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Abstract. Within image analysis the distance transform has many applications. 
The distance transform measures the distance of each object point from the 
nearest boundary. For ease of computation, a commonly used approximate al-
gorithm is the chamfer distance transform. This paper presents an efficient lin-
ear-time algorithm for calculating the true Euclidean distance-squared of each 
point from the nearest boundary. It works by performing a 1D distance trans-
form on each row of the image, and then combines the results in each column. 
It is shown that the Euclidean distance squared transform requires fewer com-
putations than the commonly used 5x5 chamfer transform. 

1   Introduction 

Many image analysis applications require the measurement of objects, the compo-
nents of objects or the relationship between objects. One technique that may be used 
in a wide variety of applications is the distance transform or Euclidean distance map 
[1,2]. Let the pixels within a two-dimensional digital image ),( yxI  be divided into 
two classes – object pixels and background pixels. 

{ }BgObyxI ,),( ∈  (1) 

The distance transform of this image, ),( yxId  then labels each object pixel of this 
binary image with the distance between that pixel and the nearest background pixel. 
Mathematically, 
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where yx,  is some two-dimensional distance metric. Different distance metrics re-
sult in different distance transformations. From a measurement perspective, the 
Euclidean distance is the most useful because it corresponds to the way objects are 
measured in the real world. The Euclidean distance metric uses the L2 norm and is de-
fined as 
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This metric is isotropic in that distances measured are independent of object orienta-

tion, subject of course to the limitation that the object boundary is digital, and therefore 

in discrete locations. The major limitation of the Euclidean metric, however is that it is 

not easy to calculate efficiently for complex shapes. Therefore several approximations 

have been developed that are simpler to calculate for two-dimensional digital images us-

ing a rectangular coordinate system. The first of these is the city block, or Manhattan 

metric, which uses the L1 norm 
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where the distance is measured by the number of horizontal and vertical steps required 
to traverse (x,y). If each pixel is considered a node on a graph with each node connected 
to its 4 nearest neighbours, the city block metric therefore measures the distance as the 
minimum number of 4-connected nodes that must be passed through. Diagonal dis-
tances are over-estimated by this metric because a diagonal connection counts as 2 
steps, rather than 2 .  

Another measure commonly used is the chessboard metric, using the L∞ norm 
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which measures the number of steps required by a king on a chess board to traverse 

(x,y). The chessboard metric considers each pixel to be connected to its 8 nearest 

neighbours, and measures the distance as the minimum number of 8-connected nodes 

that must be passed through. Diagonal distances are under-estimated by this metric as a 

diagonal connection counts as only 1 step. 

A wide range of other metrics have been proposed that aim to approximate the 

Euclidean distance while retaining the simplicity of calculation of the city block and 

chessboard metrics. Perhaps the simplest of these is to simply average the city block and 

chessboard distance maps: 
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Fig. 1 graphically compares these different metrics in measuring the distance from a 

point in the centre of an image. The anisotropy of the non-Euclidean distance measures 

is clearly visible. 

1.1   Morphological Approach – Grassfire Transform 

Calculation of the distance transform directly using Eq. (2) is impractical because it in-

volves measuring the distance between every object pixel and every background pixel. 

The time required would be proportional to the number of pixels in the image squared. 

Therefore more efficient algorithms have been developed to reduce the computational 

complexity.  
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Intuitively, the simplest approach to calculate the distance transform is to iteratively 

label each pixel starting from the edges of the object. The so-called grassfire transform 

imagines that a fire is started at each of the edge pixels which burns with constant veloc-

ity. An object pixel’s distance from the boundary is therefore given by the time it takes 

the fire to reach that pixel. The grassfire transform is initialised by labelling all of the 

background pixels as 0. In iteration i, each unlabelled object pixel that is adjacent to (us-

ing 4-connections for the city block metric or 8-connections for the chessboard metric) a 

pixel labelled i-1 is labelled i. The iterations continue until all of the pixels have been 

labelled.  

 

Fig. 1. Four commonly used distance metrics – measuring the distance from the centre of the im-

age: (a) Euclidean metric, Eq. (3); (b) city block metric, Eq. (4); (c) chessboard metric, Eq. (5); (d) 

a hybrid metric, Eq. (6) 

This iterative approach is like peeling the layers of an onion. This may be achieved 

by using a morphological filter to erode the object by one layer at each iteration. The 

shape of the structuring element (see Fig. 2) determines which distance metric is being 

applied. Each pixel is then labelled by the iteration number at which it was eroded from 

the original image. The hybrid distance metric of Eq. (6) may be achieved by alternating 

the cross and square structure elements at successive iterations [2]. 

