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Abstract

In this paper an efficient estimation procedure to estimate the current population mean in two-occasion successive
sampling has been developed. An exponential regression type estimator of current population mean is proposed and
corresponding optimum replacement strategy has been suggested. The superiority of the proposed estimator is
empirically established over sample mean estimator and natural successive sampling estimator. Results are
interpreted and suitable recommendations have been made.
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1. Introduction

When character under study of a finite population changes over time, one time survey carried out on a single
occasion provides information about the characteristic of the surveyed population for the given occasion only
and does not give any information about the nature or pattern of change of characteristic over different
occasions and the precise estimates of the characteristic over all occasions or on the most recent occasion. To
overcome this situation, sampling is done on successive occasions for generating reliable estimates of
population parameters on different occasions.

Theory of successive sampling appears to have started with the work of Jessen (1942), he was pioneered in
using the entire information collected during previous investigations to make current estimates more precise.
This theory was extended by Pattersons (1950), Rao and Graham (1964), Gupta (1979), Das (1982), among
others. Sen (1971) developed estimators of the population mean on the current occasion using information on
two auxiliary variables which were readily available on previous occasion. Sen (1972, 1973) extended his
work for several auxiliary variables. Singh et al. (1991), and Singh and Singh (2001) used the auxiliary
information on current occasion for estimating the current population mean in two occasion successive
sampling. Singh (2003) extended the theory for h-occasion successive sampling.
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In many situations, information on an auxiliary variable may be readily available on the first as well as on
the second occasion, for example, tonnage (or seat capacity) of each vehicle or ship is known in transportation
survey, more examples may be cited where the information on auxiliary variables are available on both the
occasions of two-occasion successive sampling. Utilizing the auxiliary information on both the occasions ,
Feng and Zou (1997), Birader and Singh (2001), Singh (2005), Singh and Priyanka (2006, 2007), Singh and
Priyanka (2008, 2010), Singh and Karna (2009), Singh and Vishwakarma (2009), Singh and Prasad (2010),
Singh et al. (2011), Singh and Prasad (2013) and Singh and Homa (2013) among others have proposed
varieties of estimators of population mean on current (second) occasions in two occasion successive
sampling.

In follow up of the above arguments, the objective of the present work is to propose a more precise
estimator of current population mean in two-occasion successive sampling using the information on two
stable auxiliary variables which are readily available on both the occasions. Utilising the information on two
auxiliary variables an exponential regression type estimator of current population mean in two-occasion
successive sampling has been proposed. Properties of the proposed estimator are examined and relative
comparison of the efficiencies have been made with sample mean estimator, when there is no matching from
the previous occasion and the natural successive sampling estimator, when no auxiliary information is used.
Empirical studies are carried out which show the highly significant improvements in the performances of the
proposed estimator. Results have been nicely interpreted and suitable recommendations are made.

2. Formulation of Estimator

Let U = (U,, U,, -, -, -, Uy) be the finite population of N units, which has been sampled over two occasions.
The character under study be denoted by x(y) on the first (second) occasion respectively. It is assumed that the
information on two stable auxiliary variables z; and z, whose population means are known and closely
related to x and y are readily available on first (second) occasion respectively. Let a simple random sample
(without replacement) of size n be drawn on the first occasion. A random sub-sample of size m = n 1 is
retained (matched) from the sample on first occasion for its use on the second occasion, while a fresh simple
random sample (without replacement) of size u = (n-m) = nu is drawn on the second occasion from the entire
population so that the total sample size on this occasion is also n. Here 1 and u (A+u =1) are the fractions of
the matched and fresh samples, respectively, on the current (second) occasion. The values of 4 or i would be
chosen optimally.

The following notations have been considered for further use:

X (Y): The population mean of the study variable x (y) on the first (second) occasion respectively.

Z,, Z, : Population means of the auxiliary variables z; and z, respectively.

Xn» Xms Ywr Ymo Zins Zjw» Zjm, (G = 1,2) @ The sample means of the respective variables based on the
sample sizes shown in suffices.

Pyx » Pyzy» Pyz, Pxz 1, Pxz, Pz,z, - Population correlation coefficients between the variables shown in suffices.

bj(,r,?), b}(,?l) and b( : Sample regression coefficient between the variables shown in suffices and based on the
sample size shows 1n braces
S2=(N-1)"* ¥¥,(x; — X)? : Population variance of the variable x.
S; 2 ,SZ,,SZ, : Population variances of the variables y, z;, z, respectively.

