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Abstract. A signature scheme isexistentially unforgeableif, given any polynomial
(in the security parameter) number of pairs

(m1, S(m1)), (m2, S(m2)), . . . , (mk, S(mk)),

whereS(m) denotes the signature on the messagem, it is computationally infeasible to
generate a pair(mk+1, S(mk+1)) for any messagemk+1 /∈ {m1, . . . ,mk}. We present an
existentially unforgeable signature scheme that for a reasonable setting of parameters
requires at most six times the amount of time needed to generate a signature using
“plain” RSA (which isnot existentially unforgeable). We point out applications where
our scheme is desirable.
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1. Introduction

A digital signature, just like a handwritten one, is a method that allows one party to
“convince” another party that a third party indeed “approved” a given message. While
this intuition is appealing, in order for it to make sense we must specify what “convince”
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Center. This author’s research was supported by a grant from the Israel Science Foundation administered by
the Israeli Academy of Sciences and by BSF Grant 32-00032-1.

187



188 C. Dwork and M. Naor

and “approved” mean. The notion we concentrate on in this paper is that of existential
unforgeability. A signature scheme isexistentially unforgeableif, given a sequence of
pairs

(m1, S(m1)), (m2, S(m2)), . . . , (mk, S(mk)),

whereS(m) denotes the signature on the messagem, it is computationally infeasible
to generate a pair(mk+1, S(mk+1)) for any messagemk+1 /∈ {m1, . . . ,mk}. While this
definition may seem excessively demanding of the signature scheme, since it does not
permit forgeries even on “nonsensical” messages, we are not aware of any other way to
obtain a robust notion of security. Furthermore, as the discussion below shows, there are
“real life” situations where this is precisely the security needed.

Consider the problem of providing a “receipt” for data stored in adocument repos-
itory, where the data can be of arbitrary form, much as one is provided with a claim
check at a left luggage counter. In the most simple implementation, the receipt would
just be a pair, consisting of an identifier and a signature on this identifier. If the signa-
ture scheme is existentiallyforgeable, then any party can produce such a pair, without
knowing the secret signing key. Anexistentially unforgeablesignature scheme prevents
this. In such a scheme any signed document, nonsensical or otherwise, has necessar-
ily been signed by the claimed signer. Assume that both the document owner and the
repository employ existentially unforgeable digital signature schemes. The document
owner signs the document to be stored; the document repository issues a signed receipt
for the signed document. Existential unforgeability of the repository’s signature ensures
that any claimed receipt is indeed a valid receipt. Existential unforgeability of the doc-
ument owner’s signature ensures that the document repository cannot return a different
document than the one that was stored, not even a nonsensical, but different, document.

Our own interest in finding efficient existentially unforgeable signature schemes comes
from the problem of signing faxed documents. Since faxed documents have received legal
standing in court, it is essential to use a signature scheme appropriate to this environment.
Addressed in detail in Section 5, we briefly describe this environment and explain why
it requires existentially unforgeable signatures. We consider a scenario in which a fax
is being sent by a machine equipped with a storage device, but is being received by a
more ordinary fax machine. Both can perform on-line calculations, but only the sender
can store large quantities of data. LetD be a string representing a document that is to be
signed; for example,D may be the result of scanning a paper document, or it could be
a PostScript file. Leth be a collision-intractable hash function,1 and letS be a signing
function. We assume the sender sends to the receiver the triple(D, h(D), S(h(D))).
Even if the receiver can check that the document has been correctly hashed and that the
signature on the hash is valid, once the document represented byD is printed out on
the receiver’s fax machine, there is no way to recaptureD from the printed image. For
example, scanning the printed image optically will almost surely produce some string
D′ 6= D, since the scanned image may be slightly tilted, or dirty, etc. Since by assumption
the receiver cannot store the stringD, without some additional machinery the signature
cannot provide irrefutability: the receiver cannot prove to a third party thatD was received

1 A hash function is collision intractable if it is computationally infeasible to findx 6= y such thath(x) =
h(y); collision-intractable hash functions are discussed further in Section 5.
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from the sender because, in order to do that,D must be exhibited at the time of proof.
Since the receiver cannot storeD, the receiver cannot exhibitD at a later time. Thus, if
the receiver has no means of storing the stringD itself (not just printing the document),
such as a disk or tape drive, then some other party must store the data and issue a receipt
to the receiver. The natural, although somewhat improbable, party to do this is the not
necessarily trustworthy sender. Ideally, the receipt would be the pair(h(D), S(h(D))),
the explicit understanding being that if the receiver produces such a receipt, then the
sender is obliged to produce a document hashing to this value. The problem with using an
existentiallyforgeablesignature scheme here is that, sinceh(D) “looks random,” anyone
could generate what appears to be a valid receipt, just as in the claim check example.
Thus, it is essential that the signature scheme be existentially unforgeable. With such a
scheme, if the receiver produces(h(D), S(h(D))), then necessarily a document hashing
to h(D) was signed by the sender.

In this paper we present an efficient existentially unforgeable signature scheme which
we believe is the first practical one. For a reasonable choice of parameters it is about 30
times more efficient than the best previous proposals [15], [21], [19]. The security of the
scheme relies only on the followingRSA assumption:

Assumption 1. Let N be the product of two large primes. Then, without knowing the
factorization of N, it is computationally infeasible to extract pth rootsmodN, where p
is a random prime.

A slightly stronger (and quite common) version of this assumption states that it is hard to
extractpth roots modN for smallprimesp. Such an assumption makes the verification
of signatures more efficient. A precise formulation of the assumptions is provided in
Section 4.

We compare the cost of our scheme with that of “plain” RSA, i.e., where the signature
on a messagem ism1/p mod N. For a reasonable choice of parameters, the cost of signing
and verifying in our scheme is at most six times that of RSA. In fact, theamortizedcost
of signing is only twice that of plain RSA; that is, over the lifetime of the system the
amount of work spent on signing is at most twice that which would have been spent
using plain RSA. Thus, in almost every scenario in which it is feasible to apply RSA it
should be feasible to use our scheme (particularly if the signature generation is not the
computational bottleneck).

The remainder of this paper is organized as follows. In in the next section we summarize
the history of digital signatures, emphasizing work relevant to our scheme. In Section 3
we describe our scheme. The proof of security of our scheme appears in Section 4.
In Section 5 we describe how to use the proposed scheme (or any other existentially
unforgeable scheme) in the context of signing faxes.

2. Related Work and Its Influence

Since the introduction of the concept of digital signatures by Diffie and Hellman [12]
and the first proposals of candidates for implementation [24], [30], the subject has been
widely studied. In this section we briefly summarize the major developments (not nec-
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essarily in chronological order), especially those pertaining to the scheme proposed in
this paper.