(a) (b) 

(c) (d) 
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The major limitation of using such small structuring elements is that many iterations 

are required to label large objects. Also, the hybrid metric provides only a crude ap-

proximation of the Euclidean distance. Both of these limitations may be overcome by 

greyscale morphology with a conical structuring element. In general, larger structuring 

elements require fewer iterations and the final result more closely approximates the 

Euclidean distance. However, the cost is that larger structuring elements are more com-

putationally intensive at each iteration. For this reason, much research has gone into 

ways of decomposing the conical structuring element to reduce the computational bur-

den (see for example [3-5]). 

Fig. 2. Structure elements for: (a) city block erosion; and (b) chessboard erosion 

1.2   Two Pass Algorithms – Chamfer Distance Transform 

The iterations required by successive use of morphological filters may be removed by 

making the observation that successive layers will be adjacent. Therefore the distance 

may be calculated by propagating the distances from adjacent pixels. This approach re-

quires only two passes through the image, one from the top left corner to the bottom 

right corner and the second from the bottom right back through the image to the top left 

corner. These two passes propagate the distances from the top and left edges of the ob-

ject, and from the bottom and right edges of the object respectively. Each pass uses only 

values that have already been calculated.  

If using a 3x3 window, the first pass propagates the distance from the 3 pixels above, 

and the one pixel to the left of the current pixel, adding an increment that depends on 

whether the pixel is 4- or 8-connected. Background pixels are assigned a distance of 0. 
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The second pass propagates the distance from the 3 pixels below and the one pixel to 

the right of the current pixel. The second pass only replaces the distance calculated in 

the first pass if it is smaller, which will be the case if the pixel is closer to the bottom or 

right edges of the object. 
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Different increments, a and b, will result in different distance metrics. The city 

block distance is given with a=1 and b=2; the chessboard distance with a=b=1; and 

the hybrid distance of Eq. (6) is given with a=1 and b=1.5, or equivalently with a=2 

and b=3 (to maintain integer arithmetic), and dividing the result by 2. A better ap-

(a) (b) 
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proximation to the Euclidean distance may be obtained by using the integer weights 

a=3 and b=4, and dividing the result by 4, although this still results in an octagonal 

pattern similar to that seen in  (d). 

A more accurate distance measure may be obtained by optimising the increments, or 

by using a larger window size [6]. A larger window size compares more terms (4 for a 

3x3 window, 8 for a 5x5 window, and 16 for a 7x7 window - see Fig. 3), and provides a 

more accurate estimate of distances that are off-diagonal. A 5x5 window provides a rea-

sonable compromise between computational complexity and approximation accuracy, 

and is commonly used when a closer approximation to the true Euclidean distance is re-

quired. As the number of operations is fixed for each pixel, the time required to execute 

the chamfer distance algorithms is proportional to the number of pixels in the image. 

Fig. 3. The location of increments within 3x3, 5x5 and 7x7 windows. The blank spaces do not 

need to be tested because they are multiples of smaller increments 

1.3   Vector Propagation 

The two-pass chamfer distance algorithm may be adapted to measure the Euclidean dis-

tance by propagating vectors instead of the scalar distance [7-9]. The basic approach 

remains the same – as the window is scanned through the image, the distance is calcu-

lated by minimising an incremental distance from its neighbours. Measuring the Euclid-

ean distance requires a square-root operation. However, if the minimum distance is se-

lected, then the distance squared will also be minimised. This reduces the number of 

expensive square root operations that are actually needed. In many applications, the dis-

tance squared transform is suitable, avoiding square roots altogether. 

Whereas the chamfer distance only requires an image of scalars, measurement of the 

Euclidean distance requires an intermediate image of vectors with x and y offsets. Back-

ground pixels are assigned a vector of (0,0). The minimum distance is calculated by 

propagating the vector components of each of the neighbours that have already been 

calculated. A similar operation is performed for the second pass, from the bottom right 

back up the image to the top left.  

Consider an isolated background pixel (a single pixel hole in an “infinite” object). 

