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An Efficient Finite Shell Element for the Static
Response of Piezoelectric Laminates

PHILIPPE VIDAL,* MICHELE D’OTTAVIO, MEHDI BEN THAÏER AND OLIVIER POLIT

Laboratoire d’Energétique, Mécanique et Electromagnétisme, Université Paris Ouest Nanterre La Défense,

50 rue de Sèvres, 92410 Ville d’Avray, France

ABSTRACT: This study presents a novel finite element (FE) for shell structures including
piezoelectric actuators and sensors. Based on a conventional 8-node shell formulation and the
classical displacement-based variational formulation, the present element has an enriched
description of the transverse kinematics in order to consistently retain the full three-dimen-
sional (3D) piezoelectric coupling. Furthermore, a layer-wise description of the electric degrees
of freedom permits to account for embedded piezoelectric actuators and sensors. The robust-
ness of the FE is enhanced by referring to an established technique that avoids transverse shear
locking and membrane locking. Numerical results are given which validate the present imple-
mentation and highlight the efficiency and accuracy of the proposed formulation.
Additionally, some new reference solutions for the static behavior of piezoelectric shells are
provided by means of 3D FE computations with a commercial software.

Key Words: multilayered shell element, piezoelectric actuators and sensors, refined model,

three-dimensional constitutive law, reference solutions.

INTRODUCTION

I
N the last decades, numerous industrial domains are

being attracted toward high-performance structures

whose functionality is extended beyond the passive

load-bearing capability (Gibson, 2010). Structural

health monitoring, active vibration damping, and energy

harvesting are only some examples of possible appli-

cations of a multifunctional structural component.

Piezoelectric materials permit to convert mechanical

and electrical energy at frequency ranges that are most

interesting for technical applications such as vibration

damping and rapid shape adaptation (Chopra, 2002).

Due to the complex manufacturing of such structural

devices, a reliable numerical analysis tool is necessary

to capture all the relevant phenomena that guide the

design process. Furthermore, if optimization processes

and runtime control algorithms are addressed, the

numerical simulation tool should be as robust and effi-

cient as possible.

In this framework, several reduced structural models

have been proposed which account for the presence of

piezoelectric actuators and sensors. The mathematical

representation of the piezoelectric coupling must

account for the mode of actuation and the electrical

boundary conditions (Rogacheva, 1994). Basically, two

actuation modes can be considered in thin shell structure

applications the longitudinal extension mode (31-mode),

in which the polarization vector and the actuating elec-

tric field are parallel and act in the layer’s thickness

direction, and the shear actuation (15-mode), in which

the polarization vector and the actuating electric field

are perpendicular (Benjeddou et al., 2000). We shall limit

the scope of this contribution to the most common lon-

gitudinal extension mode. Thin piezoelectric actuators

working in 31-mode can be modeled in a first approxi-

mation by assuming a constant electric field along the

thickness direction. However, the constant electric field

assumption prevents an electric field to be induced by

the mechanical deformation, which is the direct piezo-

electric effect exploited in sensor applications. Note that

the induced field increases the apparent stiffness of the

plate by means of an additional ‘electric stiffness’ term.

In order to correctly represent this effect, an at least

quadratic approximation for the thickness distribution

of the electric potential should be employed (Bisegna

and Maceri, 1996; D’Ottavio and Polit, 2009).

The inclusion of piezoelectric sensors/actuators in the

load path of the host structure naturally leads to a multi-

functional composite component. An exhaustive review

with assessment of some typical models for piezoelec-

tric laminates has been provided by Saravanos and

Heyliger (1999). As pointed out in numerous works,

e.g., by Gopinathan et al. (2000); Ballhause et al.

(2005); Carrera and Brischetto (2007), the piezoelectric

coupling and the presence of electrical and mechanical
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interfaces sharpens the limits of classical, low-order

reduced models such as Classical Lamination Theory

(CLT) and First-order Shear Deformation Theory

(FSDT). To accurately capture the local response, a

so-called layer-wise description of the laminate is neces-

sary, whose computational cost, however, depends on

the number of layers. Equivalent single layer descrip-

tions, in which the number of unknowns is independent

of the number of layers, prove useful for a global

response analysis (Robbins Jr and Chopra, 2006;

Carrera et al., 2007). The possibility to impose indepen-

dent electrical boundary conditions at each piezoelectric

layer in the stack requires a layer-wise description of the

electrical field variables. For instance, Mitchell and

Reddy (1995) formulated a ‘hybrid’ model in which an

equivalent single layer kinematics has been employed

with a layer-wise assumption for the electric potential.

