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ABSTRACT Scale diversity, small target, and power limitation have made remote sensing imagery a

challenging field in object detection on satellites. Aiming at the aspects of scale diversity and small target,

this paper provides a novel feature pyramid network with Adaptive Residual Spatial Bi-Fusion (ARSF)

as a solution. ARSF nets introduce a robust fusion of multi-scale semantic information and fine spatial

details. A spatial feature fusion module designed in networks with ARSF adapts to object size variation by

learning the most crucial feature maps. Comparing to the original feature pyramid network, a shorter critical

path for information transmission is formed in our method. Experiments show that a validation instance of

YOLOv3-ARSF can achieve a state-of-the-art performance of 85.8 mAP on the NWPU-VHR10 dataset.

YOLOv3-ARSF only 3MB larger than YOLOv3 but far exceeds YOLOv3 by 2.3% mAP, which shows our

ARSF is efficient. As for the last challenge, two lightweight versions, ARSF(lite) and ARSF(lite+) are also

validated for future research of online object detection on satellites in aerospace engineering. Visualizations

and details are provided for a more comprehensive understanding.

INDEX TERMS Computer vision, object detection, remote sensing, satellites, aerospace engineering.

I. INTRODUCTION

With the rapid development of remote sensing technology,

massive remote sensing image data have been generated by

satellites. Object detection in remote sensing imagery has

then kept being a hot topic in academic research with broad

applications due to the critical value of those images. Object

detection not only determines the class of interest but also

gives the location information of each prediction. Objects to

be detected in this field are generally human-made targets

such as aircraft, ships, vehicles, etc., and they have notice-

able differences with the background. Besides, for major

emergency tasks such as fire alarms, search and rescue of

marine vessels, and assessment of earthquakes, volcanoes,

and tsunami disasters, it will take too long, if the ground

station processes the information returned by the satellites,

to miss the golden time of search and rescue. Therefore,

online detecting on satellites has become a vital development

direction of remote sensing technology in the future.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

However, different from general object detection, remote

sensing object detection on satellites still yields challenge

by [1], [2]:

• Scale Diversity: Remote sensing images are taken from

a few hundred kilometers to tens of thousands of kilome-

ters, and the ground objects are of different sizes, even

for the same class of objects. For example, a large ship in

the port is more than 300 meters long, and a small vessel

only has tens of meters;

• Small Object: Many of the objects in remote sensing

images are small size (tens or even a few pixels), which

leads to a small amount of information.

• Power Limitation: The future development direction of

remote sensing object detection is online on satellites,

but due to the power limitation, the processor (espe-

cially ARMCPU) and memory of satellites are minimal.

Therefore, the network scale and calculation volume

cannot be large.

The state-of-the-art object detection solutions [3]–[7]

adopted the method of increasing the network depth and

designing better feature pyramid network(FPN) [3] to
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enhance the fine details andmeaningful semantic information

of the multi-scale objects, thereby improving the detection

accuracy of the CNN.

Although these advanced networks provide a more robust

feature pyramid network in multi-scale detection, however,

they are still not sufficient for small object detection. Tomake

the detector suitable for objects of various sizes, especially

small objects, a new and effective feature pyramid net-

work structure, named Adaptive Residual Spatial Bi-Fusion

(ARSF), is proposed in this paper.

Like PANet [6], the ARSF feature pyramid network is

bidirectional to fuse deep semantic features and shallow spa-

tial features robustly. A shortcut module, also called residual

module, is adopted on ARSF lateral connection to shorten

the information transmission path further. Because of this

"residual" learning nature, the ARSF network becomes more

accessible to train and converge. Besides this, an innovative

Adaptive Spatial Fusion(ASF) module is introduced in the

ARSF network, which can adaptively learn the most useful

features map for the head of detectors.

