138.42 

0.5214 
163.24 
137.32 

0.5597 
175.28 
136.33 

0.6211 
196.54 
134.94 

0.5 𝜇0 
𝐸1 
𝐸2 

* * 0.7570 
187.91 
146.15 

0.7018 
206.83 
142.01 

0.6 𝜇0 
𝐸1 
𝐸2 

* * * 0.8236 
229.67 
157.69 
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Table 4. Optimum values of 𝜇0 and PRE’s of T with respect to 𝑦�𝑛 and 𝑌�� for f=0.1 and 𝜌𝑧1𝑧2 = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      Note: “*” indicate 𝜇0  do not exist.

𝜌0 𝜌1 𝜌𝑦𝑦 0.6 0.7 0.8 0.9 
 
 
 
 

0.4 

0.4 𝜇0 
𝐸1 
𝐸2 

0.4149 
150.37 
133.66 

0.5004 
158.10 
132.99 

0.5588 
170.68 
132.75 

0.6367 
193.61 
132.93 

0.5 𝜇0 
𝐸1 
𝐸2 

0.1001 
169.52 
150.68 

0.4902 
177.91 
149.66 

0.5507 
192.59 
149.79 

0.6293 
220.15 
151.16 

0.6 𝜇0 
𝐸1 
𝐸2 

0.5926 
194.39 
172.79 

* 0.4787 
221.85 
172.55 

0.5868 
253.68 
174.18 

0.8 𝜇0 
𝐸1 
𝐸2 

0.5683 
288.88 
256.78 

0.6080 
299.01 
251.52 

0.7026 
316.56 
246.21 

* 

 
 
 
 

0.5 

0.4 𝜇0 
𝐸1 
𝐸2 

0.1001 
169.52 
150.68 

0.4902 
177.91 
149.66 

0.5507 
192.59 
149.79 

0.6293 
220.15 
151.16 

0.5 𝜇0 
𝐸1 
𝐸2 

0.4858 
193.72 
172.20 

0.5091 
204.03 
171.63 

0.5481 
221.59 
172.34 

0.6218 
255.63 
175.51 

0.6 𝜇0 
𝐸1 
𝐸2 

0.4920 
229.55 
204.05 

0.5481 
241.27 
202.95 

0.4277 
262.56 
204.21 

0.5721 
303.30 
208.25 

0.8 𝜇0 
𝐸1 
𝐸2 

0.4960 
388.39 
345.24 

0.5237 
402.84 
338.87 

0.5850 
430.69 
334.98 

0.7486 
478.98 
328.87 

 
 
 
 

0.6 

0.4 𝜇0 
𝐸1 
𝐸2 

0.5926 
194.39 
172.79 

* 0.4787 
221.85 
172.55 

0.5868 
253.68 
174.18 

0.5 𝜇0 
𝐸1 
𝐸2 

0.4920 
229.55 
204.05 

0.5481 
241.27 
202.95 

0.4277 
262.56 
204.21 

0.5721 
303.30 
208.25 

0.6 𝜇0 
𝐸1 
𝐸2 

0.4692 
284.25 
252.67 

0.5041 
298.27 
250.90 

0.6236 
323.29 
251.45 

0.4493 
378.53 
259.90 

0.8 𝜇0 
𝐸1 
𝐸2 

0.4217 
635.42 
564.82 

0.4414 
658.45 
553.88 

0.4855 
707.62 
550.37 

0.5829 
803.82 
551.91 

 
 
 
 

0.7 

0.4 𝜇0 
𝐸1 
𝐸2 

0.5753 
231.24 
205.55 

0.6569 
241.03 
202.75 

** 0.4144 
302.56 
207.74 

0.5 𝜇0 
𝐸1 
𝐸2 

0.5012 
285.88 
254.11 

0.5419 
298.94 
251.47 

0.6656 
321.74 
250.24 

0.1449 
385.86 
264.93 

0.6 𝜇0 
𝐸1 
𝐸2 

0.4555 
383.81 
341.17 

0.4837 
400.85  
 337.19 

0.5477 
433.31 
337.01 

0.7857 
491.18 
337.24 

0.8 𝜇0 
𝐸1 
𝐸2 

* 
 
 

* * * 

 
 
 

0.8 
  

0.4 𝜇0 
𝐸1 
𝐸2 

0.5683 
288.88 
256.78 

0.6080 
299.01 
251.52 

0.7026 
316.56 
246.21 

* 

0.5 𝜇0 
𝐸1 
𝐸2 

0.4960 
388.39 
345.24 

0.5237 
402.84 
338.87 

0.5850 
430.69 
334.98 

0.7486 
478.98 
328.87 

0.6 𝜇0 
𝐸1 
𝐸2 

0.4217 
635.42 
564.82 

0.4414 
658.45 
553.88 

0.4855 
707.62 
550.37 

0.5829 
803.82 
551.91 
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For different choices of correlations 𝜌𝑦𝑦,  𝜌0, 𝜌1 , 𝜌𝑧1𝑧2 and f, Tables 1-4 present the optimum values of µ and 
the percent relative efficiencies 𝐸1 and 𝐸2 of T with respect to 𝑦�𝑛 and 𝑌�� respectively, where 𝐸1 = 𝑉(𝑦�𝑛)

𝑀(𝑇)𝑜𝑜𝑜∗ ×

100  and 𝐸2 = 𝑀(𝑌��)𝑜𝑜𝑜
𝑀(𝑇)𝑜𝑜𝑜∗ × 100.  