In general, different choices can be made for the electri-

cal variables, which should ensure both a consistent rep-

resentation of piezoelectric coupling and computational

efficiency (Sze et al., 2004). As far as the in-plane distri-

bution of the electrical field variables is concerned, the

satisfaction of the equipotentiality condition across an

electrode has been shown to be of primary relevance

(Chevallier et al., 2008). It is finally mentioned that, as

an alternative to coupled electromechanical models,

dedicated purely mechanical finite elements (FEs) have

been proposed by, e.g., Pablo et al. (2009) by including

the piezoelectric effects into an equivalent mechanical

stiffness and corresponding loading.

The above considerations on the modeling issues

of composite structures with embedded piezoelectric

materials are next employed to propose a literature

review of FE formulations for piezoelectric shells. The

review is limited to papers appeared after 2000, for pre-

vious developments we refer to the exhaustive survey

of Benjeddou (2000). Only general shell formulations

will be considered, which means that ‘flat’ elements

like those developed for plates and axisymmetric shells

will not be mentioned.

Several two-dimensional (2D) conventional shell ele-

ments have been formulated for the analysis of composite

structures with embedded piezoelectric materials.

Most of them employ the classical FSDT kinematics,

like the 4-node elements by Lammering (1991),

Lammering and Mesecke-Rischmann (2003), Zemčı́k

et al. (2007), Zouari et al. (2009) and the 9-node elements

by Balamurugan and Narayanan (2001, 2008) and

Marinkovich et al. (2006). A third-order theory has

been employed in the 8-node elements presented by

Kulkarni and Bajoria (2003) and Varelis and Saravanos

(2006). All aforementioned elements neglected the thick-

ness change of the shell and employed, hence, the reduced

2D constitutive law. Six parameters per node have been

used by Kulikov and Plotnikova (2008) for a ‘geometri-

cally exact’ 4-node shell element and by Lee et al. (2003)

for a 9-node isoparametric shell element. These elements

retained the full 3D constitutive law, which is an impor-

tant feature for a consistent representation of complex

physical interactions like multi-field coupling (Cho

and Oh, 2003). However, the linear approximation for

the transverse deflection used within the six parameters

shell formulation is known to suffer the so-called Poisson

locking (as detailed out by Carrera and Brischetto,

2008). In order to consistently resolve the coupling

between membrane and stretching energy contributions,

Kulikov and Plotnikova (2008) modified the 3D consti-

tutive law and Lee et al. (2003) enriched the transverse

strain distribution by referring to the Enhanced Assumed

Strain (EAS) technique. While the aforementioned ele-

ments are based on equivalent single-layer descriptions,

Kögl and Bucalem (2005) employed a layer-wise FSDT

mechanics. Their 4- and 9-node elements presented the

extension to piezoelectric shell elements of the Mixed

Interpolation of Tensorial Components (MITC) tech-

nique for contrasting transverse shear locking. A hierar-

chic discrete-layer kinematics based on piece-wise linear

approximations has been proposed by Heyliger et al.

(1996) and Saravanos (1997) in conjunction with an

8-node shell element. The accuracy of this description

could be improved upon increasing the number of numer-

ical layers which subdivide the physical plies of the

laminate. This formulation permitted the direct use of

the full 3D constitutive law. Very often the electrostatic

potential has been taken to vary linearly over the thick-

ness of the piezoelectric plies (Balamurugan and

Narayanan, 2001; Lee et al., 2003; Kulkarni and

Bajoria, 2003; Marinkovich et al., 2006; Zemčı́k et al.,

2007; Kulikov and Plotnikova, 2008). Kögl and

Bucalem (2005) and Balamurugan and Narayanan

(2008) retained the induced electric field by a layer-wise

quadratic assumption for the electrostatic potential.

Additionally, in view of the fulfillment of the equipoten-

tiality condition across the electrodes, Balamurugan

and Narayanan (2008) took the electric potential to be

constant at the top and bottom of each piezoelectric

ply. Heyliger et al. (1996) employed the hierarchic dis-

crete-layer description for the electric potential variables

as well, which permits to enhance the distribution of

the electric field over the thickness by introducing ficti-

tious numerical layers. Linear and refined approxima-

tions for the distributions of electrical field variables

along the thickness have been compared by Lammering

and Mesecke-Rischmann (2003).

Three-dimensional (3D) continuum-based piezoelec-

tric shell elements have been proposed by Sze et al.

(2000); Zheng et al. (2004); Tan and Vu-Quoc (2005);

Yao and Lu (2005); Klinkel and Wagner (2006, 2008).