As for the limited power, although many papers are apply-

ing deep learning methods to achieve object detection in

remote sensing images [8]–[11], the network scale and cal-

culation volume of these papers are plentiful, and it is still

challenging to complete the efficient detection on satellites

with limited onboard memory and computing power. To han-

dle this problem, we take advantage of efficient convolution

and quantization to achieve ARSF(lite) and ARSF(lite+) two

versions for edge devices such as satellites to save the com-

putational cost. In our experimental results, the parameters

and floating-point operations (Flops) of these two versions

are four times smaller than that of the previous FPN [3] and

SPP [7], and the memory overhead is reduced by two times.

Furthermore, to better understand how the ARSF network

proposed in this paper adaptively fuse various features,

we visualize some examples to help analyze and under-

stand it.

The rest of this paper is organized as follows. Some related

work is introduced in section II. Our ARSF architecture and

feature visualization for remote sensing visions are given

in section III. The experimental results and discussions are

presented in section IV. Finally, the conclusions are drawn in

section V.

II. RELATED WORK

A. ADVANCED DETECTORS

In recent years, deep learning has achieved great success

in many computer vision tasks, including object detec-

tion with its deep semantic features. R-CNN [12], Faster

R-CNN [13], Mask R-CNN [14], etc., which pursue the

accuracy of the ‘‘two-stage’’ network, as well as SSD [15],

DSSD [16], YOLO [17] and YOLOv3 [18], which pursue

higher efficiency and ‘‘single-stage’’, have significantly pro-

moted the development of this field.

Since this article aims at edge devices with limited mem-

ory and computing power, the following work focuses on

the ‘‘one-stage’’ detectors that pay more attention to the

trade-off between efficiency and performance. In particular,

YOLOv3 [18], which can achieve almost accuracy as the

‘‘two-stage’’ network, had a clear advantage in speed. Com-

pared with the previous YOLO [17] and YOLO-9000 [19],

YOLOv3 designed a powerful backbone DarkNet53 and a

multi-scale object detection structure. Darknet53 was much

faster than ResNet152 while their accuracy was close. The

multi-scale network structure alleviated the problems of

coarse and weak detection on small objects.

B. FEATURE PYRAMID NETWORK

Since some pooling layers are repeatedly applying in CNN to

extract advanced semantics, the information of small objects

can be filtered out during the downsampling process.

To cope with this problem, FPN [3] utilized a top-down

path module to fuse different level features, which notice-

ably increases the performance of detectors. Top features

preserved semantic discrimination, while bottom features

retained spatial information. In the top-down pathway,

the high-level semantic information is integrated into the

low-level spatial information through upsampling, which

enhances the features of different levels. Nevertheless, for

large and medium objects, due to the invariance of convo-

lutional translation and the long pathway between high-level

features and low-level features (as shown by the gray dotted

line in Fig.1), it is difficult to locate them accurately.

Since then, subsequent variations of FPN such as

PFPN [4], Panoptic FPN [5], PANet [6], etc. were proposed.

PFPNwas inspired by SPP net [7], and applied themulti-scale

context aggregation (MSCA) module for feature fusion to

improve the accuracy of detection. Panoptic FPN [5] sup-

plied a semantic segmentation branch using a finely-designed

feature pyramid network for Mask R-CNN to complete the

tasks of instance segmentation and semantic segmentation.

PANet [6] created a bottom-up path enhancement module

based on the top-down path module in FPN, which was

designed to shorten the path of information transmission and

maintain the accurate positioning information in low-level

features. This creative bidirectional structure strengthened the

ability of the feature pyramid network.

C. LIGHTWEIGHT NETWORK

Although the learning feature capabilities of advanced CNNs

(such as AlexNet [21],ResNet [20], GoogLeNet [22], and

DenseNet [23], etc.) are being continuously enhanced by

the deeper the network layers. However, in engineering,

model size and computational cost also need to be consid-

ered. Deep convolutional neural networks include dozens

or even hundreds of layers with a large number of weight

parameters. Saving these huge weight parameters has high

requirements on the device memory. In order to handle this

problem, a normal method is model compression; however,

lightweight network blazes a new trail. Many efficient con-

volutional calculations are designed in lightweight networks

to reduce parameters without compromising performance.
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FIGURE 1. The architecture of YOLOv3 with ARSF Network. If the arrow is not marked, it means a simple transfer, no additional operations.