Goldwasser et al. [21] formalized the notion of security of a signature scheme. They
separated the description of the types of attack that a system might suffer from the
definition of what it means to break the system. The strongest form of security they
defined isexistential unforgeability under an adaptive chosen plaintext attack. In an
adaptive chosen plaintext attack, the adversary (or would-be forger), with the cooperation
of the signature algorithm, obtains signatures on messages of the attacker’s choice, chosen
adaptively. The scheme isexistentially forgeableif, after the attack, the forger is able
to produce a valid signature on even one previously unsigned message,without the
cooperation of the signature algorithm. (See exact definition in [21]; the definitions used
here are the same.) It isexistentially unforgeableif the adversary cannot sign even one,
possibly nonsensical, new message.

Existential unforgeability under adaptive chosen message attack was considered too
stringent a requirement for practical purposes. Firstly, the chosen plaintext attack is very
generous to the forger. However, this attack captures the fact that there is no practical way
to restrict the types of messages a user might ever wish to sign. Moreover, many security
systems use the ability to sign random challenge messages as a proof of identity (see, e.g.,
[27]), creating a perfect environment for a chosen plaintext attack. Secondly, existential
unforgeability seemed an excessive requirement, with the following intuition. If, in an
application, thesignature function is tobe applied towhole (rather than hashed)messages,
then, it was argued, it should be enough to preclude the adversary from signing a message
of her choice; it should not matter if the adversary can produce signatures on nonsense
messages. If, instead, the signature function is to be applied to a collision-intractable
hash of the message, then the adversary that could produce a signature on some arbitrary
strings would not be able to find a message that hashes tos, and therefore would not
be able to commit any meaningful forgery. However, as seen from the claim check and
fax examples outlined in the Introduction, there are indeed real-world applications for
existential unforgeability. The RSA [30] and Rabin [29] schemes are knownnot to have
this desirable property. Note that common ways of applying these schemes, involving
signingh(m) whereh is some hash function with mysterious powers, are not known
to be existentially forgeable; however, no proof of existential unforgeability for such a
scheme is known (unless one resorts to such assumptions as the existence of a publicly
accessible (publicly computable) truly random function (see, e.g., [4])).

The implementation of an existentially unforgeable signature scheme suggested in
[21] was based on the hardness of factoring and various improvements were suggested
in [19]. Constructions based on more general assumptions (trapdoor permutations, one-
to-one one-way functions, and one-way functions) were given in [3], [26], and [32].
These schemes are all rather inefficient in that they employ a tree whose height is
proportional to the logarithm (to asmallbase) of the total number of messages signed
by the system. Signing and verifying both involve tracing a path from the root to a leaf,
where moving from node to node is quite expensive. For instance, it is comparable to
two RSA computations in [21], as optimized in [19].

Our scheme employs a tree as well. However, it is fat and, consequently, very shallow—
a logarithm to alarge base of the total number of messages signed by the system. This
means that in a lifetime of use the tree is very unlikely to need more than three levels.
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There are several constructions of one-time or fixed-time signature schemes that are
existentially unforgeable. (One-time means that the public key is good for one signature
only; fixed-time means that there is an a priori upper bound on the number of messages
the scheme can sign. The size of the public key is usually related to this number.) The
first such scheme is due to Lamport (described in [12] and used in [15], [23], [26], and
[32]). This scheme requires as many invocations of a one-way function as there are
bits to be signed (some improvements are known). The scheme of Bos and Chaum [7]
can be viewed as a fixed-time signature scheme. In this scheme the size of the public
information needed grows at least as fast as the square root of the number of messages
the scheme should be able to sign.

Even et al. [15] tried to combat the computational cost of signature schemes by
distinguishing betweenon-lineandoff-linecomputation. Their scheme requires extensive
precomputation, “between” signing of different documents, but the on-line computation
required for signing is very efficient. The size of a signature is rather large.

The El Gamal signature scheme [14] relies on no cleanly specified function; moreover,
given a legitimately signed document in that scheme, it is possible to generate other
legitimate signatures and messages; that is, the scheme is not existentially unforgeable.
(For recent results concerning the security of the El Gamal scheme see [6] and [28].) The
Fiat–Shamir scheme [17] and its descendants [18], [25], [33] are very efficient, since,
unlike RSA and related schemes, they do not require modular exponentiation. However,
they do require that the “one-way hash” function actually be something stronger, more
like a black-box random function (no precise definition of the assumptions needed is
given). None of these schemes is known to be existentially unforgeable.

Most of the ingredients of our scheme have appeared before; the contribution of this
work is merely in finding the right mixture that makes the full scheme efficient. The
idea of using exponentiation to hide information appears in the original RSA signature
scheme [30]. Fiat and Shamir employ the subset product technique for signing [17].
Merkle [23] suggested the tree authentication scheme (also used in [26]), but in his
scheme the tree cannot be shallow. The scheme in [7] is similar in spirit to the one-time
version of our scheme used in every node. Bellare and Micali [3] suggested a tree-based
scheme where nodes are “revived” by choosing a new trapdoor permutation which, in
turn, is authenticated by the parent of the current node. Our scheme can be seen as an
efficient way of performing this, by replacing the trapdoors of [3] with “masks” from
the Fiat–Shamir scheme [17].

3. The Scheme

3.1. Outline

In rough outline, the scheme works as follows. Every signers has, as in any signature
scheme, a pair of keys. Thepublic key is used to verify the signature on messages
reputedly signed bys. Theprivate key contains information known only tos, and is
used bys to compute signatures on messages of the signer’s choice.

The signer maintains a short, very bushy tree. Each message (or message digest) signed
will be stored at its own leaf of the tree. There are two parameters,` andk. The outdegree
of the tree isk. For concreteness, in this informal description, we takek = ` = 1000.
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In this case, if the tree is of height 3, then it has a billion leaves and can sign up to a
billion messages (it is possible to extend the scheme on the fly to sign any number of
messages). Assume also, for this discussion, that all messages have length at most 1000
bits (larger messages may be hashed down to this length or broken into pieces, with each
piece signed individually; we defer this discussion to Section 5).

Although the tree will be large, the scheme ensures that at any time the signer need
only maintain information stored in a single root–leaf path. The nodes of the tree are
accessed in a depth-first left–right manner. Thus, the leaves are accessed from left to
right: the first message to be signed is stored at the leftmost leaf, the second at the
next-to-leftmost leaf, and so on.