The first pass will propagate the correct distances downwards in the image as illustrated 

in Fig. 4. The pixels in the lower right quadrant have 3 redundant paths from adjacent 

pixels. The redundancy is less in the lower left octant because the pixel immediately to 

the right of the current pixel has not been processed yet, so has an unknown distance 

from the background.  

The second pass is more revealing. The top left quadrant is fully redundant. In the top 

right quadrant, there are no direct right propagations because the pixel immediately to 
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the left of the current pixel has not yet been processed. The bottom left octant has no 

redundancy. The propagation path to any pixels in this region follows the bottom left 

diagonal in the first pass, and then left from that in the second pass. 

This lack of redundancy means that every pixel on the propagation path must be 

closer to the original background point than any other background pixel. If not, for 

example if any of the diagonal pixels is closer to another background pixel, then the 

pixels within this region will have the incorrect minimum distance. Fig. 5 shows a 

construction where this will be the case, and there is an error in the derived distance. 

 

Fig. 4. Propagation of distances from a single background pixel within the two passes of the al-

gorithm. Arrows show where the minimum comes from. Where there are multiple arrows enter-

ing a pixel, all of the paths equal the minimum 

 

Fig. 5. Construction illustrating regions which will have an incorrect distance calculated. A and D 

are background pixels. Line CE is the perpendicular bisector of line AD, and consists of the points 

which are equidistant from A and D; points above this line are closer to A and points below this 

line are closer to D. The propagation of minimum distance from A to B follows the lower-left di-

agonal from A to C, then left to B (see Fig. 4). Pixels below BC that are above CE (shaded re-

gion) will be using diagonal pixels that have been labeled as being closer to D and so will have in-

correct distances 

These errors may be corrected by allowing a more direct path between point A and 

B. This requires a third pass through the image to provide the missing diagonal connec-

tions in this octant. It is also necessary to include the right to left propagation to correct 

First pass Second pass 
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any errors resulting from the propagation of incorrect distances in this direction. To ac-

commodate both these propagations, it is necessary for the third pass to proceed from 

the top right corner to the bottom left corner, traversing right to left along each row of 

pixels. The redundancy added by this pass will enable the correct distances to be ob-

tained when there are two background points. (This source of errors is overlooked in 

Shih and Fu [9]). 

Fig. 6. Construction where there are three background pixels. The correct distances will be meas-

ured as long as there is a propagation path completely within the region associated with each 

background pixel. In continuous images, this will always be the case. With digital images, how-

ever, the boundaries are not straight lines, but jagged digital lines. This is illustrated in the exam-

ple on the right, where there is an isolated pixel failing this criterion 

Now consider the case where there are three background points, as illustrated in Fig. 

6. The perpendicular bisectors between each pair of points govern the boundaries be-

tween the regions made up of points closest to each of the three background pixels. 

Consider pixel A, the central point of the three, and its associated region, RA. If there is 

a connected propagation path completely within the region associated with that point, 

then each pixel will have the correct distance. This is because each pixel along the path 

will be propagating the correct distance. 

In the general case, when there are many background pixels within an image, the re-

gion RA consisting of all of the point closest to a given background pixel, A, may be 

constructed as follows. The perpendicular bisector of the line between A and another 

background pixel B consists of all points that are equidistant to both A and B. All points 

on the A side of the bisector are closer to A. A point is in region RA only if it is on the A 

side of all such bisectors. Therefore, RA consists of the intersection of all such regions: 

{ }BABPBPAPPA ≠∈∈∀−≤−= ,,, BgObR I  (9) 

The division of an image into regions in this manner is called the Voronoi diagram. 

The Voronoi diagram effectively associates each point within an image with the nearest 

feature (or background) point. Therefore obtaining the distance transform from the Vo-

ronoi diagram is a relatively simple matter [10,11]. 

From a vector propagation standpoint, since the Voronoi region RA is convex, the line 

segment between A and any point within RA will lie completely within RA. As a result, 

provided distances may propagate along this line segment, the correct distance will be 

obtained for every point in RA and by generalization, any object point.  
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For continuous images, this will always be the case. However, for digital images, the 

boundaries of RA are not continuous lines, but are digital lines, and are distorted by the 

pixel grid. When two digital bisectors approach at an acute angle, as shown in the ex-

ample in Fig. 6, there may be an isolated pixel, or short string of pixels that are not 8-

connected with the rest of the region [12]. Consequently, there will not be a continuous 

8-connected path between such groups and the nearest background pixel for the dis-

tances to propagate along. These groups will therefore not have the correct minimum 

distances assigned to them. It can be shown that using a small local window cannot pre-

vent such errors [12]. 