In recent years, many lightweight networks have been pro-

posed, but mainly the following four lightweight networks:

SqueezeNet [24], ShuffleNet [25], [26] MobileNet [27]–[29],

Xception [30].

A more efficient convolutional implementation in a

lightweight network can significantly reduce parameters and

Flops. Therefore, in future engineering, lightweight networks

will become mainstream.

III. THE ARCHITECTURE OF ARSF

Compared with the previous FPN and variants, our ARSF

has more effective spatial information propagation and more

powerful semantic extraction and can adaptively learn the

most useful features for different size objects. In this article,

we only take ARSF combined with YOLOv3 as an example

to show that it is powerful and effective. In fact, ARSF can be

worked as a plug-in to embed in most mainstream detectors,

like SSD, Faster R-CNN, Mask R-CNN, etc.

A. ADAPTIVE RESIDUAL SPATIAL BI-FUSION

As shown in Fig.1, the main structure of ARSF is divided

into two parts: an efficient spatial information pathway(ESIP)

module and an adaptive spatial fusion(ASF) module.

1) EFFICIENT SPATIAL INFORMATION PATHWAY MODULE

In addition to the original top-down pathway(gray dashed

in Fig. 1) introduced in FPN [3], we propose a novel

bottom-up pathway as indicated by the red dashed line

in Fig. 1 is much shorter than the gray one that needs to go

through N + M convolutions. The shorter spatial informa-

tion pathway can make better use of the accurate location

information stored in the low-level features. We adopt a

‘‘residual’’ shortcut module in the lateral connection to fur-

ther shorten the pathway since this kind of module has been

proved to improve the networks’ overall performance inmany

studies [18], [20], [24], [28].

2) ADAPTIVE SPATIAL FUSION MODULE

Recent object detection networks [31], [32] usually utilize

feature fusion to improve the accuracy of detecting different

sizes object. However, this research resizes different features

to the same resolution and then adds them up simply. This

method of treating different resolution features without dis-

crimination is too rough. It ignores that the contribution of

different resolution features to the object detection of various

sizes is inconsistent.

For example, low-resolution features that have size-

able receptive field and high-level semantic information

contribute more to identifying large-scale objects than

high-resolution features. In contrast, high-resolution features

have smaller receptive fields but accurate localization for

small-scale objects. Additional weight is introduced in this

paper to reconcile the different resolution features. By train-

ing this weight, the network can adaptively learn the impor-

tance of different resolution features for detectors.
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FIGURE 2. Grad-CAM image of large-scale object detection by ARSF net.

Based on this idea, we have the following formula:

Oi =

n
∑

j=1

wij · Ij (1)

where Oi is the i-th detection output, Ij is the j-th feature

fusion input, and wij is the weight of the j-th input to the

i-th output. Taking ASF-3 as an example in Fig.1, O3 =

w31 × I1(4 ↑) + w32 × I2(2 ↑) + w33 × I3, where n ↑ means

feature maps should upsample n times.

3) LIGHTWEIGHT VERSION

ARSF(lite) has the same structure as ARSF, except that

the regular convolutions are replaced with the Depthwise

Separable Convolution [27]–[30], which makes the feature

network more compact. Depthwise Separable Convolution is

a lightweight convolution, whose parameter amount is only

1/9 of the regular convolution, and the amount of multiplica-

tion is only 1/c + 1/9, where c is the input channel number.

ARSF(lite) based on this efficient convolution will much

streamline scale and computational load. This scheme is

memory, CPU, and GPU-saving for most embedded devices.

To further reduce the computational cost, we propose

ARSF(lite+) that is a version of the 16-bit quantization

technology taken on ARSF (lite). This quantization converts

weights to 16-bit floating-point values during model conver-

sion from 32-bit. In theory, this results in a 2x reduction in

model size. Some hardware, like GPUs, can compute natively

in this reduced precision arithmetic, realizing a speedup over

traditional floating-point execution.