A signer’s public key is an integerN, which is the product of two large primes, and a
random 1000-bit stringyroot. We remark thatyroot can be the same for all signers, as long
as it is initially chosen as a random̀-bit number.yroot is implicitly stored at the root of
the signer’s tree. We assume thatJ ≥ 0 messages have been signed and that the signer
wishes to sign the(J + 1)st message, say,m. Letw be the(J + 1)st leftmost leaf and
let π = (v0 = root, v1, . . . , vd) be the path from the root to the leafvd = w (d is the
depth ofw; we have takend = 3 for this discussion). For each stepi = 1, . . . ,d in the
pathπ , if vi has not previously been accessed (that is,vi is not on the path from the root
to any of the leftmostJ leaves), then

(1) if i < d, then the signer chooses a random 1000-bit labelξ (this is the information
“stored” atvi ) andauthenticatesthis string using the label of the parent ofvi ; the
signer storesξ and itsauthenticator(described below) atvi ;

(2) if i = d (that is, ifvi = vd = w), then the signer authenticatesm using the label
of the parent ofw and stores its authenticator atw.

The signature onm is the pathπ together with the information stored at the nodes ofπ .
Intuitively, the scheme is practical because we “reuse” an internal node many times—

once for each leaf in the subtree rooted at this node.
The basic authentication step requires two lists, which are common to all signers (and

known to all verifiers):P, containing 1000 primes, andX, containing 1000 random
1000-bit strings. Letu be an internal node in the tree, letv be the j th child of u, and
let yu and yv be their respective labels. The goal of abasic authentication stepis to
authenticateyv usingyu (which is assumed to have been authenticated already) and the
j th prime in the listP. This is done as follows: the bits ofyv are used to select a subset of
the elements ofX; then the product ofyu and the selected elements is computed. Finally,
the authenticator is thepj th root (moduloN) of this product. Note that since the labels
of the internal nodes are all random, there is virtually no chance that any two such labels
are identical. Thus, we never use the same(yu, pj ) pair twice in a basic authentication
step. This is critical in obtaining existential unforgeability.

3.2. Detailed Description

The scheme is parametrized by` andk and we consider̀ to be the security parameter
of the scheme. The scheme works with numbers (labels) of length`; thus` should be
chosen so that it is infeasible to factor`-bit numbers (and so that the RSA assumption
is assumed to hold for moduli of length̀). The outdegree of the tree isk, whereas (1)
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Fig. 1. The signer’s tree. Messagem is signed using the path(2,3, k).

the public-key modulus, (2) the labels of the internal nodes, and (3) the elements ofX
are all` bits long. We also take the number of elements inX and size of the labels of
the leaves to bè, but, as we discuss in Section 3.4, these may be smaller. The size of a
signer’s public key depends only on`. As mentioned in Section 3.1, a possible choice
for the parameters is taking̀andk to be about 1000, but there is no particular reason
that they should be equal.

Shared Information. There are two setsX = {x1, x2, . . . , x`} and P =
{p1, p2, . . . , pk} of integers, and a random̀-bit integeryroot. Thexi ’s are random inte-
gers of length at most̀. The pi ’s are primes; they can be either thek smallest primes or
k random primes of length̀, according to whether one relies on the general or stronger
version of the RSA assumption (see exact formulation in Section 4). These lists are fixed
and the same for all signers. They must be accessible to all signers and verifiers.

For ease of exposition we assume the depthd of the tree is fixed. However, this is not
essential, and the signer is free to changed at any time.

The Public Key. The public key of each signers is an`-bit numberNs which is the
product of two primesps andqs. It is important to chose the primes at random (and
independent of the listX) from all primes of length at most̀/2. The prime factorsps
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andqs should be chosen so that for all 1≤ i ≤ k we havepi 6 |(ps−1) andpi 6 |(qs−1)
and hencepi is relatively prime toϕ(Ns). If P consists of large primes, then this is
necessarily the case. IfP consists of the list of small primes, then it is still possible to
sample from the primes such thatpi 6 |(ps − 1) and pi 6 |(qs − 1) for all 1 ≤ i ≤ k. So
the key generation procedure is efficient.

The Secret Key. The secret key of the signer is the factorization ofNs, i.e., the
pair (ps,qs). Given the factorization it is easy to computeq1,q2, . . . ,qk whereqi ≡
1/pi modϕ(Ns).

The Basic Authentication Step. To authenticate the labelyv of a nonroot vertexv, let
zv be the label of the parent ofv and letv be the j th child of its parent. We use the bits
of yv as selectors of the elements ofX. Let yvi denote thei th bit of yv, for 1 ≤ i ≤ `.
Then the basic authenticatorauth(yv) is given by(

zv
∏
yvi=1

xi

)qj

mod Ns.

Verification of a Basic Authenticator. The authentication ofyv can be verified as fol-
lows. Given a stringα purported to beauth(yv), and given alsozv, yv, j , and the public
lists P andX, compute

zv
∏
yvi=1

xi mod Ns

and check that it is equal toα pj mod Ns.

Signature Generation. Messages are associated with leaves in a depth-first, left–right
manner; that is, when a new messagem is to be signed, the message is assigned the
leftmost leaf that has not yet been used;m serves as the label of the leaf. At all times the
signer maintains a labeled path from the root to the leaf most recently accessed, together
with the authenticators for the labels of the vertices on this path. All other previously used
labels and authenticators may be erased, since they will not be used again. Assuming
J ≥ 0 messages have been signed so far, the algorithm for signing the(J+1)st message,
say,m, is:

1. Assign tom the(J + 1)st leftmost leafw and labelw with m.
2. For each nodev along the path fromroot tow that has not yet been labeled, choose

a random labelyv.
3. For each nodev along the path from the root tow (excluding the root but including
w), if yv has not yet been authenticated, then assumingv is the j th child of its
parent, compute the basic authenticatorauth(yv) using pj and the label of the
parent ofv.

A signature of a messagem labeling a leafw is therefore of the form

〈m, ( j1, j2, . . . , jd), (y1, y2, . . . , yd−1), (α1, α2, . . . , αd)〉,
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where:

• ( j1, j2, . . . , jd) is the description of the path from the root tow, that is, indices in
the range 1, . . . , k of the children.
• (y1, y2, . . . , yd−1) are the labels of all the nodes along the path from the root tow,

excluding the root, whose value is part of the public information, andw, whose
value ism.
• (α1, α2, . . . , αd) are the basic authenticators for all the nodes along the path, ex-

cluding the root but includingw, i.e., αi = auth(yi ), as computed in the basic
authentication step described above.

Signature Verification. Given a claimed signature of the form

〈m, ( j1, j2, . . . , jd), (y1, y2, . . . , yd−1), (α1, α2, . . . , αd)〉

it is verified by applying the basic authenticator verification procedure described above
for all the labels of the nodes on the path, i.e.,(y1, y2, . . . , yd−1,m), and where the
purported authenticators are(α1, α2, . . . , αd). There is sufficient information to perform
these verifications, since for eachyi the index of the node at its parent is given asji and
the label of the parent is known as well—it is either in the list(y1, y2, . . . , yd−1) or it
is yroot.