To estlmate the population mean Y on the current (second) occasion, two independent estimators are
suggested. One is exponential type estimator based on a sample of size u (= nu) drawn afresh on the second
occasion.

NI

l\ll NI

epo{ } j=12) (1)

l\ll

Ju
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Second estimator is an exponential regression type estimator based on the sample of size m (= nd) common to
both the occasions and is defined as

T = I+ bSP (F — ) + b3 (Zy — Z1n) + b3 (Zy = Zpn) )
where
2 (7 -z,
X =X ex (=12
T p;{z.+2}“ )
J Jn
and

2 | Z. -z,
X =X, expy 1=t (j=1,2).
;{Zj-i- jm}( )

[\N]

Combining the estimators T, and T,,,, we have the final estimator of ¥ as
T=o¢oTy+A—-9)Ty (3)

where @ (0 < ¢ < 1) is an unknown constant (scalar) to be determined under certain criterion.

3. Properties of the Proposed Estimator
3.1 Bias and Mean Square Error

Since the estimators T,, and T, are exponential and exponential regression type estimators, they are biased
estimators of the population mean Y. Therefore, the resulting estimator 7 is also a biased estimator of Y. The
bias B(.) and mean square error M(.) of the estimator 7 is derived up to the first order of approximations under
large sample assumption and shown in the following theorems:

Theorem 1. Bias of the estimator T to the first order of approximations is obtained as

B(T) = ¢B(T,) + (1 — ¢)B(T;,) “4)
where
15 (a a la 1Ya
oy (oo =27 (o o)) et
B = (3-3) Lo vorhn (5)
u N 3(a a
3 (%0020 | %0002
8( z7 zZ )
1 2
and
_ (2 1 %0010%0110 , %0120 _ %0030%0110 _ %0001%0101 @0102 , %0003%0101
B(Tn) = (_——){(%100— + I - - 2 +
m N 0020 _ @o020 @020 _ ®o002 0002 %0002
(i _ l) {i @0010%1100 ; 1 @0001 %1100 + X @110 | X @1101 X @2010%1100 i“zom“noo} _ 1ago11@1100 _
m  n/\Z;  azoe0 Z;  azooo Zy az000 Z1 @000 Z1 @000 Z;  azooo 4 7
3 (X X0020%1100 +£“0002“1100 + %3000%1100 _ *1000%1100 _ ¥2100 6
x X ! (©)
8 \Zi  azo00 Z5  @2000 3000 @2000 Q2000
where
— % % 7\ 7 \ST - ;
Upqrs = E[Ct; = X)P (i =Y) V(21 = Z1)" (220 — Z2)°]; (0, 4,7, 5) = 0 are integers).
Theorem 2. Mean square error of the estimator T to the first degree of approximations is obtained as
— 2 2
M(T) = 2 M(Tu) +(1- QD) M(Tm) + 2(.0(1 - (:D)C(Tur Tin) (7)
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where
1 1 3 1
M(Tu) = (; - ﬁ) 532/ [E ~ Pyz, — Pyz, + Epzlzz] (3)
1 1
M(Ty) = (% - N) 532/[1 - p}zlzl - p}zlzz + Zpyzlpyzzpzlzz] +
1 1 3 1
(% - ;) S}% [p}zzx (5 = Pxz, ~ Pxz, + EpZ1Zz) + Zpyx (plepyzl + Pxz, pyzz) -
PyxPz,z, (py21 + pyzz) - ijzzx] )
and
1¢2 2 2 1
C(Tu; Tm) == ﬁsy [1 ~ Pyz, ~ Pyz, + Epzlzz (pyzl + Pyz, )] (10)

Remark 1. The above results are derived under the assumptions that the coefficients of variation of variables
X,Y, z1 and z, are approximately equal.

3.2 Minimum mean square errors of the estimator T
Since the mean square error of the estimator 7 in equation (7) is the function of the unknown constant (scalar)
@, therefore, it is minimized with respect to ¢ and subsequently the optimum value of ¢ is obtained as

_ M(Tpn)—C(Ty,Trn)
Popt = M(T)+M(Ty) =2 (T, T) .