B. VISUAL EXPLANATION

In deep learning, convolutional neural networks are often

treated as black boxes, and it is difficult for people to explore

the mathematical nature behind them. Therefore, in recent

years, the interpretability of neural networks has become an

important research direction in the computer vision field.

For a better understanding of how the ARSF per-

forms adaptive feature fusion, some examples are visual-

ized using Grad-CAM [33] technology to help analyze and

understand it.

Grad-CAM essentially takes gradients as weight factors to

measure which pixels in the feature maps have the greatest

impact on detection. Assuming that our detection target is an

airplane, its steps are divided into three steps:

1. First, calculate the partial derivative of the probability

yplane of the plane with respect to all pixels Aij in the

feature map of the last layer, that is,

∂yplane

∂Akij
(2)

where k is the number of the channel of the fea-

ture maps, and i,j represent the i-th row and j-th col-

umn,respectively.

2. Then, average the partial derivatives of each pixel in

the feature maps which similarly to the global average

pooling(GAP),

α
plane
k =

1

Z

∑

i

∑

j

∂yplane

∂Akij
(3)

where α
plane
k is the weight of the k-th channel of the

feature maps when discriminating as plane targets, and

Z is a constant (number of pixels in the feature map).

3. Finally, linearly combine each channels of the feature

maps A with α
plane
k as the weight, and then pass a ReLU
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FIGURE 3. Grad-CAM image of medium-scale object detection by ARSF net.

function, that is:

L
plane
Grad−CAM = ReLU(

∑

k

α
plane
k Ak ) (4)

where L
plane
Grad−CAM is an activation map, just like a heat

map, through Grad-CAM for planes. Notice, we should

resize this activation map to the size of the input image,

and then overlay it with the input image to get the final

result.

Here we show three examples (Fig.2, Fig.3, and Fig.4) rep-

resenting the detection of three sizes objects: large, medium,

and small. In Fig.2 and Fig.3, there are 13 subfigures, and the

number of each subfigure is given by the red number in the

upper left corner.

Subfigure 1, 6, and 11 are activation maps of three sizes

original feature maps(i.e., yellow, green, and blue feature

maps in the rightmost column of ESIPmodule in Fig.1 ). Sub-

figure 2, 3, 5, 7, 9, and 10 are up-sampled or down-sampled

from the original feature maps to get the same size as the

original feature maps in the same row. In the remaining right

column, subfigure 4, 8, and 12 are activation maps obtained

by the ASF module of three feature maps in the same row.

In Grad-CAM images, the red areas represent the key pix-

els that the network pays more attention to. More specifically,

these pixels have a big influence on detecting whether there

are objects in the vicinity. Naturally, the closer these red

pixels are to objects, the better. It should be noted that the

actual sizes of the top, medium, and bottom feature maps are

different, and they are unified to the same size here only for

better visualization.

YOLOv3 only takes the center point of the object in the

corresponding feature maps as the detection point [18]. For

a large-scale object such as the playground in Fig.2, the net-

work also only detects the center part. In the first row of Fig.2,

it is clear that the gradients learned in subfigure 1 and 3 are

negative because the center of the object is relatively weak

to the surroundings. According to the ASF activation map of

subfigure 4, it only makes sense when the weights w1 and w3

are also negative.

Compared with the medium and bottom levels, the top-

level activation map(i.e., subfigure 4) has more red pixels.

It illustrates that the top-level features are more suitable for

detecting large-sized objects.

For the medium-sized aircraft detection in Fig.3, all the

airplanes of the top-level fused features are filtered as

background. The detection of bottom-level features depends

on too few pixels to omit some planes. In contrast,

the medium-level activation map has highlighted pixels

around all airplanes, clearly showing the critical areas that

the network pays attention to. These key areas are also near

the center position of the airplanes. It is verified again that

YOLOv3 is a center-point-based detection method, and it

also reflects the power of the ARSF net to locate the objects

accurately.