3.3. Computational Requirements

We now analyze the computational requirements of the various operations of the sig-
nature scheme. The computationally expensive operations that must be performed are
modular exponentiation and subset product. If we try to compare the two in terms of
the number of modular multiplications, then straightforward implementations require
3`/2 and`/2 modular multiplications respectively (thè/2 figure is the expected one
for randomsubsets). There are possible speed-ups for both operations, which we discuss
in Section 3.4, however, it seems that the subset multiplication is easier. Therefore we
can (pessimistically) regard the complexity of the two operations as similar.

The Time Complexity of Signing. Signing a message involves

• d exponentiations modNs (i.e., RSA computations);
• d subset multiplications, i.e., multiplying a random subset of` numbers. (The

subsets are random for the internal nodes; for the leaves we can either assume that
the number of 1’s in the block is̀/2 on the average, or instead Xor the message
with a fixed and random string that is part of the public information.)

Assuming thatd = 3 and that subset multiplication is roughly equivalent to modular
exponentiation, we can say that the complexity of the scheme is at most six times that
of RSA. Taking the relative complexity of subset multiplication and exponentiation to
be 1 : 3 (as the 3̀/2 and`/2 figures indicates) we get a factor of only four.
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The Time Complexity of Verification. Verifying a purported signature on a message
involves

• d RSA verifications;
• d subset multiplications.

If the primes inP are large, then this corresponds to 2d times the complexity of
plain RSA with a large public exponent. However, if we are using small primes, then
the complexity of the subset multiplications dominates and we get that verification is
significantly more expensive than verification in plain RSA with a small public exponent.

The Size of a Signature. A valid signature consists of 2d − 1 numbers, each̀ bits
long, plusd numbers of length logk to describe the path from the root to the leaf.
Therefore under the assumption thatd = 3 the size of a signature is roughly five times
that of RSA. (See Section 3.4 for improvements.)

Storage Requirements and the Size of the Public Key.A public key is aǹ -bit num-
ber (similar to RSA). Unlike RSA, the scheme requires the storage of the listsX andP,
and ofyroot, a total of`2 + (k + 1) · ` bits. Apart from the listsX and P, the memory
needed to run the signature scheme is not large: one need only maintain information
along a single path from the root to a leaf, i.e,d(`+ logk) bits.

3.4. Remarks on Implementation

For the case in whichk and` are both about 1000, roughly 2 million bits (about 256K
bytes) of common information must be accessible to every user. This is feasible if both
signer and receiver are a “full” computer, but may be an obstacle in using the scheme
in a smart card environment, as current generation smart cards have a memory capacity
which is an order of magnitude smaller. However, as smart cards are becoming more
powerful, storing 128K bytes in ROM on a smart card may not be impossible. Moreover,
if, rather than choosing the primesp at random, we instead use the smallest 1000 primes
(see Assumption 3), then 128K bytes should suffice.

A tempting possibility for cutting the memory requirements is to generate the shared
random information in some pseudorandom manner and provide only a short seed.
However, since the information is shared, all current techniques of cryptographic
pseudorandomness fail.

Assumek = ` = 1000 and consider a particular path in the tree. If the tree is of height
d = 3, then the path has three internal nodes: the root, and two others, say,v andw.
Let yroot, yv, andyw, respectively, be the labels of these internal nodes. The first time a
message associated with a child ofw is signed, the signer must perform the computation
needed to authenticateyw usingyv; however, this information can be stored and used for
the remainingk−1 (about 1000) messages associated with children ofw. Similarly, the
authentication ofyw usingyroot can be reusedk2 times (about 1 million times). Therefore,
for this reasonable choice of parameters, theamortizedcost of signing a message in our
scheme is at most twice that of signing using plain RSA.

We have ignored the issue of when theqi ’s (the inverses modϕ(Ni ) of the pi ’s)
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should be computed. To speed the signing, the signer can precompute them. However,
this requires storing them in a secure memory. An alternative is to compute them on the
fly. This does not add significantly to the computational load, since computing inverses
is much easier than exponentiation. From the discussion above, if the signer stores the
qi ’s corresponding to the current path (d− 1 values), then it has to compute at most one
qi per signature.

As specified in Assumption 3 below, thepi ’s may be chosen to be small in order to
expedite verification of a signature. Furthermore, Fiat [16] suggested a way of amortizing
RSA computations. His method fits very well with our scheme, particularly since we
use different roots. Fiat’s method may be used to decrease thesizeof the signature as
well: instead of storing for eachyv along the path the valueauth(yv) separately, it is
sufficient to provide one value inZ∗Ns

from which all theauth(yv)’s along a path are
extractable. Therefore the size of a signature is onlyd numbers, each̀ bits long, plus
the description of the path. The only additional restriction is that all thepi ’s of a path
should be different. This does not reduce the total number of paths by much, instead of
kd paths we havek · (k− 1) · · · (k− d+ 1). An alternate way of reducing the signature
size is to eliminate(y1, y2, . . . , yd−1). One can reconstruct their presumed values from
yd = m and(α1, α2, . . . , αd) and check it usingyroot: starting fromh = d down toh = 1
compute

yh−1 =
α

pj

h∏
yhi=1 xi

mod Ns

and verify thaty0 = yroot.
We have fixed the size ofX to be` which is also the size of the labels of the nodes

in the tree and the number of bits in the public key. In principle we could use fewer
xi ’s, which would imply a shorter public listX and multiplication of smaller subsets.
However, this would require us in the basic authentication step to hashyv and to use the
bits of h(yv) in the selection of the elements ofX. It is sufficient to apply auniversal
one-way hash function[26] (see definition and discussion in Section 5), but in order to
obtain existential unforgeability usingonly the RSA assumption (of either type), rather
than relying on the properties of the hash functions, we did not present it as such.

Other known techniques for speeding up RSA and the Fiat–Shamir signature scheme
are applicable to our scheme as well. The signer can perform its calculations modulo
each of the factors ofNs separately, and then combine them using Chinese remaindering.
This is true for both the exponentiation and the subset multiplication. Therefore, for this
choice of parameters, the performance comparison with plain RSA is valid even if one
assumes that the implementation of RSA does these (quite common) optimizations. To
expedite the subset product computations, one can preprocess the listX, partitioning it
to small sets, say pairs or triples, and for every set computing all products of its subsets.
This decreases the time spent on subset multiplication at the cost of additional storage.
For instance, if one partitionsX into triples and preprocesses them, then storing the result
requires7

3 times the space required to storeX. The expected number of multiplications
to compute a random subset decreases from`/2 multiplications (without preprocessing)
to 7

8 · `/3= 7`/24 multiplications (with preprocessing).
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4. Security of the Scheme

In this section we prove that our signature scheme is existentially unforgeable under
adaptive plaintext attack [21] (see Section 2). Specifically, we show that the ability to
generate a single(m, S(m)) pair, for anym on which the signer was not explicitly asked
to sign—even for a nonsensicalm—violates the RSA assumption(s) specified below:

Assumption 2. For every polynomial q(x) there exists aǹ0 such that for all̀ ≥ `0

the following holds. Let N be a number of length at most` bits which is chosen as the
product of two large random primes of equal length, let p be a random prime of length
` bits, and let m be a random̀-bit number. For every probabilistic q(`) time bounded
algorithmF :

Pr[F(N, p,mp mod N) = m] <
1

q(`)
,

where the probability is over the choices of N, p, m, and the internal coin flips ofF .