1.4   Boundary Propagation 

Another class of techniques combines the idea of the grassfire transform with the 

propagation approach described in the previous section. These methods maintain a list 

of boundary pixels, and propagate these in a non-raster fashion [12-14]. Redundant 

comparisons may be avoided by only testing based on the direction of the nearest 

boundary pixel [14]. Errors such as that shown in Fig. 6 may be avoided by propagating 

vectors past the maximum until the difference exceeds 1 pixel [13]. While this extended 

propagation overcomes these errors, if care is not taken these additional propagations 

can result in large numbers of unnecessary comparisons [12]. 

1.5   Independent Scanning of x and y 

The definition of Euclidean distance in Eq. (3) leads to a different class of algorithms. 

From Pythagoras’ theorem, the distance squared to a background pixel can be deter-

mined by considering the x and y components separately. Therefore it is possible to in-

dependently consider the rows and columns. The first step looks along each row to de-

termine the distance of each object point from the nearest boundary point on that row. 

This requires two scans, from left to right and right to left to measure the distances from 

the left and right edges of the object respectively. The second step then considers each 

column, and for each pixel in that column determines the closest background point by 

examining only the row distances in that column: 

( )222 )(),(min),( nn
n

d yyyxIyxI −+=  (10) 

Thus the search has been reduced from two dimensions in Eq. (2) to one dimension. 

The  search  can be accomplished with a scan down and up the column propagating the 

row distances and selecting the global minima at each pixel [15]. Unfortunately, as ap-

plied,  this  algorithm requires that multiple row points be propagated simultaneously. 

The effect is that in  the  worst case the  algorithm as described is not linear in the num-

ber of pixels (as are the chamfer and vector propagation algorithms). 

2   Linear Time Independent Scanning 

The key to making an independent scanning algorithm operate in linear time is to 

determine in advance exactly which pixels in a column that a particular row will in-
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fluence. This information may be obtained by constructing a partial Voronoi dia-

gram for each column. 

2.1   Row Scanning 

The first step operates on each row independently. It consists of two passes – from left 

to right and then right to left. The left to right pass determines the distance to the left 

boundary of an object 
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If the pixel on the edge of the image is an object pixel, its distance is set to ∞. The 

right to left pass replaces this with the distance to the right boundary if it is shorter: 
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Fig. 7. The distance squared along a column, showing the regions of influence of two background 

points 

2.2   Column Scanning 

Consider an image with two background pixels at I(x1,y1) and I(x2,y2), with y1<y2. Let I1 

and I2 be the corresponding minimum row distances in column x. The distance squared 

function in column x is illustrated in Fig. 7. The column is split into two with part of the 

column coming under the influence of (x1,y1) and part coming under the influence of 

(x2,y2). The boundary between the two regions is given from the intersection of the two 

parabola: 
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Solving this for the position of the intersection gives: 
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Note that there will always be exactly 1 intersection point, corresponding to where 

the perpendicular bisector between I(x1,y1) and I(x2,y2) intersects column x, although the 

bisector may not necessarily be between y1 and y2. As the distance is only evaluated for 

integer values of y, it is not necessary to know the precise location of the intersection, 

only which two pixels it falls between. This means that integer division may be used, 

and the remainder or fractional part discarded. If the numerator is positive, the number 

calculated is the last pixel under the influence of y1. If negative, it is the first pixel under 

the influence of y2. 

Assume that the image is being scanned in the increasing y direction. Now consider 
adding a third background point I(x3,y3), where y2<y3 with intersection between parabo-
las 2 and 3 at y ′′ . If yy ′′<′  then there are three regions of influence, corresponding to 
the sets of points nearest to each of the background pixel. However if yy ′<′′  then 
background point 2 has no influence in column x because its parabola will be greater 
than the minimum of parabolas 1 and 3 at every point. The boundary between parabolas 
1 and 3 may then be found from Eq. (14). 

Extending this search to N points would require N
2
 tests in the worst case. However, 

by making use of the fact that the points are ordered, and scanning in only one direction 

at a time, the number of tests may be reduced to N. 