This element type offers the possibility to easily imple-

ment the 3D constitutive law. Poisson locking has been

circumvented by resorting to either the EAS technique

(Zheng et al., 2004; Klinkel and Wagner, 2006, 2008) or



a hybrid stress formulation (Sze et al., 2000). The equi-

potentiality condition on surface electrodes has been sat-

isfied either by an element-wise constant interpolation

for the electric potential (as in, e.g., Zheng et al., 2004),

or by introducing an ‘electric node’ concept (Yao and

Lu, 2005). Most element formulations retained a linear

distribution of the electrostatic potential along the thick-

ness direction. In this case, a stack of several elements

is necessary to capture the induced electric field. 3D shell

elements with a direct representation of the induced

electric field employed a bilinear assumption for the

electric field (Klinkel and Wagner, 2006, 2008), or a

quadratic distribution for the electric potential (Yao

and Lu, 2005). All aforementioned 3D shell elements

resorted to the Assumed Natural Strain (ANS) tech-

nique to alleviate transverse shear locking.

This study proposes a conventional, 8-node shell ele-

ment which fully retains the 3D constitutive law upon

introduction of a quadratic assumption along the thick-

ness of the transverse deflection. The classical FSDT

kinematics, described by the three displacement compo-

nents of the reference surface and the two rotations of

the transverse fiber, is thus enriched by a thickness

stretch described by adding the transverse displacements

at the top and bottom faces of the laminate as indepen-

dent variables. Therefore, all the seven nodal degrees of

freedom (dof) of the proposed kinematics have a clear

physical meaning. Based on the previous experience of

Polit and Bruant (2006) and in order to limit computa-

tional cost, the electrostatic potential is taken to be

constant across the element domain and to vary linearly

over the thickness of each piezoelectric layer. Hence, the

equipotentiality condition on surface electrodes can be

readily satisfied and, when necessary, the bending

induced electric field can be accounted for by subdivid-

ing the piezoelectric physical ply into several numerical

layers. As a result, the number of electric potential dof

per element depends on the number of piezoelectric layers

in the composite stack and on the electrical boundary

conditions. Finally, the element robustness has been

enhanced by efficiently tackling the well-known locking

phenomena. For this, the modified interpolation scheme

proposed by Polit et al. (1994) is implemented, which is

directly derived from the field consistency paradigm

and avoids transverse shear locking and spurious zero-

energy modes. By using the same methodology, the

membrane locking can be alleviated as well.

This article is organized as follows: Next Section

describes the geometry of the shell-like solid and the refer-

ence frames that are subsequently used to introduce the 2D

model assumptions (section ‘Description of themodel’) and

the FE approximations (section ‘The FE approximations’).

The resulting element is validated in section ‘Numerical

results’ by referring to well-known linear static prob-

lems of piezoelectric and composite shell structures.

Finally, the conclusion summarizes the main findings.

DESCRIPTION OF THE SHELL

This preliminary section is dedicated to the geometric

description of the shell-like solid and to the different

reference frames that will be used for constructing the

finite shell element.

Description of the Geometry

Let us consider a shell C¼�� ½� h
2
, h
2
] where h is the

constant thickness of the shell and � the middle surface.

The description of the geometry of the shell is based on

the Cartesian coordinates of the nodes and on the FE

approximation over the elementary domain. For this, an

8-node quadrilateral FE will be used. Figure 1 illustrates

the employed FE approximation and shows the different

reference frames that will be used to describe the geom-

etry and the mechanics of the shell-like body. These

different bases are precised in Table 1. The global coor-

dinates of any arbitrary point in the elementary domain

a
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Figure 1. Description of the geometry of the 8-node shell element.

Table 1. Reference frames used for the description of
the shell.

( ~e1, ~e2, ~e3) Direct orthonormal Cartesian basis, (G)

(X1, X2, X3) Global Cartesian coordinates

(~t1, ~t2, ~t3) Direct orthonormal local basis, plane tangent to �, (L)

(x1, x2, z) Local curvilinear coordinates on �

( ~a�, ~a�, ~a3) Reduced local basis, plane tangent to �, (R)

(�, �, �) Reduced curvilinear coordinates on �



can be expressed in terms of the reduced (curvilinear)

coordinates �, � and the rectilinear normal coordinate z:

~�ð�, �, zÞ ¼

X1ð�, �, zÞ

X2ð�, �, zÞ

X3ð�, �, zÞ

2

6

4

3

7

5
¼

X

8

i¼1

Nqið�, �Þ

X1

X2

X3

2

6

4

3

7

5

i

þ z
X

8

i¼1

Nqið�, �Þ

t31

t32

t33

2

6

4

3

7

5

i

ð1Þ

where z is related to the unit axis � through a scalar

coefficient, and Nqi
(�, �) are the classical Serendipity

interpolation functions.