From equation (11), substituting the value of ¢,,; in equation (7) we get the optimum mean square error of
the estimator 7 as

_ M(T)M(Ty)—{C(Ty, Tr)}>

M(T)opt. T M(T)+M(T)—2C (T T (2

Further substituting the values from equations (8)-(10) in equations (11) and (12), the simplified values of
@opt and M (T) ;. are obtained as

_ W(Ap+1Aq1)
Popt = 4 24 (13)
1~ HA14+ U A5
and
_ [Azz+u?4z1-pAzs] Sy
M(T) e, = |2t ] 2 (14)
A1+pAis—pAal n
where

3 1
Ay = [E ~ Pyz, — Pyz, T EpZ1Zz] , Ay = [1 - p32121 - pJZ/ZZ + Zpyzlpyzzpzlzz]

Az = [pjzzx {% ~ Pxz, — Pxz, T %pzlzz}] LAy = [ijzlx + PyxPz,z, (pyzl + pyzz)] ,

As = [2pyx(Pyz, Pxzy + Pyz,Pxz,)]» A6 = [1 = k2, — Pizy +3P22, (Pyz, + pyzz)]
A; =[Ag—Az], Ag = [A; + A3 — Ay + A5], Ag = [A3 — Ay + As], Ayg = [Ag — Ad]
Ay =[Ag = fA7], A1y = [Aro + fA7], A1z = [Ag — A1l A1y = [A1—Ar — fAss ],
Ais = [Ay; — fA1z], A = [A14; + A1Aq], Ay7 = [A14; ], Agg = [A140]
A9 = [A% —A1Az ], Ayo = [fA1e — fA17 — fA1s — A1l Az1 = [fAss +f2A19],

[

Azp = [A16 — Ass —fA17]»A23 = [f2A19 + Azl and f =%-
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4. Optimum Replacement strategy of the estimator T

The optimum mean square error M(T),p,. in equation (14) is a function u (fraction of sample to be drawn
afresh on the second occasion). It is an important factor in reducing the cost of the survey, therefore, to
determine the optimum value of p so that ¥ may be estimated with maximum precision and minimum cost,
we minimize M (T),,, with respect to p which results in a quadratic equation in 4, which is shown as

u?D; + 2uD, + D3 =0 (15)
Solving the equation (15) for u, the solutions of u (say fi ) are given as

-D,+ /DZZ—D1D3 16)

u= D,
where

Dy = (A15A23 - A14A21) Dy = (A1A21 - A15A22) D3 = (A14A22 - A1A23) .

From equation (16) it is clear that the real values of fi exist, iff, the quantities under square root is greater than
or equal to zero. For any combination of correlations, which satisfy the condition of real solutions, two real
values of fI are possible. Hence, while choosing the values of /i, it should be remembered that 0 < i < 1, and
all other values of /i are said to be inadmissible. If both the values of i are admissible, the lowest one is the
best choice as it reduces the cost of the survey. From equation (16), substituting the admissible value of /i (say
Up) in equation (14), we have the optimum value of mean square error of the estimator 7, which is shown
below:

2
5

v _ [Azat u§Az1—oArs
M(Tope = | :

17
A +pdAis—oArs (a7)

5. Efficiency Comparison

The percent relative efficiencies of the estimator 7 with respect to (i) sample mean estimator y,, when there is
no matching and (ii) natural successive sampling estimator Y = o'y, + (1 —0)yyn , where
Y =, +b" (X, —X,), when no auxiliary information is used on any occasion have been computed for
different choices of correlations and presented in Tables 1-4. Following Sukhatme ez.a/ (1984) the variance of
Vn and optimum mean square error of Y are given by

VoW = (5 -7) 53 (18)

MP)ope = [1+ [1-p2 |2 -2 19
()opt + Pyx on N ( )

Since, the optimum mean square error of the estimator 7 derived in equation (17) involve six correlations
Pyxs Pxzyr Pxzy Pyzy» Pyzy Pz, z,» therefore, for simplifying the expressions and to show the empirical results in
tabular form we have considered the assumptions py, = py, = poand px,, = Pyz, = p1. These
assumptions are intuitive which were also considered by Cochran (1977) and Feng and Zou (1997). Under the
above assumptions, finally, we have only three correlations py,, po and p; and subsequently, the values of
Ay, Ay, As, Ay, As and Agtake the following forms:

Av=[3=po—P1+3P0z,| » A2 =[1- P8 = P} +2P0p1P2,2,]
Az = [pix {% —po—p1+ %pzlzz }] s Ay = (2052 + PyxPz,2,(Po + p1)],

1
As = [20yx( P} + PD]. As = [1 = P} = P} +72,2,(00 + p1)]
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Table 1. Optimum values of uy and PRE’s of T with respect to ¥, and Y for /=0.1 and p, ,, = 0.3.

o Py Dy 0.6 0.7 0.8 0.9
04 Lo 0.3663 0.4658 0.5425 0.6326
E 132.78 139.32 149.92 168.88
E, 118.03 117.19 116.61 115.957
05 o 0.3881 0.4843 0.5535 0.6404
0.4 E 144.61 152.08 164.33 186.81
: E, 128.54 127.93 127.81 128.26
0.6 Lo 0.2343 04617 0.5395 0.6258
E, 160.87 168.63 182.22 207.56
E, 142.99 141.85 141.73 142.51
0.8 Lo 0.6109 0.7156 * 0.4037
E 209.73 217.57 268.87
E, 186.43 183.02 184.61
04 o 0.3881 0.4843 0.5535 0.6404
E 144.61 152.08 164.33 186.81
E, 128.54 127.93 127.81 128.26
05 o 0.5134 0.5382 0.5782 0.6512
0.5 E 158.43 167.02 181.04 207.33
' E, 140.83 140.49 140.81 142.35
0.6 Lo * 0.6170 0.5921 0.6440
E 187.14 202.46 231.69
E, 157.42 157.46 159.08
0.8 o 04351 0.4520 04815 0.5350
E 243.59 253.93 272.12 305.72
E, 216.53 213.60 211.65 209.91
04 o 0.2343 04617 0.5395 0.6258
E, 160.87 168.63 182.22 207.56
E, 142.99 141.85 141.73 142.51
0.5 Lo * 0.6170 0.5921 0.6440
0.6 E 187.14 202.46 231.69
: E, 157.42 157.46 159.08
0.6 o 0.2284 * 0.6820 0.6528
E 199.23 230.76 26227
E, 177.09 179.48 180.08
0.8 o 0.3284 0.3282 0.3084 *
E 293.80 304.99 324.79
E, 261.16 256.56 252.61
04 o 0.7220 0.0152 04638 0.5773
E 180.09 193.05 205.64 232.83
E, 160.08 162.39 159.94 159.86
05 o 0.3863 0.1655 0.6163 0.6176
07 E 203.59 212.35 231.19 262.44
: E, 180.97 178.63 179.82 180.19
0.6 o 0.3008 0.2300 * 0.6855
E 234.84 244.03 305.28
E, 208.75 205.28 209.60
0.8 Lo 02521 0.2527 0.2479 0.1987
E 389.79 402.30 425.68 46521
E, 346.48 338.41 331.08 319.41
04 Lo 0.6109 0.7156 * 0.4037
E 209.73 217.57 268.87
E, 186.43 183.02 184.61
05 o 04351 0.4520 04815 0.5350
0.8 E 243.59 253.93 272.12 305.72
: E, 216.53 213.60 211.65 209.91
0.6 Lo 0.3284 0.3282 0.3084 *
E 293.80 304.99 324.79
E, 261.16 256.56 252.61
0.8 Lo 0.1530 0.1543 0.1559 0.1541
E 695.75 712.60 747.82 811.09
E, 618.44 599.43 581.63 556.90

Note: “*” indicate p, do not exist.
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Table 2. Optimum values of 1, and PRE’s of T with respect to ¥, and Y for /=0.1 and p, ,,=0.5.