The basic data structure used to maintain the information is a stack. Each stack item 

of contains a pair of values (y,y
I
) representing respectively a row number, y, and the 

maximum row which that row influences, y
I
. The stack is initialized as (0,N). This is 

saying that in the absence of further information, the first row will influence the whole 

image. 

For each successive row, Eq. (14) is evaluated with y1 as the row number from the 

top of stack, and y2 the new row. There are three cases of interest: 

1. Ny >′ . The boundary of influence between y1 and y2 is past the end of the image, 
so the new row will have no influence. 

2. I
yy 0>′ , where I

y0  is the influence from the previous stack entry, and corre-
sponds to the start of the influence of row y1. In this case row y1 has a range of in-
fluence, and I

y1  is set to y′ . The new row, y2 is added to the stack, with I
y2  set to 

N. 
3. I

yy 0≤′ . In this case, row y1 has no influence on the distance transform in this col-
umn. Row y1 is therefore popped off the top of the stack, and Eq. (14) is re-
evaluated with the new top of stack. This process is repeated until either the stack 
is empty (the new row will influence all previous rows) or case 2 is met (the start 
of the influence of the new row has been found). 

After processing all of the rows, the boundary points between each of the key influ-

encing rows is known. Since the row that will provide the minimum distance for each 

row is known, it is simply a matter of using the stack as a queue for a second pass down 

the column to evaluate the distances. 

Since Eq. (14) may be evaluated multiple times for each row, it is necessary to dem-

onstrate that this algorithm actually executes in linear time. Observe that in cases 1 and 

2, Eq. (14) is evaluated once as the new row is added (or discarded). If case 3 is se-

lected, one existing row will always be eliminated from the stack for each additional 

time Eq. (14) is evaluated. These subsequent evaluations may therefore be may be asso-

ciated with the row being eliminated rather than the row being added. As a row may 

only be eliminated once at most, the total number of times that Eq. (14) is evaluated will 
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be between N and 2N. Therefore the total number of operations is proportional to N and 

the above algorithm executes with time proportional to the number of pixels in the im-

age. 

3   Efficient Implementation 

First note that both Eq. (10) and (14) involve squaring operations. Rather than calculate 

this each time using multiplications, a lookup table can be precalculated and used. The 

maximum size of this lookup table is the maximum of the number of rows or columns 

in the image. Rather than use multiplications to populate the lookup table, it may be 

filled as follows: 

⎩
⎨
⎧

>−+−

=
=

012)1(

00
2

2

xxx

x
x  (15) 

3.1   Row Scan 

The minimum operation of Eq. (12) may be eliminated if the width of the object on row 

y is known. So as the row is scanned, the distance from the left edge of the object is de-

termined, as in Eq. (11). However, when the next background pixel is encountered, the 

width of the object is known from the distance of the last pixel filled. Therefore as the 

line is filled back, it only needs to be filled back half of the width. This right-to-left fill 

is performed immediately rather than waiting for a second pass since the position of the 

right edge is now known. 

Rather than store the distance, storing the distance squared is more useful since it 

needs to be squared for in Eq. (14). 

3.2   Column Scan – Pass 1 

The most expensive operation within the column scanning is the division in Eq. (14). 

Therefore the speed may be increased by reducing the number of times Eq. (14) is 

evaluated. Since, in general, many of the rows are eliminated, if those rows may be 

eliminated beforehand this can save time. Separating the scan into two passes, first 

down the column and then up the column, and propagating the distances while scanning 

can achieve this. 
Referring to Eq. (14), observe that if 12 II ≤  then 2yy <′ . This implies that if the 

image is being scanned in the positive direction, the intersection point has already been 
passed, and as far as the rest of the scan is concerned, y1 may be eliminated. For a typi-
cal image, this implies that approximately half of the initial scans in the first pass may 
be eliminated by a simple comparison. 

Secondly, in assigning the distances during the first pass, if the distance on any row 

is decreased, that row will have no influence in the second pass. This is because any 

background pixel that causes such a reduction must be closer to that object pixel (for the 

reduction to occur) and also be in a row above it (to have influence in the first pass). In 

the second pass, back up the column, if Eq. (14) was applied to those two rows, the 

boundary would be below the row that was modified. This implies that it will have no 
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influence in the upward pass. Therefore all such rows may be ignored in the second 

pass. This may be accomplished by setting the minimum row distance of that pixel to ∞. 