The thickness of the shell is described in terms of the

unit vector ~t3 ¼ t31 t32 t33½ �T normal to the middle surface

�. We prescribe ~t3 ¼ ~a3, i.e., the normal direction of the

local curvilinear reference frame on � coincides with

the normal direction of the local tangent plane to �

(Figure 1). The covariant in-plane base vectors ~a� are

usually obtained from the map ~� introduced in

Equation (1) to define the shell mid-surface �:

~a� ¼ ~�ð�, �Þ,� for � ¼ �, � ð2Þ

and the normal vector ~t3 ¼ ~a3 is finally obtained from

the perpendicularity condition:

~t3 ¼ ~a3 ¼
~a1 ^ ~a2

jj~a1 ^ ~a2jj
ð3Þ

The construction of the local base vectors ~t1 and ~t2 fol-

lows the procedure suggested by Zienkiewicz and Taylor

(2000).

The Change of Bases

The displacement field vector and the scalar electro-

static potential are expressed with respect to the global

reference frame ~ei as:

~uðX1,X2,X3, tÞ ¼
X

3

i¼1

uGi ðX1,X2,X3, tÞ~ei

�ðX1,X2,X3, tÞ

8

>

<

>

:

ð4Þ

where the superscript G indicates that the components

are taken in the global reference frame. The displace-

ment vector [u]¼ [u1 u2 u3]
T is expressed in the local

orthonormal basis (L) by:

uL
� �

¼ TLG½ � uG
� �

with TLG½ � ¼

t11 t12 t13
t21 t22 t23
t31 t32 t33

2

4

3

5

¼

~t1 � ~e1 ~t1 � ~e2 ~t1 � ~e3
~t2 � ~e1 ~t2 � ~e2 ~t2 � ~e3
~t3 � ~e1 ~t3 � ~e2 ~t3 � ~e3

2

6

4

3

7

5
ð5Þ

In the same way, the following expression can be

obtained:

uG
� �

¼ TGL½ � uL
� �

with TGL½ � ¼ TLG½ ��1

¼ TLG½ �T¼

t11 t21 t31

t12 t22 t32

t13 t23 t33

2

6

4

3

7

5
ð6Þ

The displacement vector [uR] defined in the reduced local

basis is constructed as:

uR
� �

¼ TRG½ � uG
� �

with TRG½ � ¼
a11 a21 a31
a12 a22 a32
a13 a23 a33

" #

¼

~a1 � ~e1 ~a1 � ~e2 ~a1 � ~e3

~a2 � ~e1 ~a2 � ~e2 ~a2 � ~e3

~a3 � ~e1 ~a3 � ~e2 ~a3 � ~e3

2

6

4

3

7

5
ð7Þ

Furthermore, the inverse relation holds:

uG
� �

¼ TGR½ � uR
� �

with TGR½ � ¼ TRG½ ��1 ð8Þ

Similar relations can be established between the local

orthonormal L and reduced R reference frames by

substituting G by L.

DESCRIPTION OF THE MODEL

The reduced 2D shell model is constructed starting

from the classical generalized displacement-based varia-

tional formulation. The assumptions for the shell kine-

matics and the through-thickness distribution of the

electrostatic potential are precised. A matrix notation

is employed which facilitates the subsequent introduc-

tion of the FE approximations.

The Weak Form of the Boundary Value Problem

The classical piezoelectric variational formulation of

Tiersten (1969) is employed in which the primary field

variables are the ‘generalized displacements’, i.e. the dis-

placement field and the electrostatic potential. Using a

matrix notation and for admissible virtual generalized

displacements u* and f* (virtual quantities are denoted

by an asterisk), the variational principle is given by:

Z

C

�½uL��T½ €uL� dC ¼ �

Z

C

½"L�ðuL�Þ�T½�LðuL,�Þ� dC

þ

Z

C

½uL��T½ f � dC þ

Z

@CF

½uL��T½F � d@C

þ

Z

C

½EL�ð��Þ�T½DLðuL,�Þ�dC

�

Z

C

q�� dC �

Z

@CQ

Q�� d@C ð9Þ



where [ f ] is the body force vector, [F] the surface force

vector applied on qCF, q the volume charge density, Q

the surface charge density supplied on qCq, and � is the

mass density. Finally, eL*(uL*) and E*(�*) are the virtual
strain and virtual electric field that satisfy the compati-

bility gradient equations, while sL and D are the conju-

gated fluxes (stress and dielectric displacement,

respectively) obtained from the constitutive equations.

Note that the variational formulation is written in the

local reference frame because the constitutive relation is

described in this coordinate system (see the next section).

In the remainder of this article, we will refer only to

static problems, for which the left-hand side term is set

to zero. Furthermore, body forces and volume charge

densities will be discarded ([ f ]¼ [0]; q¼ 0).