Po 1 Pyx 0.6 0.7 0.8 0.9
0.4 Ho 0.3668 0.4611 0.5403 0.6331
E; 123.45 129.45 139.06 155.99
E, 109.73 108.89 108.16 107.10
0.5 Uo 0.4153 0.4932 0.5612 0.6491
0.4 E 132.09 139.01 150.09 170.09
E, 117.41 116.94 116.73 116.79
0.6 Lo 0.4276 0.5027 0.5636 0.6459
E; 143.62 151.19 163.41 185.77
E, 127.66 127.18 127.10 127.55
0.8 Lo 0.6513 0.6576 * 0.2622
E, 178.33 213.77 260.02
E, 158.51 179.82 178.53
0.4 Uo 0.4153 0.4932 0.5612 0.6491
E; 132.09 139.01 150.09 170.09
E, 117.42 116.94 116.73 116.79
0.5 Lo 0.5279 0.5536 0.5941 0.6667
0.5 E, 141.64 149.41 161.81 184.61
E, 125.90 125.68 125.85 126.75
0.6 Lo 0.7220 0.6212 0.6198 0.6698
E; 155.65 163.34 176.50 200.99
E, 138.36 137.40 137.27 138.00
0.8 Lo 0.2317 0.3386 0.2639 0.9230
E, 192.77 237.92 251.03 285.95
E, 171.35 200.14 195.25 196.33
0.4 Lo 0.4276 0.5027 0.5636 0.6459
E, 143.62 151.19 163.41 185.77
E, 127.66 127.18 127.10 127.55
0.5 Lo 0.7220 0.6212 0.6198 0.6698
0.6 E; 155.65 163.34 176.50 200.99
' E, 138.36 137.40 137.27 138.00
0.6 Lo * 0.8416 0.6908 0.6877
E, 182.98 194.63 219.55
E, 153.92 151.38 150.75
0.8 Lo 0.0794 0.1503 0.0443 *
E, 207.52 263.02 269.87
E, 184.46 221.25 209.90
0.4 Lo 0.2456 0.4717 0.5418 0.6211
E; 159.27 166.86 179.87 203.62
E, 141.57 140.36 139.90 139.81
0.5 Lo * 0.8017 0.6561 0.6645
0.7 E, 183.21 195.53 220.45
' E, 154.11 152.08 151.36
0.6 Lo * * 0.8750 0.7223
E, 223.56 244.72
E, 173.88 168.02
0.8 Lo 0.0292 0.0341 * *
E; 232.30 302.09
E, 206.49 254.11
0.4 Lo 0.6513 * 0.4407 0.5593
E, 178.33 201.54 225.60
E, 158.51 156.75 154.90
0.8 0.5 Lo 0.2317 * 0.8441 0.6655
E, 192.77 223.34 245.81
E, 171.35 173.71 168.78
0.6 Lo 0.0794 * * 0.8844
E; 207.52 287.79
E, 184.46 197.60

Note: “*” indicate u, do not exist.

32



ATLANTIS
‘ PRESS Journal of Statistical Theory and Applications, Vol. 16, No. 1 (March 2017) 26-37

Table 3. Optimum values of yy and PRE’s of T with respect to y,, and Y for /=0.1 and p, ,, = 0.7.

Po 1 Pyx 0.6 0.7 0.8 0.9
0.4 Lo 0.3733 0.4623 0.5416 0.6350
E; 115.46 121.05 129.85 145.10
E, 102.63 101.83 100.99 100.63
0.5 Uo 0.4348 0.5036 0.5701 0.6580
0.4 E 121.73 128.20 138.33 156.35
E, 108.20 107.84 107.59 107.35
0.6 Lo 0.4754 0.5277 0.5826 0.6630
E; 130.21 137.28 148.40 168.45
E, 115.74 115.48 115.42 115.65
0.8 Lo 0.4697 0.5214 0.5597 0.6211
E, 155.73 163.24 175.28 196.54
E, 138.42 137.32 136.33 134.94
0.4 Uo 0.4348 0.5036 0.5701 0.6580
E; 121.73 128.20 138.33 156.35
E, 108.20 107.84 107.59 107.35
0.5 Lo 0.5402 0.5668 0.6078 0.6798
0.5 E; 128.24 135.37 146.51 166.62
E, 113.99 113.87 113.95 114.40
0.6 Ho 0.6662 0.6300 0.6383 0.6886
E; 138.03 145.17 156.74 177.80
E, 122.70 122.11 121.90 122.08
0.8 Lo * * 0.7570 0.7018
E, 187.91 206.83
E, 146.15 142.01
0.4 Lo 0.4754 0.5277 0.5826 0.6630
E, 130.21 137.28 148.40 168.45
E, 115.74 115.48 115.42 115.65
0.5 Ho 0.6662 0.6300 0.6383 0.6886
0.6 E; 138.03 145.17 156.74 177.80
' E, 122.70 122.11 121.90 122.08
0.6 Lo 0.9917 0.7648 0.7001 0.7089
E, 153.84 158.00 168.61 189.21
E, 136.75 132.91 131.14 129.91
0.8 Lo * * * 0.8236
E, 229.67
E, 157.69
0.4 Lo 0.4995 0.5369 0.5808 0.6512
E; 141.27 148.70 160.46 181.56
E, 125.57 125.08 124.80 124.66
0.5 Lo 0.9592 0.7287 0.6748 0.6915
0.7 E, 153.88 158.77 169.82 190.63
' E, 136.79 133.55 132.08 130.89
0.6 Lo * * 0.8054 0.7403
E, 186.82 204.73
E, 145.30 140.56
08 #0 * * * *
E;
E;
0.4 Lo 0.4697 0.5214 0.5597 0.6211
E, 155.73 163.24 175.28 196.54
E, 138.42 137.32 136.33 134.94
0.8 0.5 Lo * * 0.7570 0.7018
E, 187.91 206.83
E, 146.15 142.01
0.6 Ho * * * 0.8236
E; 229.67
E, 157.69