Taking these into account, the first column pass may be implemented as follows: 

1. Skip over background pixels – they will have zero distance. Reset the stack and 

push the row number of the last background pixel onto the stack. To avoid scan-

ning through these pixels in the second pass, the location of the first background 

pixel may be recorded in a list. 
2. If ),(2 yxI  is infinite (there are no background pixels in this row), skip to step 10 

to update the distance map.  
3. If the stack is empty, skip to step 5. Otherwise calculate the new distance that 

would be propagated to the current row from the bottom of the stack, yc: 

222 )(),(),( ccnew yyyxIyxI −+=  (16) 

4. If ),(),( 22 yxIyxInew <  then the previous rows have no influence over the current 
row. Therefore the complete stack is reset, and the current row number is pushed 
onto the stack. Proceed with processing the next pixel (step 11). 

     Steps 5 to 9 consist of a loop that updates the stack. 

5. If the stack is empty, push the current row onto the stack, and go to step 10. 
6. If the current distance is less than that on the row pointed to by the top of stack, 

( ),(),( 22 yxIyxI tos< ) then the current top of stack will no longer have any influ-
ence. Pop the entry from the top of the stack, and loop back to step 5. 

7. Calculate the influence boundary between the top of stack and the current row us-
ing Eq. (14). If this boundary is past the end of the image, the current row will 
have no influence. Set ),(2 yxI  to ∞ and skip to step 10. 

8. If the boundary is greater than that of the previous stack entry (top-of-stack – 1, if 

it exists) then adjust the boundary on the top of stack to the value just calculated. 

Push the current row onto the stack and skip to step 10.  

9. Otherwise the current top of stack has no influence, so pop the top entry from the 

stack and loop back to step 5. 
10. If the new value was not calculated in step 3, then calculate it now (if the stack is 

empty, skip to step 11). This value is written to the output image, ),(2 yxId . If 
),(),( 22 yxIyxInew <  then set ),(2 yxI  to ∞ because this row will not have any in-

fluence on the second pass. If the boundary of influence of the entry on the bottom 
of the stack ends at the current row, then the entry may be pulled from the bottom 
of the stack (that entry will have no further influence on the rest of the column). 

11. Move to the next pixel in the current row, and repeat. 

At this stage, all of the distances that need to be propagated down the image will 

have been propagated. Most of the rows that are unlikely to influence the propagation 

back up the image have also been eliminated. 

3.3   Column Scan – Pass 2 

The second column scan, from the bottom of the image to the top proceeds in the much 

the same manner as the first scan. The exceptions are: 
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Step 1: Rather than scanning through the background pixels a second time, use the 
previously recorded top of the run. 

Step 4: Also check if ),(),( 22 yxIyxI dnew > . In this case, the distance being propa-
gated up will no longer have any influence (the pixels have already been set with a 
lower distance). Therefore clear the stack, and continue scanning with the next pixel 
(step 11). 

Steps 7 and 10: ),(2 yxI  does not need to updated, as this is not used any more. 

3.4 Analysis of Complexity 

Scanning through the image requires 1 increment and 1 comparison for every pixel vis-

ited. During the row pass, the whole image is scanned once in the left to right direction. 

Half of the object pixels are scanned a second time from right to left to update the dis-

tance from the right edge. Testing to see if a pixel is object or background requires 1 

comparison. While the object pixels are being updated, a separate counter is maintained 

to keep track of the distance, requiring 1 addition, and a squaring operation (via table 

lookup).  

For the column scanning, the exact complexity of the algorithm is made more diffi-

cult to calculate by the loop in steps 5 to 9 of the column pass. However, it was argued 

that Eq. (14) would be evaluated somewhere between 1 and 2 times per object pixel on 

average. The worst case is actually be less than 2 because that would imply that no row 

had any influence! The average gains made by splitting the column analysis into two 

passes will not necessarily result in gains in the worst case. 

The whole image is scanned during the first pass of column scanning This results in 

1 increment and 1 comparison per pixel, plus a test for a background pixel at each pixel. 

In the second pass, only the object pixels are processed. 