The Constitutive Equation

The 3D constitutive equation for a linear piezoelectric

material is given by the following set of coupled equa-

tions (ANSI/IEEE Std 176-1987, 1987):

½�L� ¼ ½C�½"L� � ½e�T½EL� ð10aÞ

½DL� ¼ ½e �½"L� þ ½	 � ½EL� ð10bÞ

where we denote by [C] the matrix of elastic stiffness

coefficients taken at constant electric field, by [e] the

matrix of piezoelectric stress coefficients and by [e] the

matrix of electric permittivity coefficients taken at con-

stant strain. The explicit form of these matrices is given

in appendix for an orthotropic piezoelectric layer work-

ing in 31-mode. Equation (10a) expresses the piezoelec-

tric converse effect for actuator applications, whereas

Equation (10b) represents the piezoelectric direct effect

which is exploited in sensor applications. Note that the

constitutive law is expressed in the local reference frame.

The Displacement and Strain Fields

The shell kinematics is based on the classical

Reissner�Mindlin plate model, which is however

enlarged by a quadratic thickness stretch displacement.

An equivalent single-layer approach is employed for

describing the kinematics of the composite cross-section.

The displacement field can be expressed by:

~uGðx1, x2, zÞ ¼ ~vGðx1, x2Þ þ z ~
Lðx1, x2Þ

þ ~wL
stðx1, x2, zÞ ð11Þ

where the classical Reissner�Mindlin kinematics reads:

~vG ¼ vG1 ~e1 þ vG2 ~e2 þ vG3 ~e3 ð12aÞ

~
L ¼ �L2 ~t1 � �L1 ~t2 ð12bÞ

The displacements vGi are taken in the global frame with

respect to the Cartesian ~ei directions, while �
L
� (a¼ 1, 2)

are the positive rotations about the local axes ~t� of the

transverse fiber initially normal to the shell mid-surface.

The additional term ~wL
st acts on the local direction

normal to the shell surface. This stretching term is con-

structed as a Lagrange quadratic expansion of the local

thickness coordinate z as follows:

~uG � ~t3 ¼ ~vG þ ~wL
st

� �

� ~t3 ¼ fmðzÞ wmðx1, x2Þ

þ fbðzÞ wbðx1, x2Þ þ ftðzÞ wtðx1, x2Þ ð12cÞ

where wm, wb, and wt are the displacements along ~t3 at the
shell middle, bottom, and top surfaces, respectively, and

fmðzÞ ¼ 1�
4

h2
z2 fbðzÞ ¼

1

h
z

2

h
z� 1

� �

ftðzÞ ¼
1

h
z

2

h
zþ 1

� �

ð12dÞ

Note thatwm ¼ ~vG � ~t3 and that this refinement needs only

two additionally unknown functions (wb and wt) with

respect to the classical Reissner�Mindlin kinematics.

For further convenience we introduce the following

notation:

~w ¼ ~uG � ~t3 ¼ w0 þ z w1 þ z2 w2 ð13Þ

By virtue of this quadratic approximation, the full 3D

constitutive equation can be directly employed with the

present kinematics without Poisson locking problems

(see also Carrera and Brischetto, 2008).

The compatible strain field is obtained from the linear

strain-displacement relations, which in the global refer-

ence frame read:

"Gijð~u
GÞ ¼

1

2
~uG,i þ ~uG,j

� �

ð14Þ

where i, j¼X1, X2, and X3. The components of the strain

tensor can be calculated with respect to the three bases

G, L, and R:

"ð~uGÞ ¼ "Gijð~e
i � ~ej Þ ¼ "Lijð~t

i � ~tj Þ

¼ "R ijð~ai � ~aj Þ ¼ "Rijð~a
i � ~aj Þ ð15Þ

It must be noted that covariant and contravariant com-

ponents are the same when expressed with respect to an

orthonormal basis, for example ~ei and ~ti. This is not the
case when the strain components are expressed in the

local reduced reference frame ~ai. Therefore, we can

express the strain tensor in the reduced basis in either

covariant or contravariant components.



In this study, the strain components are first calcu-

lated from the FE approximations with respect to the

reduced local basis vectors. This allows us to carry out

the special treatment to correct the membrane and trans-

verse shear locking described in Section ‘Correction

of the transverse shear and membrane locking’. The

strains are subsequently expressed in the local orthonor-

mal reference frame through the opportune basis trans-

formations (Section ‘Strain components in the local

basis’). As already mentioned, the local reference frame

is the correct one in which the constitutive law should be

expressed.

Based on the above considerations, and for further con-

venience, we express the local strain from Equations (11)

and (15) by separating the contributions that are con-

stant, linear, and quadratic in the thickness coordinate z:

"L
� �

¼ "L0
� �

þ z "L1
� �

þ z2 "L2
� �

ð16Þ

Additionally, the following expression can be deduced

by rearranging the thickness assumption in the matrix

[F
e
(z)] and by separating the contributions of the

in-plane strains ep, the transverse shear strains � and

the transverse stretch e33:

"L
� �

¼

"Lp

h i

�L
� �

"L33
� �

2

6

6

4

3

7

7

5

¼ F"ðzÞ½ � "u½ � ð17Þ

The Electric Potential and the Electric Field Vector

A layer-wise linear approximation is used to describe

the through-thickness behavior of the scalar electrostatic

potential f(x1, x2, z). There are two main advantages of

this layer-wise description:

. independent electrical boundary conditions can be

applied to each piezoelectric ply;

. a refinement of the description of the electric field

variable is easily obtained by subdividing the physical

piezoelectric ply into several numerical layers.