6. Interpretations of Results 

6.1 Interpretations based on Table 1 

(a) For fixed values of 𝜌0 and 𝜌1, the values of 𝜇0 and  𝐸1  are increasing while the values of 𝐸2 do not 
show any definite pattern with the increasing values of ρyx.This behaviour is in agreement with 
Sukhatme et al. (1984), results which explain that more the value of 𝜌𝑦𝑦, more the fraction of fresh 
sample required on the current occasion. 

(b) For fixed values of 𝜌1 and 𝜌𝑦𝑦 , the values of  𝐸1 and 𝐸2 are increasing while no definite patterns are 
seen in the  values of 𝜇0  with the increasing values of 𝜌0 . 

(c) For fixed values of 𝜌0 and 𝜌𝑦𝑦 the values of 𝐸1 and 𝐸2 are increasing while no definite patterns are 
seen in the values of 𝜇0 with the increasing values of 𝜌1 . 

(d) Minimum value of 𝜇0 is observed as 0.0152, which indicates that the fraction of sample to be 
replaced on the  current occasion is as low as about 1 percent of the total sample size, which leads to 
huge reduction in cost of the survey, which is a highly desirable phenomenon. 

6.2 Interpretations based on Table 2 

(a) For fixed values of 𝜌0 and 𝜌1, the values of 𝜇0and  𝐸1  are increasing while the values of 𝐸2 do not 
follow any definite pattern with the increase in the  values of 𝜌𝑦𝑦.This behaviour is in agreement with 
the standard results in successive sampling which explain that the more fraction of fresh sample on 
the current occasion is required with the increase in the values 𝜌𝑦𝑦.   

(b) For fixed values of 𝜌1 and 𝜌𝑦𝑦 , the values of  𝐸1 and 𝐸2 are increasing while no definite patterns are 
visible in the  values of 𝜇0  with  the increasing values of 𝜌0 . 

(c) For fixed values of 𝜌0 and 𝜌𝑦𝑦 the values of 𝐸1 and 𝐸2 are increasing while no definite trends are seen 
in the values of 𝜇0 if we increase the values of 𝜌1 . 

(d) Minimum value of 𝜇0 is found as 0.0292, which indicates that the fraction of sample to be replaced 
on the  current occasion is as low as about 2 percent of the total sample size, which leads in reduction 
of survey cost, such behaviour is always desired in survey sampling. 

6.3 Interpretations based on Table 3  

(a) For fixed choices of 𝜌0 and 𝜌1, the values of 𝜇0 and  𝐸1  show the increasing pattern while the values 
of 𝐸2 do not follow any trend when we increase the values of  𝜌𝑦𝑦.These behaviours support the 
standard theory of successive sampling that more the value of  𝜌𝑦𝑥,  more the fraction of fresh sample 
is required on the current occasion. 

(b) For fixed choices of 𝜌1 and 𝜌𝑦𝑦 , the values of  𝐸1 and 𝐸2 are increasing while no trends are seen in 
the  values of 𝜇0  with the increasing values of 𝜌0 . 

(c) For fixed choices of 𝜌0 and 𝜌𝑦𝑦 the values of 𝐸1 and 𝐸2 are increasing while no definite patterns are 
seen in the values of 𝜇0 with the increasing values of 𝜌1 . 

(d) Minimum value of 𝜇0 is observed as  0.3733, which indicates that the fraction to be replaced on the  
current occasion is as low as about 37 percent of the total sample size, which leads in reduction of  
the survey cost. 
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(e) If we compare the results of percent relative efficiencies with the results presented in Tables 1-2, it is 
clearly visible that the percent relative efficiencies are decreasing with the increase in the values of 
correlation coefficient between auxiliary variables  𝑧1 and 𝑧2. This finding generates curiosity to 
examine the behaviour of the proposed estimator when the auxiliary variables are independent. For 
such situation results are given in Table 4 and corresponding interpretations are given below in sub 
section 6.4.  

6.4 Interpretations based on Table 4    

(a)  When auxiliary variables are uncorrelated, it has been observed that for fixed choices of  𝜌0 and 𝜌1 
the values of  𝜇0 and 𝐸1  increase with the increase in the values of 𝜌𝑦𝑦,  while no definite patterns 
are observed in the values of  𝐸2. 

(b) For fixed values of 𝜌1 and 𝜌𝑦𝑦 , the values of  𝐸1 and 𝐸2 are increasing while no definite patterns are 
seen in the  values of 𝜇0  with the increasing values of 𝜌0 . Similar pattern are visible for the case 
when the values of 𝜌0 and 𝜌𝑦𝑦 are fixed and increasing values of ρ1 are observed. 

7. Conclusions and Recommendations 

From the above interpretations and discussions it has been observed that the use of information on two 
auxiliary variables on estimation stage is highly rewarding in terms of precision of the proposed estimator. 
The most important point, we have noticed in the present work is the percent relative efficiencies of the 
proposed estimator are decreasing with the increase in the values of correlation coefficient between auxiliary 
variables  𝑧1 and 𝑧2. This phenomenon suggests that if information on more number of mutually least 
correlated auxiliary variables is used at the estimation stage, more reliable estimates of population parameters 
may be generated. Looking on the nice behaviour of the proposed estimator the survey statisticians may be 
recommended for its practical applications in their real life problems. 
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