Different from Fig.2 and Fig.3, in Fig.4 we have taken a

part of the original image with a red dashed frame to enlarge

it for better visualization, as well as 3 level ASF activation

maps. The aircraft object in this figure is much smaller than

before, so the aircraft object will be filtered by the network

as the background in the top-level and medium-level fused

features, resulting in missed detection. However, the bottom-

level features are more accurate because of its larger size and

higher resolution, which is suitable for small object detec-

tion. The activation map of the bottom-level features also

verifies it.

In general, these three-level feature maps are targeted at

different sizes of large, medium, and small objects. The adap-

tive feature fusion and multi-scale detection methods fully

utilize semantic and spatial information to improve the final

performance of the detectors.
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FIGURE 4. Grad-CAM image of small-scale object detection by ARSF net.

IV. PERFORMANCE EXPERIMENTS

A. DATASET AND EXPERIMENTAL SETTINGS

In experiments, we take the NWPU-VHR10 [34] to prove

that our proposed ARSF network achieves the performance

of SoTA detectors. The NWPU VHR-10 dataset contains

650 annotated images, 757 airplanes, 302 ships, 655 storage

tanks, 390 baseball diamonds, 524 tennis courts, 150 basket-

ball courts, 163 ground track fields, 224 harbors, 124 bridges,

and 598 vehicles, totally ten classes and 6,686 objects. To ver-

ify that our proposed ARSF is suitable for multiple sizes of

objects, especially for small size, we have stipulated three

sizes of large, medium, and small for the objects in the

dataset. The specified standards are in Table 1, and the area

of objects is relative to the entire image.

The hardware and software platforms applied in the exper-

iments are configured as follows, Intel (R) Core (TM)

i9-7900X @3.30 GHz(CPU), NVIDIA Titanxp 12G (GPU),

TABLE 1. A description of the object sizes in the NWPU VHR-10.

Gloway DDR4 16G (Memory), Samsung 960 Pro 512G

(SSD), Ubuntu16.04 LTS (System), and Pytorch(Deep learn-

ing framework).

Our all detectors were trained by using the Adam

algorithm, where the initial learning rate was 1e-4 for

Warmup Cosine Annealing Learning Rate Schedule

(WCALR), and the other initial learning rates are 1e-3.

The total epoch is 200, and the batch size is 8 for all

training.

VOLUME 8, 2020 93063



F. Qingyun et al.: Efficient FPN for Object Detection in Remote Sensing Imagery

FIGURE 5. soft-NMS and NMS comparison example.

B. EVALUATION INDICATORS

In order to evaluate the performance of network detection,

Precision, Recall, Average Precision(AP), andMean Average

Precision (mAP) are adopted.

Precision refers to the proportion of true positives of

detection.

Precision =
TP

(TP+ FP)
(5)

Recall measures the ratio of positives that are correctly

detected to total positives.

Recall =
TP

(TP+ FN )
(6)

If the IoU between the prediction bounding box and the

ground truth is larger than 0.5, it will be considered as true

positive (TP); otherwise, it will be considered as false positive

(FP). False negative(FN) means that there is a right target

here, but the network does not detect it.

Average Precision(AP) is the integral of the precision-recall

curve for each category.

AP =

∫ 1

0

FP

TN + FP
d

TP

TP+ FN
(7)

mean Average Precision(mAP) computes the mean of all

the AP values for all categories.

C. COST-FREE TRICKS

In the field of object detection, one can improve the network

detection performance by increasing the input size of images,

selecting a deeper and stronger backbone, or constructing

a much more sophisticated feature network. However, these

methods for improving precision have some costs, and it will

increase the network parameters and Flops, make network

training difficult, and extend the forward inference time of

the detector.

Besides, there are also some cost-free tricks in object

detection tasks. They improve the ability of detection with-

out increasing the model size of the network and naturally

will not extend the inference time. In this article, we take

K-means [18], soft-NMS [35], and Warmup Cosine Learn-

ing Rate schedule [36] three cost-free tricks on the

YOLOv3 baseline to improve the precision.