As pointed out in the literature review, the latter point is

particularly important when dealing with problems

involving a bending-induced electric field along the

shell thickness (see, e.g., Klinkel and Wagner, 2006;

Polit and Bruant, 2006).

For a layer (k) with a thickness e(k) and a reduced

normal coordinate z2 [�1, 1], we have a linear variation

using two potential values ð�ðkÞ
bot,�

ðkÞ
topÞ located at the

bottom and top of each layer:

�ðkÞðx1, x2, zð�ÞÞ ¼
1

2
ð1� �Þ�ðkÞ

botðx1, x2Þ

þ
1

2
ð1þ �Þ�ðkÞ

topðx1, x2Þ ð18Þ

The expression in the local reference frame with

z 2 ½z
ðkÞ
bot, z

ðkÞ
top� is obtained by considering the relation

between the coordinates:

zð�Þ ¼
1

2
ðz

ðkÞ
bot þ z

ðkÞ
topÞ þ

1

2
�eðkÞ ð19Þ

The matrix notation introduced in Equation (17) is

employed for the electric potential as well:

½�ðkÞðx1, x2, zð�ÞÞ� ¼ ½F
ðkÞ
� ðzÞ�

�ðkÞ
botðx1,x2Þ

�ðkÞ
topðx1,x2Þ

" #

ð20Þ

The electric field vector ½ELðkÞ� ¼ ½ELðkÞ
x1

ELðkÞ
x2

ELðkÞ
z �T is

obtained from the gradient relation:

�½ELðkÞðx1, x2, zð�Þ� ¼

�ðkÞ
,1

�ðkÞ
,2

�ðkÞ
,3

2

6

4

3

7

5
¼ ½F

ðkÞ
E ðzÞ�½E

ðkÞ
� � ð21aÞ

where ½E
ðkÞ
� � contains the derivatives of the approxima-

tion for �(k) given in Equation (18):

½E
ðkÞ
� � ¼

�ðkÞ
botðx1, x2Þ

�ðkÞ
botðx1, x2Þ,1

�ðkÞ
botðx1, x2Þ,2

�ðkÞ
topðx1, x2Þ

�ðkÞ
topðx1, x2Þ,1

�ðkÞ
topðx1, x2Þ,2

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð21bÞ

More details about the expressions of the matrices

½F
ðkÞ
E ðzÞ� and ½F

ðkÞ
� ðzÞ� have been reported by Polit and

Bruant (2006).

The Reduced 2D Problem

Taking into account the constitutive law in Equation

(10), the variational principle expressed by Equation (9)

reads (inertia terms, body forces, and volume charge

densities are discarded):

Z

C

n

½"L�ðuL�Þ�T ½C�½"LðuLÞ� � ½e �T½ELð�Þ�
� �

� ½EL�ð��Þ�T ½e �½"LðuLÞ� þ ½	 � ½ELð�Þ�
� �

o

dC ¼ W�
ext ð22Þ

where W�
ext represents the external virtual work done by

the prescribed surface traction [F] and charge densities

[Q]. The model assumptions for the kinematics

(Equation (17)) and the electric field (Equation (21a))

are further introduced by considering the quantities



specific to the layer (k). As a result, the dependency on

the thickness coordinate z explicitly appears in the gov-

erning equation (22) and the integral over the domain C

can be written as

Z

�

"�u
� �T

n

Z

h

F"ðzÞ½ �T CðkÞ
� �

F"ðzÞ½ �dz
o

"u½ � d�

þ

Z

�

"�u
� �T

n

Z

h

F"ðzÞ½ �T eðkÞ
� �T

F
ðkÞ
E ðzÞ

h i

dz
o

E
ðkÞ
�

h i

d�

þ

Z

�

E
ðkÞ�
�

h iTn
Z

h

F
ðkÞ
E ðzÞ

h iT

eðkÞ
� �

F"ðzÞ½ �dz
o

"u½ � d�

�

Z

�

E
ðkÞ�
�

h iTn
Z

h

F
ðkÞ
E ðzÞ

h iT

	ðkÞ
� �

F
ðkÞ
E ðzÞ

h i

dz
o

E
ðkÞ
�

h i

d�

¼ W�
ext ð23Þ

The integral over the thickness of the multilayered shell

is carried out by considering the separate layer contri-

butions. Since an equivalent single layer description is

employed for the kinematics, the mechanical stiffness

term is computed as the sum over the contributions of

all layers:

kuu½ � ¼
X

k

kðkÞuu

� �

¼
X

k

n

Z

hk

F"ðzÞ½ �T CðkÞ
� �

F"ðzÞ½ �dz
o

ð24Þ

The matrix [kuu] is thus square with dimensions indepen-

dent of the number of layers. On the contrary, a layer-

wise description is used for the electric field and an

assembly procedure is necessary for constructing the

dielectric matrix for the whole multilayered shell:

k��
� �

¼
[

k

k
ðkÞ
��

h i

¼
[

k

n

Z

hk

F
ðkÞ
E ðzÞ

h iT

	ðkÞ
� �

F
ðkÞ
E ðzÞ

h i

dz
o

ð25Þ

Therefore, the matrix [k��] is square with dimensions

that depend on the number of layers into which the shell

is subdivided. The piezoelectric coupling terms finally

arise from the second and third terms of Equation (23):

k
ðkÞ
u�

h i

¼

Z

hk

F"ðzÞ½ �T eðkÞ
� �T

F
ðkÞ
E ðzÞ

h i

dz ð26aÞ

k
ðkÞ
�u

h i

¼

Z

hk

F
ðkÞ
E ðzÞ

h iT

eðkÞ
� �

F"ðzÞ½ �dz ¼ k
ðkÞ
u�

h iT

ð26bÞ

The construction of the coupling matrix [ku�] for the

whole multilayered shell involves, hence, the summation

over the layers for the rows and the assembly procedure

for the columns, which yields a rectangular matrix whose

number of columns depends on the number of layers.

The coupling matrix [k�u] is evidently obtained as:

k�u
� �

¼ ku�
� �T

ð27Þ

Having eliminated the dependency on the thickness

coordinate z from Equation (23), the reduced 2D prob-

lem on � finally reads:
Z

�

"�u
� �T

kuu½ � "u½ � þ ku�
� �

E
ðkÞ
�

h i� 	

þ E
ðkÞ�
�

h iT

� ku�
� �T

"u½ � � k��
� �

E
ðkÞ
�

h i� 	

d� ¼ W�
ext ð28Þ

THE FE APPROXIMATIONS

This section introduces the FE approximations for the

mechanical and the electrical field variables as well as

the dedicated treatment to avoid locking problems. The

solution of the resulting discrete form of the coupled

electromechanical system is finally discussed in Section

‘The discrete piezoelectric system’.

The FE Approximation for the Mechanical Variables

Based on the 8-node shell element illustrated in

Figure 2, the following FE approximation can be intro-

duced for the kinematics:

~uG ¼
X

i

Nqi ð�, �Þ
�

~vG
�

i
þ z

X

i

Nqi ð�, �Þ
�

~
L
�

i

þ
X

i

Nqið�, �Þ
�

~wL
st

�

i
ð29Þ

The vector of the dof of the element is thus introduced

according to ½qLe�
T ¼ ½vG1 v

G
2 v

G
3 �

L
1 �

L
2 w1 w2�i¼1,...,8

The Strain Field

In view of the subsequent introduction of the correc-

tions of the locking problems, we first express the strain

field in the reduced local basis as:

"Rij ¼
1

2
~uG,i � ~aj þ ~uG,j � ~ai
� �

ð30Þ

where i, j¼ 1, 2, 3 stand for x, Z, z, i.e., the reduced

coordinates of the FE approximation. The in-plane,
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Figure 2. The 8-node shell FE.



transverse shear and transverse normal strains intro-

duced in Equation (17) can be written as:

"Rp

h i

¼ "R0p

h i

þ z "R1p

h i

¼

"0��

"0��

�0��

2

6

4

3

7

5
þ z

"1��

"1��

�1��

2

6

4

3

7

5
ð31aÞ

�R
� �

¼ �R0
� �

þ z �R1
� �

þ z2 �R2
� �

¼
�0

�3

�0
�3

" #

þ z
�1

�3

�1
�3

" #

þ z2
�2

�3

�2
�3

" #

ð31bÞ

"L33
� �

¼ "L033
� �

þ z "L133
� �

ð31cÞ

Note that since ~a3 ¼ ~t3 we have ½	L33� ¼ ½	R33�, i.e., the

transverse normal strain in the reduced basis coincides

with Equation (31c). In the following, the relation

between the separate strain contributions and the

assumed kinematics are explicitly reported.