Note: “*” indicate u, do not exist.
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Table 4. Optimum values of 1y, and PRE’s of T with respect to ¥, and Y for f=0.1and p, ,, = 0.

Po P1 Pyx 0.6 0.7 0.8 0.9
0.4 Lo 0.4149 0.5004 0.5588 0.6367
E, 150.37 158.10 170.68 193.61
E, 133.66 132.99 132.75 132.93
0.5 Lo 0.1001 0.4902 0.5507 0.6293
0.4 E 169.52 177.91 192.59 220.15
E, 150.68 149.66 149.79 151.16
0.6 o 0.5926 * 0.4787 0.5868
E, 194.39 221.85 253.68
E, 172.79 172.55 174.18
0.8 Lo 0.5683 0.6080 0.7026 *
E 288.88 299.01 316.56
E, 256.78 251.52 246.21
0.4 Lo 0.1001 0.4902 0.5507 0.6293
E 169.52 177.91 192.59 220.15
E, 150.68 149.66 149.79 151.16
0.5 o 0.4858 0.5091 0.5481 0.6218
0.5 E; 193.72 204.03 221.59 255.63
E, 172.20 171.63 172.34 175.51
0.6 o 0.4920 0.5481 0.4277 0.5721
E 229.55 241.27 262.56 303.30
E, 204.05 202.95 204.21 208.25
0.8 Lo 0.4960 0.5237 0.5850 0.7486
E 388.39 402.84 430.69 478.98
E, 345.24 338.87 334.98 328.87
0.4 o 0.5926 * 0.4787 0.5868
E, 194.39 221.85 253.68
E, 172.79 172.55 174.18
0.5 o 0.4920 0.5481 0.4277 0.5721
0.6 E, 229.55 24127 262.56 303.30
E, 204.05 202.95 204.21 208.25
0.6 Lo 0.4692 0.5041 0.6236 0.4493
E 284.25 298.27 323.29 378.53
E, 252.67 250.90 251.45 259.90
0.8 Uo 0.4217 0.4414 0.4855 0.5829
E, 635.42 658.45 707.62 803.82
E, 564.82 553.88 550.37 551.91
0.4 o 0.5753 0.6569 o 0.4144
E, 231.24 241.03 302.56
E, 205.55 202.75 207.74
0.5 Lo 0.5012 0.5419 0.6656 0.1449
0.7 E 285.88 298.94 321.74 385.86
E, 254.11 251.47 250.24 264.93
0.6 Uo 0.4555 0.4837 0.5477 0.7857
E, 383.81 400.85 43331 491.18
E, 341.17 337.19 337.01 337.24
0.8 Uo * * * *
Ey
E,
0.4 Lo 0.5683 0.6080 0.7026 *
E 288.88 299.01 316.56
E, 256.78 251.52 246.21
0.8 0.5 Lo 0.4960 0.5237 0.5850 0.7486
E, 388.39 402.84 430.69 478.98
E, 345.24 338.87 334.98 328.87
0.6 o 0.4217 0.4414 0.4855 0.5829
E, 635.42 658.45 707.62 803.82
E, 564.82 553.88 550.37 551.91