1) K-MEANS

In the previous Faster-RCNN [13] and SSD [15] algorithms,

we need to select the prior scales of bounding boxesmanually.

Obviously, manual selection is too subjective. The K-means

method can automatically select more accurate and represen-

tative bounding boxes through clustering the scales of all tar-

gets in the training set, making it better for the convolutional

neural network to detect objects.

2) SOFT-NMS

Non-Maximum Suppression (NMS) algorithms are neces-

sary for current object detection algorithms to eliminate a

large number of redundant candidate bounding boxes. The

NMS algorithm simply sets a threshold, forcing the confi-

dence of candidate boxes to zero when IoU values larger than

the threshold. Obviously, this method is too rough to cause

overlapping but true targets to be missed, thereby increasing

the rate of false alarms. The soft-NMS algorithm [35] sets

an overlap area-based Gaussian penalty function for adjacent

detection bounding boxes, rather than simply setting their

confidence to zero. Take the two overlapping bridges in Fig. 5

as an example, soft-NMS can detect the two bridges very

well. However, the traditional NMS simply and rudely set the

threshold, so that the other bridge was dropped.

3) WARMUP COSINE ANNEALING LEARNING RATE

SCHEDULE

From experience and intuition, during training, when the loss

is getting smaller and smaller, the hyperparameter learning

rate should be correspondingly reduced. Especially when it is

near the optimum point, the learning rate should be lower to

avoid oscillation. The commonmethod is Piecewise Constant
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FIGURE 6. Visualization of 10 classes object detection examples by YOLOv3-ARSF networks on NWPU VHR-10.

Decay, also called Step Decay. After reaching the pre-defined

training epochs or iterations, the learning rate is multiplied by

a constant less than 1 (usually 0.1) to decrease. This schedule

is adopted in training FasterRCNN [13] and YOLOv3 [18].

However, it has a sharp learning transition period, which may

cause the optimizer to re-stabilize the learning momentum in

the next some iterations [36]. In contrast, the Warmup Cosine

Annealing Learning Rate (WCALR) schedule consists of

two stages, Warmup and Cosine Annealing Learning. In the

first stage, the model can gradually stabilize under the low

VOLUME 8, 2020 93065



F. Qingyun et al.: Efficient FPN for Object Detection in Remote Sensing Imagery

FIGURE 7. Comparison of ARSF, SPP and FPN in parameters, floating
point operations, and memory read and write.

TABLE 2. Cost-free tricks for improving YOLOv3 baseline
on NWPU VHR-10.

warmup learning rate to avoid violent oscillation. In the sec-

ond stage, since the model is relatively stable, a smoother

cosine-shape learning rate adjustment strategy is taken. The

two-pronged approach makes the model convergence faster

and performs better. The following formula can describe it:

αt =











t

T ′
α0 1 ≤ t ≤ T ′

1

2
α0

(

1 + cos

(

(t − T ′)π

T

))

T ′ ≤ t ≤ T
(8)

where t is the current epoch or iteration, αt is the learning rate

of the tth epoch or iteration, T ′ is total epochs or iterations of

warmup-stage, T is total epochs or iterations, and α0 is the

defined max learning rate.

Table 2 shows the improvement of the stronger

YOLOv3 baseline by three cost-free tricks. These three tricks

together improve the detection precision by 3%, which is a

considerable increase. Kmeans and WACLR increase mAP

by 1.9% and 0.8% respectively, while soft-NMS increases a

little by 0.3%.

D. EXPERIMENTS RESULT

To demonstrate that our proposed ARSF network is pow-

erful, we combine it with the YOLOv3 detector called

YOLOv3-ARSF. Experiments on the test set prove that our

TABLE 3. The AP value of objects of different sizes.

ARSF network can handle the two challenges of scale diver-

sity and small objects in remote sensing images, especially to

improve the detection of small and densely packed objects.

Fig. 6 is the visualization of some results of test set detection.