Assumption 3. For every polynomial q(x) there exists aǹ0 such that for all̀ ≥ `0

the following holds. Let p beanyprime. Let N be a number of length at most` bits which
is chosen as the product of two large random primes of equal length and such that p is
relatively prime toϕ(N), and let m be a random̀-bit number. For every probabilistic
q(`) time bounded algorithmF :

Pr[F(N, p,mp mod N) = m] <
1

q(`)
,

where the probability is over the choices of N and m and the internal coin flips ofF .

Intuitively, the security of the scheme rests on the important observations made in [35]
and [17], respectively:

• Having a black box that computesx1/p1 mod N for randomx does not help in
evaluatingx1/p2 mod N, if p1 and p2 are relatively prime.
• For numbersx1, x2, . . . , x`, for arbitrary subsetS ⊂ {1, . . . , `} and randomy ∈

Z∗N , the value of
(
y
∏

i∈S xi
)1/p

mod N yields no information about any of the

x1/p
i mod N.

Suppose that the scheme can be broken, i.e., there is an algorithmA that operates in
timeT and has probabilityρ of breaking the scheme. We show that there is an algorithm
B that works in expected timẽO(T) and that can extractpth roots with probability at
leastρ/(` · k) whereÕ hides factors that are polynomial iǹandk but independent of
T . (See a remark on refining the analysis following Theorem 4.1)

The input toB is the triple(x, N, p), wherex, N, andp are as in Assumption 2. (The
argument for Assumption 3 can be treated similarly.) The desired output isx1/p mod N.
Algorithm B consists of three phases, a preprocessing phase, in which the public key
and public information are generated, a simulation phase, in which the algorithmA is
simulated on the public key generated in the previous phase, and, if the simulatedA is
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successful in breaking the signature scheme, then a third phase takes place, in whichB
extractsx1/p mod N from the illegitimate signature produced byA.

If a tree-based scheme (i.e., a system where parents vouch for the authenticity of their
children) is broken, then there must be the first time an illegitimate value (i.e., a value
not authenticated by the signer) is authenticated by some nodew. We can guess with
probability 1/k at which child, 1≤ j ≤ k, of w this will occur (note that there is no
need to guessw itself). Furthermore, with probability at least 1/`we can guess an index
1 ≤ i ≤ ` at which the legitimate value authenticated withw and pj differs from the
forged value.B attempts to simulateA and make the above guesses. If the simulatedA
is successful in breaking the signature scheme and if the guesses turn out to be correct,
then from this information it should possible to extractx1/p mod N.

4.1. Detailed Description of AlgorithmB
The input toB is the triple (x, N, p) and the desired output isx1/p mod N. In the
preprocessing phaseB creates a labeled tree and the listsX andP. These are then used
in the simulation phase to enable the interaction with (i.e., signing at the request of) the
simulatedA. If the simulatedA is successful in breaking the signature scheme, then there
is another (short) phase, during whichB extracts the desired valuex1/p mod N from the
forged signature produced by the simulatedA. Let [K ] denote the set{1, . . . , k}.

Algorithm B: Preprocessing Phase.

1. Choose uniformly at random random 1≤ i ≤ ` and 1≤ j ≤ k.
2. SetNs = N.
3. Choose random̀-bit primesp1, p2, . . . , pj−1, pj+1, . . . , pk. Set pj = p and let

P = {p1, p2, . . . , pk}.
4. To generatex1, x2, . . . , xi−1, xi+1, . . . , x`, select uniformly at random̀−1 values

in Z∗Ns
and raise each one of them to the powerp1 · p2 · · · pk moduloNs. Thus, for

all h ∈ [K ]\{ j }, all thephth roots of the elements inX\{xi } are known and can be
computed efficiently. To generatexi , selects uniformly at random fromZ∗Ns

, let r
bespj mod Ns and setxi = (r · x)p1···pj−1·pj+1···pk mod Ns. Note that:
• For eachh ∈ [K ]\{ j }, x1/ph

i mod Ns can be computed efficiently.

• Givenx
1/pj

i mod Ns we can extract(r ·x)1/pj mod Ns, and hencex1/pj mod Ns,
efficiently as follows. Leta andbbe such thata·pj+b·p1 · · · pj−1·pj+1 · · · pk =
1 (they exist and are easy to find by the GCD algorithm). Then

(r · x)1/pj = ((r · x)p1···pj−1·pj+1···pk/pj )b · (r · x)a mod Ns

so

x1/pj = (x1/pj

i )b · r a · xa/s mod Ns.

5. Recall thatT is the upper bound on the running time ofA and hence an upper bound
on the number of signatures requested by the simulatedA. We now determineyv for
all internal nodesv that are ancestors of the firstT leaves. The goal is to choose the
labels so as to be able to provide any signatures requested by the simulatedA. The
tree is constructed in a bottom up fashion. Recall thati and j are fixed by now, and
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that by the construction ofxi we cannot efficiently computex
1/pj

i mod Ns. Thus,
we want to ensure that ifv is the j th child of its parent, then when authenticating
yv it is not necessary to compute thepj th root ofxi . We can ensure this as follows.
Letting yvi denote thei th bit of yv,
• if yvi = 1, thenzv (the label of the parent ofv) should be

β p1·p2···pk
v /xi mod Ns

for randomβv ∈ Z∗Ns
;

• if yvi = 0, thenzv should beβ p1·p2···pk
v mod Ns for randomβv ∈ Z∗Ns

.
This suggests a specific bottom-up method for choosing theyv ’s. However, for
technical reasons we prefer the following two-step description:

(a) For each nodev in the subtree containing the firstT leaves, choose a random
bit bv and setyvi = bv, whereyvi denotes thei th bit of yv. (For a leafv, bv is
necessarily a guess, and is correct with probability 1/2. However, all the other
bv ’s will indeed be the values ofyvi .)