Note: “*” indicate u, do not exist.
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For different choices of correlations py,x, po, p1, Pz,z, and f, Tables 1-4 present the optimum values of x4 and

the percent relative efficiencies E; and E, of T with respect to ¥,, and Y respectively, where E; = MV((TJ;T)
opt
100 and E, = 2wt o« 10,
M(T)opt

6. Interpretations of Results
6.1 Interpretations based on Table 1

(a) For fixed values of py and p4, the values of uy and E; are increasing while the values of E, do not
show any definite pattern with the increasing values of pyy.This behaviour is in agreement with
Sukhatme et al. (1984), results which explain that more the value of p,,, more the fraction of fresh
sample required on the current occasion.

(b) For fixed values of p; and p,,, , the values of E; and E; are increasing while no definite patterns are
seen in the values of y, with the increasing values of p; .

(¢) For fixed values of py and p,, the values of E; and E; are increasing while no definite patterns are
seen in the values of y, with the increasing values of p; .

(d) Minimum value of py is observed as 0.0152, which indicates that the fraction of sample to be
replaced on the current occasion is as low as about 1 percent of the total sample size, which leads to
huge reduction in cost of the survey, which is a highly desirable phenomenon.

6.2 Interpretations based on Table 2

(a) For fixed values of pg and p4, the values of yyand E; are increasing while the values of E, do not
follow any definite pattern with the increase in the values of p,,,.This behaviour is in agreement with
the standard results in successive sampling which explain that the more fraction of fresh sample on
the current occasion is required with the increase in the values p,,.

(b) For fixed values of p; and p,,, , the values of E; and E; are increasing while no definite patterns are
visible in the values of yy with the increasing values of p; .

(¢) For fixed values of py and p,, the values of E; and E; are increasing while no definite trends are seen
in the values of u, if we increase the values of p; .

(d) Minimum value of y is found as 0.0292, which indicates that the fraction of sample to be replaced
on the current occasion is as low as about 2 percent of the total sample size, which leads in reduction
of survey cost, such behaviour is always desired in survey sampling.

6.3 Interpretations based on Table 3

(a) For fixed choices of py and p4, the values of uy and E; show the increasing pattern while the values
of E, do not follow any trend when we increase the values of p,,,.These behaviours support the
standard theory of successive sampling that more the value of p,,,, more the fraction of fresh sample
is required on the current occasion.

(b) For fixed choices of p; and py, , the values of E; and E, are increasing while no trends are seen in
the values of u, with the increasing values of p .

(¢) For fixed choices of py and p,, the values of E; and E, are increasing while no definite patterns are
seen in the values of y, with the increasing values of p; .

(d) Minimum value of y, is observed as 0.3733, which indicates that the fraction to be replaced on the
current occasion is as low as about 37 percent of the total sample size, which leads in reduction of
the survey cost.
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(e) If we compare the results of percent relative efficiencies with the results presented in Tables 1-2, it is
clearly visible that the percent relative efficiencies are decreasing with the increase in the values of
correlation coefficient between auxiliary variables z; and z,. This finding generates curiosity to
examine the behaviour of the proposed estimator when the auxiliary variables are independent. For
such situation results are given in Table 4 and corresponding interpretations are given below in sub
section 6.4.

6.4 Interpretations based on Table 4

(a) When auxiliary variables are uncorrelated, it has been observed that for fixed choices of py and p;
the values of p and E; increase with the increase in the values of py,, while no definite patterns
are observed in the values of E,.

(b) For fixed values of p; and p,,, , the values of E; and E; are increasing while no definite patterns are
seen in the values of py with the increasing values of py . Similar pattern are visible for the case
when the values of p, and p,,, are fixed and increasing values of p, are observed.

7. Conclusions and Recommendations

From the above interpretations and discussions it has been observed that the use of information on two
auxiliary variables on estimation stage is highly rewarding in terms of precision of the proposed estimator.
The most important point, we have noticed in the present work is the percent relative efficiencies of the
proposed estimator are decreasing with the increase in the values of correlation coefficient between auxiliary
variables z; and z,. This phenomenon suggests that if information on more number of mutually least
correlated auxiliary variables is used at the estimation stage, more reliable estimates of population parameters
may be generated. Looking on the nice behaviour of the proposed estimator the survey statisticians may be
recommended for its practical applications in their real life problems.
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