The tests in steps 2-4 require 1 comparison each, and are executed during both passes 

through the object rows. Eq. (16) is evaluated either on step 3 or 10, and requires 2 addi-

tions, 1 squaring operation and 1 stack access to obtain the row to be propagated. It will 

be evaluated at most twice per object pixel (once in each pass). The test of step 4 en-

sures that the loop (steps 5-9) will only be entered in only one of the passes. Therefore 

the operations in the loop may be executed up to 2 times per object pixel. Accessing the 

top of stack (an array lookup) is performed in steps 6 and 8 (with a subtraction in 8 to 

access the previous entry). Evaluation of Eq. (14) requires 3 additions, one squaring, 

one division, and one stack access. The tests in steps 5-8 require 1 comparison each. As 

a result of the tests, a value is either pushed onto the stack (an addition to adjust the 

stack pointer, and a stack access) or popped off the stack (adjusting the stack pointer 

only). As these are also associated with the looping, they will be executed once each per 

object pixel in the worst case. Finally, in step 10, there are 2 comparisons, a stack ac-

cess, and an addition to adjust the stack if the bottom entry has no further influence. 

These results are sumarised in Table 1, and compared with the number of operations 

required to implement 3x3 and 5x5 chamfer distance transforms. It should be empha-

sized that the results for the new algorithm are worst case, and for more typical data, 

many of the comparisons made in steps 2-4 would result in the loop (steps 5-9) being 

bypassed, reducing the average number of operations per object pixel to ~45. 

The number of operations per pixel is the same as that for the chamfer algorithms be-

cause only two full passes are made through the image. Although the independent scan-

ning algorithm makes two passes along both rows and columns, after the first pass the 
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object boundaries are knows so the second pass only needs to scan the object pixels. 

While the algorithmic complexity of independent scanning is considerably greater than 

that of the simpler chamfer algorithms, the worst case computational complexity is 

similar to that of the 5x5 chamfer transform. For a more typical image, the computation 

complexity is expected to be between that of the 3x3 and 5x5 chamfer transforms. In 

many applications the distance-squared transform produced by this algorithm is suit-

able, although if necessary a square root operation may be applied during the second 

column pass. 

Table 1. Summary of the number operations required to implemnent Euclidean distance 

transformation in the worst case. Key: + additions or subtractions; < comparisons; [ ] array 

indexing, including accessing the image, the stack, and the squaring lookup table; / divisions. 

Scanning includes checking for background pixels. The total is the total only per object pixel, 

assuming all operations are of equal complexity. It is acknowledged that division will take longer 

than the other operations. For comparison, the totals from the 3x3 and 5x5 chamfer algorithms are 

also given 

 Per image pixel Per object pixel 

 + < [ ] + < [ ] / Total 

Row scanning 1 2 1 ½ ½    

Distance calculation    1½  1½   

Column Scanning 1 2 1 1 1 1   

Steps 2-4    4 6 4   

Steps 5-9    10 8 9 2  

Step 10    2 4 3   

TOTAL 2 4 2 19 19½ 18½ 2 59 

3x3 Chamfer 2 4 2 15 7 11  33 

5x5 Chamfer 2 4 2 28 15 19  62 

4   Summary 

This paper has demonstrated that a linear-time Euclidean distance-squared transform 

may be implemented efficiently in terms of computation using only integer arithmetic. 

If the actual distance map is required, then a square root will be necessary. It is shown 

that in the worst case, the computational complexity of the proposed distance transform 

is similar to that of the commonly used 5x5 chamfer distance unless a square root is re-

quired. On more typical images, the complexity is expected to be between the 3x3 and 

5x5 chamfer distance transforms, while providing exact results. 

The algorithm is implemented by first forming a distance map along each of the 

rows, and then combining these distances in the columns. Since each row and column 

are operated on independently, such an implementation may be efficiently parallelised. 

This approach is also readily extended to higher dimensions or anisotropic sampling, 

where the different axes may have different sample spacing. The independent scanning 

approach inherently avoids the distance errors that are associated with the simpler vec-

tor propagation algorithms (using either raster or contour propagation). 
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The implementation described is also efficient in terms of its memory utilisation. If 

the transformation is performed in place (the same image array is used for both input 

and output) then modest additional scratch memory is required. A lookup table is used 

for performing squaring operations – this needs to be the larger of the number of rows 

or columns in the image. Memory is also required for the stack. It can be shown that the 

maximum number of stack entries is half of the height of each column. Temporary stor-

age is also required to hold the results of the first column pass. This also needs to be the 

height of the image. While this is not as good as the chamfer algorithms (which need no 

additional storage), it is a significant savings over the vector propagation approaches 

which require a scratch image of vectors. 
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