(b) For all internal verticesv, letu be thej th child ofv and letbv = yvi andbu = yui

be the values chosen in Step 5(a). Choose a randomβv ∈ Z∗Ns
. If yui = 1, then

compute the candidate value

yv = β p1·p2···pk
v /xi mod Ns.

If yui = 0, then compute the candidate value

yv = β p1·p2···pk
v mod Ns.

Note that in both casesyv is uniformly distributed inZ∗Ns
. With probability 1/2

we have thatyvi = bv (i.e., thei th bit of yv agrees with the value chosen for
it in Step 5(a)). If they are equal, then keep the candidateyv and continue with
the preprocessing; otherwise, repeat this step, choosing new candidate values
for yv (by choosing new randomβv ∈ Z∗Ns

) until successful.
Let yroot denote the value assigned to the root by the above procedure.

Before we describe the simulation we should note that in the description above there
is one inaccuracy: we choose valuesz ∈ Z∗Ns

at random (wherez stands for either the
xk’s or the yv ’s), whereas in a regular execution ofA it should be thatz is a random
`-bit number. This can be corrected by replacingz by a randomz′ of length` such that
z ≡ z′ mod N. We should not worry about the numbers that are not relatively prime to
Ns, since they are rare. However, ifz< (2` mod N), then there ared2`/Ne `-bit values
z′ such thatz ≡ z′ mod N and if z ≥ (2` mod N), then there areb2`/Nc `-bit values
z′ such thatz ≡ z′ mod N. This gives a certain advantage to the latter. To correct this
bias, afterz is selected uniformly fromZ∗Ns

we reject az ≥ (2` mod N) (and repeat
the process in which they were chosen) with probabilityb2`/Nc/d2`/Ne. This cannot
increase the expected work by more than a factor of 2.

Algorithm B: Simulation Phase.

1. InvokeA with (X, P, Ns, yroot) as determined in the preprocessing phase.
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2. Start the simulation ofA; at every stept ,A queries the signer with a messagemt

and requests a signature. The algorithmA receives as requested a signature onmt

using the path to thet th leftmost leaf of the tree chosen in the preprocessing. The
signature is generated according to the following:
• To handle a node which is not thej th child of its parent is easy, since we can

extract allphth roots whenh 6= j .
• To handle a node which is aj th child but is aninternal node can also be done

easily, due to the wayyv was chosen in Step 5 in the preprocessing phase.
• When handling a leafu that is thej th child of its parentv, then with probability

1/2 the incorrectbu was chosen, that is, for whichbu does not equal thei th bit of
the messagemt for whichA requests a signature. (Note thatA does not receive
the guessesbu of the leaves and hence its choice of messages is independent of
them.) In this case

— RewindA for j steps, back to the stage just before the parent ofv is
used for the first time.

— Choose at random a new value forbu.
— Choose a new valueyv, wherev is the parent ofu; the value ofyv

should satisfy the constraintyvi = bv imposed in the preprocessing
step, thus preventing further propagation of the rollback. This is done
as in Step 5(b) of the preprocessing.

As discussed below, the rewinding may increase theexpectedrun-time by a
factor of at most 2.

Algorithm B: The Extraction Phase.
Suppose thatA is successful and produces a signature

〈m, ( j1, j2, . . . , jd), (y1, y2, . . . , yd−1), (α1, α2, . . . , αd)〉,
where the signature passes the verification test, butm was not signed in the simulation
phase. Among(y0 = yroot, y1, y2, . . . , yd−1, yd = m) there must be the first (smallest)
1≤ a ≤ d such that, lettingv be the node reached by following the pathj1, j2, . . . , ja,
ya is different from the labelv assigned in the preprocessing phase. Letyv be the true
label ofv (assigned in the preprocessing phase) and let

α
.= auth(yv) =

(
ya−1

∏
yvh=1

xh

)qja

mod Ns.

By Step 5 of the preprocessing phase, ifv is a leaf, thenα can be computed byB; if v is
an internal node, thenα was computed byB. The extraction is successful if the following
two conditions hold:ja = j andyvi 6= yai (that is,ya andyv differ in thei th bit). If this
is the case, then from the forged signature we haveαi = (ya−1

∏
yah=1 xh)

qj mod Ns, and

from above we haveα = (ya−1
∏

yvh=1 xi )
qj mod Ns. We can now obtainx

qj

i mod NS

as follows. Assume without loss of generality thatyvi = 1. Let S1 = {h 6= i |yah =
1 ∧ yvh = 0} andS2 = {h 6= i |yah = 0 ∧ yvh = 1}. Then we have

α

αi
·
∏

h∈S1
x

qj

h∏
h∈S2

x
qj

h

= (ya−1
∏

yvh=1 xi )
qj

(ya−1
∏

yah=1 xh)
qj
·
∏

h∈S1
x

qj

h∏
h∈S2

x
qj

h

= x
qj

i mod Ns.
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As discussed in Step 4 of the preprocessing phase, for allh 6= i it is easy to compute
x

qj

h mod Ns and fromx
qj

i mod NS it is easy to extractxqj = x1/p mod N, the desired
output.

4.2. Analysis of AlgorithmB
WhenA engages in an interaction with a signing process, there is a distribution on the
transmissions thatAwitnesses. The proof of security rests on the fact that this distribution
and the oneA witnesses in the simulation are similar. LetD(A) be the distributionA
witnesses in a regular execution, conditioned on the event that everyx ∈ X and all the
labels of the internal nodes are relatively prime toNs (the probability that this is not the
case is bounded byT · (N − ϕ(N))/N ≤ 3T/

√
N, which we assume is negligible).

This distribution is simple to describe: it consists of a public keyNs distributed as in
Assumption 2, a listX of ` numbers uniformly distributed over 0· · ·2`−1 and relatively
prime to Ns, a list of random primes of length̀, and, for each internal node which is
an ancestor of one of the firstT leaves, a random value which is uniformly distributed
over 0· · ·2`−1 and relatively prime toNs. All the other values are determined by these
values and the messages on whichA requests a signature.

LetD(B) denote the distribution thatAwitnesses in the simulated interaction withB.

Claim 4.1. The distributionsD(A) andD(B) are identical. Furthermore, the distri-
butionD(B) is independent of the choice of i and j in Step1 of the preprocessing
phase.

Proof. The distributionD(B) consists of the listsX andP, the public keyNs, and the
labels of the internal nodes that are ancestors of the firstT leaves. All other information is
determined by these and the messages thatA provides. The listX consists of̀ numbers
distributed uniformly and independently among the`-bit numbers relatively prime to
Ns. This follows from the way they are chosen in Step 4 of the preprocessing phase (note
that the choice ofr randomizesx in Z∗Ns

). ThereforeX is also independent of the choice
of i .