In general, the bounding boxes generated by the new detector

proposed in this paper can cover almost all targets well,

especially in Fig. 6 (h, i), when the targets are densely packed,

small, or both, the detector can still detect them without

missing.

For further proof, we show that the AP values of the small,

medium and large objects (described in Table 1) are in the

following Table 3. The best AP value of each item is bold

in Table. Compared with YOLOv3 and YOLOv3-SPP, our

proposed YOLOv3-ARSF has advantages in the detection of

small and medium objects, especially in small objects. It is

1.7 higher than YOLOv3 and 6.2 higher than YOLOv3-SPP,

which is a significant improvement.

In Table 4, we show the quantitative comparisons

measured by AP values from SSD, DSSD, YOLOv3,

YOLOv3 improved by tricks and our proposed detector

YOLOv3-ARSF. The best AP value of each category is bold

in Table. Among all the methods in Table, the proposed

YOLOv3-ARSF, once fine-tuned on the Darknet53 Ima-

geNet pre-trained model and boosted up by cost-free tricks,

achieved the best performance of one-stage detectors and

pushed the benchmark into 85.8. Owing to the ESPI module

and the ASF module, YOLOv3-ARSF performs better than

original YOLOv3 on objects of various sizes, including air-

plane(95.4 to 96.1), ship(87.1 to 88.7), storage tank(70.9 to

84.5), tennis court(73.2 to 81.1), basketball court(81.2 to

83.0), ground track field(96.2 to 98.3), harbor(85.6 to 87.2),

barge(60.6 to 76.4) and vehicle(56.1 to 63.2).

To illustrate the efficiency of ourmethod, FPN, SPP, ARSF,

ARSF (lite), and ARSF (lite+) are compared in terms of

parameters, Flops, and memory read and write, as shown

in Fig. 7. ARSF slightly exceeds the FPN and SPP in

these three terms. However, using both Depthwise Separable

FIGURE 8. Comparison of YOLOv3 baseline, YOLOv3-SPP, YOLOv3-ARSF,YOLOv3-ARSF(lite) and YOLOv3-ARSF(lite+) on
NWPU VHR-10.
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TABLE 4. The mAP (mean Average Precision) values of our proposed method and others on NWPU VHR-10.

convolution and 16-bit quantization technology

(ARSF(lite+)), the parameters and Flops can be reduced by

four times, and the memory read and write can be reduced by

two times, which is a huge improvement.

Furthermore, we design an experiment to compare

YOLOv3 and YOLOv3 variants using SPP, ARSF, ARSF

(lite), and ARSF (lite +) on model size, parameters, Flops,

memory read and write and mAP aspects. The results are

shown in Fig.8. YOLOv3-ARSF can achieve the best perfor-

mance. Compared with the baseline, YOLOv3-ARSF (lite+)

decreases 50% model size and memory reads and writes,

26% parameters, 19% Flops, 9% inference time but only

lost 5% of the mAP. Trading off efficiency and performance

makes it more suitable for edge devices. However, YOLOv3-

ARSF(lite) andYOLOv3-ARSF (lite+) did not compare with

other lightweight technologies, such as model pruning and

knowledge distillation. So for edge devices, using depthwise

separable convolution and half-precision quantization may

not be the best way.

V. CONCLUSION

In order to overcome the difficulties of scale diversity

and small targets in remote sensing detection, a novel

pyramid-structured network called ARSF is finely designed.

This advanced structure balances the importance of

low-leveled spatial information and high-leveled seman-

tic information during the learning process. The adaptive

learning behavior in ASF consolidates with robustness and

increase flexibility when facing data heterogeneity. A shorter

path in ESIP is provided, while a better performance is

established. Experiment results show that the proposed

detecting methods succeed in a wide range of object sizes,

and the best performance of 85.8 mAP is achieved in the

NWPU-VHR10 dataset. Besides, two lightweight versions,

ARSF (Lite) and ARSF (lite+) provide a technical basis for

the realization of online remote sensing object detection on

the satellite in the future.
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