The list P is a list of k random primes of length̀, given that the inputp = pj

was chosen at random (which is our assumption). Again, it is independent ofj . The
situation for the labels of the internal nodes may seem more delicate, since these values
are chosen by a more complex process. Consider the nodesv that are not parents of
leaves. Their labels are chosen at Step 5 of the preprocessing phase and never change
thereafter. Recall that this is done by first picking thei th bit as a randombv ∈ {0,1}
and then choosing the rest of the label by either computingβ

p1·p2···pk
v /xi mod Ns or

β
p1·p2···pk
v mod Ns (depending on thei th bit of the label of thej th child of v) for a

randomβv ∈ Z∗Ns
until thei th bit of the result equalsbv. From the randomness of the bit

bv and of the valueβv, the labelyv is uniformly distributed.
The labels of the nodesv that are parents of leaves may be rechosen at Step 2 of the

simulation phase. Note that for a nodev and its j th child u the values foryv andbu

chosen at Step 5 of the preprocessing are independent. Therefore the event of choosing a
new label for the nodev is independent of the value chosen foryv. (It happens when the
guessbu of thei th bit of the message signed by thej th child ofv was wrong; recall that
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A does not receive information regardingbu.) Therefore the new value foryv is again
uniformly distributed and independent of the newbu.

Claim 4.2. The expected time to run the simulation isÕ(T).

Proof. There are two possibilities that may force us to spend more thanÕ(T) steps
(recall that theÕ hides factors that are polynomial in` andk but independent ofT): one
is Step 5 of the preprocessing phase, where we may fail to chooseyv that satisfies the
requirement onyvi . However, this happens with probability 1/2 and hence at most doubles
the expected amount of work. The second possibility is in Step 2 of the simulation, where
we may have to rewindA for j steps. However, as before, this happens with probability
1/2 and increases the expected work by a factor of(k+ j )/k ≤ 2 (since the firstj
children of a node which is a parent of leaves may be repeated with probability 1/2 and
the rest are developed once).

Claim 4.3. The probability of success is at least(ρ − (3T/
√

N))/(k · `).

Proof. The probability thatA breaks the system in a regular execution, given that all
thexi ’s andyv ’s are relatively prime toN, is at leastρ−3T/

√
N. SinceD(A) andD(B)

are identical and the latter is is independent ofi and j chosen byB, the probabilityA in
the simulation breaks the scheme is at leastρ − 3T/

√
N.

Suppose thatA breaks the signature scheme and produces a forged signature,

〈m, ( j1, j2, . . . , jd), (y1, y2, . . . , yd−1), (α1, α2, . . . , αd)〉
and suppose thata, 1≤ a ≤ d, is the leasta such thatya is different from the true label
of the corresponding nodev. Let yv be the true label assigned tov in the preprocessing
phase ofB. Recall from the extraction phase ofB the condition for a successful extraction
of x1/p mod N: ja = j andyai 6= yvi . However, j andi are independent ofD(B) and
hence ofja, ya, andyvi . Therefore given such a forged signature Pr[ja = j ] = 1/k and
Pr[yai 6= yvi ] ≥ 1/`. The two events (ja = j andyai 6= yvi ) are independent, since the
choice ofi and j is independent. Therefore with probability at least 1/(k · `) they both
occur and, as explained in the extraction phase ofB, we can extractx1/p mod N.

We can therefore conclude that any algorithm for breaking the provided signature
scheme can be used at a related cost and probability of success to extract modular roots:

Theorem 4.1. Any algorithmA that breaks the scheme in time T with probabilityρ
can be turned into an algorithm for breaking Assumption2 in time Õ(T) and success
probability (ρ − (3T/

√
N))/(k · `).

We remark that it is possible to modify our scheme so that any algorithm for breaking
the scheme operating in timẽO(T) and probability of successρ can be converted into an
algorithm for breaking the RSA assumption in timeT and probability of successÄ(ρ/k)
(rather thanρ/(k · `) as above). The modification is based on an idea of Even et al. [15].
Each value to be authenticated usingauthis first encoded with a codeC that has a large
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relative distance, i.e., the Hamming distance of any two codewords is a large fraction,
γ , of their length. The length of the listX should now bè ′, the length of codewords of
C, rather thaǹ . For a good codè′/` should beO(1). The basic authentication step is
done by (

zv
∏

C(yv)i=1

xi

)qj

mod Ns.

Now, at the beginning of the preprocessing phase, when we guess a 1≤ i ≤ `′, the
probability that the authenticated value and the forged value differ at thei th bit is at
leastγ , since they are encoded usingC. Therefore the overall probability of success is
γ · ρ/k.

A finer analysis of the running time ofB can be done by separating the running time
ofA into T1, the number of (message, signature) pairs obtained byA, andT2, its internal
running time. The running time ofB is Õ(T1)+ O(T2).

5. Application to Signing Faxed Documents

In this section we describe how to apply our signature scheme, or any existentially
unforgeable scheme, to signing faxed documents. This application can be seen as an in-
stance of a document repository, mentioned in the Introduction. In particular, we describe
how to use such a scheme in order to obtain short receipts for long documents.

As pointed out in the Introduction, in designing a signature scheme appropriate for
fax documents it is important to distinguish between the printed document, denoted
P, and the bit stream image of the scanned document, denotedD, that results in the
printing of P. In general, onceP is printed fromD, it is impossible to reproduceD
precisely: rescanning the printed documentP will likely yield a different bit stream
D′ 6= D. Therefore, for digital signatures of faxed documents to be useful, the semantics
and responsibilities of each of the sides (sender and receiver) should be determined
carefully.

If neither the sender nor the receiver has a long-term storage device, then providing
meaningful digital signatures, verifiable by a third party, seems to be an impossible task.
We therefore assume that at least one of the sender or the receiver is using a computer-
fax, or cfax, system, i.e., a machine that can permanently store the scanned document.
The simple fax machine is not equipped with long-term storage, but it is equipped with
a processor that can perform any required computation on the stream of data passing
through the fax. There are three scenarios to consider:

• Cfax to cfax—straightforward, i.e., not different from any computer communica-
tion, the receiving cfax simply stores the bits representing the image of the signed
document together with the signature.
• Cfax to fax—interesting (see below).
• Fax to cfax—same as cfax to cfax.

Assume we have a cfax machine, denotedC, sending a document to an ordinary
fax, denotedF . This scenario is applicable whenever we have a large organization
communicating with many independent agents or clients, e.g., a bank with its clients
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or an insurance company with its agents. Although the receiverF is not assumed to be
able to store the bit-stream imageD of the faxed document, it is this bit-stream, and
not the printed version of the document (which we can assume is available), that has
been digitally signed. Thus, the senderC must store the data. Since the receiver may
not trustC to produce the data on demand,C should issue to the receiver some type
of receipt. Therefore, in this scenario the receiver cannot alone convince a third party
that the document was signed by the claimed sender, but it can show to a third party a
signed statement promising cooperation in the judgment. As pointed out below, refusal
on the part of the sender to cooperate may actually permit the receiver to forge, so it is
definitely in the sender’s interest to cooperate. In the following, we do not assume that
the receiver has a long-term storage device.

Problem Formulation. The problem raised by the discussion above can be formulated
as follows: design a signature scheme that allows a signer to provide to a receiverF short
receiptsR(D) on long documentsD. Given R(D) and D it should be easy for a third
party to determine whetherR(D) is indeed a signature onD (this is the usual requirement
from a signature scheme). The cfax to fax scenario imposes two additional requirements:

• Given R(D) alone, it should be easy to determine that it is legitimate—it should
be computationally infeasible for the receiverF to produceany legitimate looking
receiptR(D), except for those provided byC.
• Given R(D), the signerC should be able to produce only one correspondingD.

To apply a solution to this problem in the context of signing faxes, one should print
the documentD, as is customary with faxes, and also print either in hex or in some more
area-efficient method, such as a two-dimensional bar code, the receiptR(D).

Cryptographic Tools. Since the requirement is that the scheme produce short signa-
tures on long documents, it is quite clear that some sort of one-way hashing should be
used. These come in (at least) two flavors:universal one-way hash functions[26] and
collision intractable functions[11]. A family H of universal one-way hash functionshas
the following property:Fix a string S. Let h be chosen at random from the family H of
universal one-way hash functions. Then it is computationally infeasible to find a string
S′ such that h(S) = h(S′). This is weaker than collision-intractability, which allows
S to be chosenafter h is known, i.e., given a randomh it should be infeasible to find
different SandS′ such thath(S) = h(S′). However, it may be easier to construct, or at
least to prove secure, universal one-way hash functions, and constructions are known to
exist under general assumptions [26], [32] (for more reasons why it may be preferable to
assume only the existence of universal one-way hash functions, see [5]). In our context,
the stringsS are just documents. Thus for any fixed documentD, if h is chosen at ran-
dom from the familyH of universal one-way hash functions, then it is computationally
infeasible to find a documentD′ such thath(D) = h(D′).

One concrete proposal for constructing universal one-way hash functions, due to
Impagliazzo and Naor [22], is based on the subset sum problem (they also propose some
less efficient schemes based on factoring). In particular, breaking the assumed universal
one-way hash property of this family is proved in [22] to be as hard as solving a random
subset sum problem. Recently Ajtai [2] showed that breaking such functions implies
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the ability to solve several worst-case lattice problems. On the other hand, Schnorr and
Hörner [34] (and references therein) provide computational experience in solving such
problems, which implies bounds on the choice of parameters.

Collision-intractable hash functions can be constructed based on the discrete logarithm
problem [8], [9]. Alternatively, as was pointed out in [20], Ajtai’s results imply that the
Impagliazzo–Naor construction is actually collision-intractable (assuming the above-
mentioned worst-case lattice problems are hard).

There are also various proposals for fast one-way hash functions, like MD5 [31] and
SHA [1], whose security is not treated formally. This does not mean that they are useless,
but the goal of this paper is to provide a solution that is efficientand provably secure.
Note that collisions have been found in MD5 [13].

A nice property for the one-way hash function to have is that it is easy to compute
it on the fly, without storingD. All the above proposals enjoy this property, or can be
easily adapted to have it.

We should also assume the existence of an existentially unforgeable signature scheme
secure against chosen plaintext attack, such as the one described in Section 3.

Key Management. There are standard ways to avoid having to maintain and access a
directory of public keys. For example, there can be a central agency with which public
keys are registered. The central agency has its own pair of keys,Kcenter, Lcenter, where
all users knowKcenter(rather than having to know all public keys).

The Scheme. In the following,〈a,b〉 denotes the concatenation ofa andb. The family
H of universal one-way hash functions should be chosen so that the number of bits in
the pair〈h(D), h〉 for any h ∈ H and any documentD, can be signed with a single
application of the signature function. The cfax sender,C, first forwards to the recipient
the statement “C’s public signature key isKC,” signed with the center’s signature key.
The recipient,F , knowsKcenterand can therefore be certain of using the correct public
key forC. Let SC(m) denote a signature on messagem with C’s key. The agents proceed
as follows:

1. F chooses at random anh ∈ H . F does notrevealh to C.
2. C sends toF the documentD; F hashesD on-line, computingh(D) and tem-

porarily saving this; it also printsD (on-line).
3. F sendsh to C.
4. C computesh(D) and sends toF SC(〈h(D), h〉), that is,C’s the signature on the

concatenation ofh(D) andh.
5. Letα be the message received byF . ThenF verifies thatα is indeedSC(〈h(D), h〉)

using h and h(D) computed and stored above.F then prints
〈h(D), h〉, SC(〈h(D), h〉) in hex or using a two-dimensional bar code (a more
compact and robust representation). This printout should be kept in a safe place,
since it is the recipient’s only proof of the authenticity of the document.

For particularly important transactionsF may storeD on tape, or even print the bit-stream
of D itself. This is discussed next.

Handling Disputes. The tuple(〈h(D), h〉, SC(〈h(D), h〉)) constitutes a promise byC
to produce a documentD′ such thath(D′) = h(D). Whenever the need arises, say,
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that a third party wants to check the receiver’s claim that he received a specific printed
document from the sender,C must produceD′. (We assume that givenD′ it is possible to
verify that it corresponds to the printed document.) We claim that in the above protocol
both parties are protected:

• Protection ofF : SinceD was fixed byC without knowledge ofh, if D′ 6= D, then
this means thatC broke the universal one-way hash function, because it should be
intractable to find aD′ such thath(D′) = h(D).
• Protection ofC: Since the signature scheme is existentially unforgeable,F cannot

produce any tuple(〈h(D), h〉, SC(〈h(D), h〉)) that was not originally produced
by C.

If the senderC refuses to produce an appropriateD, then this can be treated as a
breach of contract (or “evidence” thatC indeed signed a document corresponding to
the printed one). Up to this point we have assumed thatF has no long-term storage
medium. Suppose instead thatF records documents on tape, or some other low-cost
(but not easily searchable) medium. In this case, ifC does not cooperate, thenF could
produce the tape. Moreover, this last option may have a “nasty” surprise forC: sinceF
is the one who choseh, C’s refusal to cooperate exposesC to “forgery” of the receipt:
if F had been dishonest and chosenh dependent onD (after Step 2, rather than before
Step 2), thenF may be able to produceD′ 6= D such thath(D′) = h(D).
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Note Added in Proof. Recently, Cramer and Damgard [10] have found a way to elimi-
nate the shared random stringX.
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