MEMBRANE STRAIN "R0p

h i

The membrane strain term is defined by:

"R0p

h i

¼
X

i

BMPMi½ �
vG1

vG2

vG3

2

4

3

5

i

ð32aÞ

with

BMPMi½ � ¼

~a1 � ~e1 Nqi ,� ~a1 � ~e2 Nqi ,� ~a1 � ~e3 Nqi ,�

~a2 � ~e1 Nqi ,� ~a2 � ~e2 Nqi ,� ~a2 � ~e3 Nqi ,�

~a2 � ~e1 Nqi ,� ~a2 � ~e2 Nqi ,� ~a2 � ~e3 Nqi ,�

þ~a1 � ~e1 Nqi ,� þ ~a1 � ~e2 Nqi ,� þ ~a1 � ~e3 Nqi ,�

2

6

6

6

4

3

7

7

7

5

ð32bÞ

where ~a� are evaluated at the integration points.

BENDING STRAIN "R1p

h i

For the bending contribution associated to the rota-

tions �L� (a¼ 1, 2), the scalar product must be consid-

ered between the local base vectors ~t� and the reduced

basis. We have thus:

"R1p

h i

¼
X

i

BFi½ �
�L1
�L2


 �

i

ð33aÞ

with

BFi½ � ¼

�~a1 � ~t2 Nqi ,� ~a1 � ~t1 Nqi ,�

�~a2 � ~t2 Nqi ,� ~a2 � ~t1 Nqi ,�

�~a2 � ~t2 Nqi ,� ~a2 � ~t1 Nqi ,�

�~a1 � ~t2 Nqi ,� þ~a1 � ~t1 Nqi ,�

2

6

6

6

4

3

7

7

7

5

ð33bÞ

Here, the ~a� are evaluated at the integration points while
~t� are evaluated at the node.

CONSTANT TRANSVERSE SHEAR

STRAIN [�R0]

For the constant part of the transverse shear strain,

both the scalar products must be considered that project

the global and local bases with respect to the reduced

basis. We have:

�R0
� �

¼
X

i

BCi½ �

vG1

vG2

vG3

�L1

�L2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

i

ð34aÞ

with

In this last equation, ~ai are evaluated at the integra-

tion points while ~t� are evaluated at the node.

NON-CONSTANT TRANSVERSE SHEAR

STRAIN [�R1] AND [�R2]

The linear and quadratic terms of the transverse shear

strain are associated to the linear and quadratic terms of

the assumption Equation (13), respectively. The expres-

sion for these contributions thus reads:

�R1
�3 ¼

X

i

Nqi ,� w1ð Þi and

�R2
�3 ¼

X

i

Nqi ,� w2ð Þi ð� 2 f�, �gÞ ð35Þ

TRANSVERSE NORMAL STRAIN "L033
� �

AND "L133
� �

The constant and linear contributions of the trans-

verse normal strain can be directly obtained from

Equation (13) as:

"L033 ¼
X

i

Nqi w1ð Þi and "L133 ¼
X

i

2 Nqi w2ð Þi ð36Þ

BCi½ � ¼
~a3 � ~e1 Nqi ,� ~a3 � ~e2 Nqi ,� ~a3 � ~e3 Nqi ,� �~a2 � ~t2 Nqi ~a2 � ~t1 Nqi

~a3 � ~e1 Nqi ,� ~a3 � ~e2 Nqi ,� ~a3 � ~e3 Nqi ,� �~a1 � ~t2 Nqi ~a1 � ~t1 Nqi

" #

ð34bÞ



Correction of the Transverse Shear and Membrane

Locking

In the following, the special treatment of the trans-

verse shear and membrane strains is presented, by which

the numerical locking problems are alleviated. The

methodology is based on the field consistency paradigm

and a previous implementation has already demon-

strated its efficiency for plates (Polit et al., 1994) and

shells (Polit and Touratier, 1999). In order to obtain

best performances even in presence of distorted

meshes, the field consistency is ensured in the local

reduced coordinate system.

TRANSVERSE SHEAR STRAIN

INTERPOLATIONS

Transverse shear locking is caused by the constant

part of the transverse shear strain [�0], in particular by

the polynomial inconsistency of its isoparametric defini-

tion given in Equation (34) the quadratic contributions

of the rotational dof �L� (a¼ 1, 2) do not match the

contributions obtained from the derivation of the local

transverse displacement of the mid-surface w0

(obtained from ðvGiÞi¼1,2,3). The procedure to avoid

transverse shear locking is thus based on the construc-

tion of a new approximation for the constant part

of the transverse shear strains and consists of the follow-

ing steps:

. The transverse shear strains are defined in the local

reduced coordinates:

�0
�3 ¼ 
� þ w0,� �0

�3 ¼ 
� þ w0,� ð37Þ

where 
x, 
Z are the rotations in reduced coordinates

obtained from the positive rotations �a (a¼ 1, 2), see

also Equation (12b).

. In order to ensure the same polynomial approxima-

tion for the rotation and the transverse displacement

in Equation (37), w0 is assumed to be cubic, introduc-

ing four supplementary dof at the mid-side nodes:

(w0,�)5, (w0,�)6, (w0,�)7, (w0,�)8.

. A linear variation of the tangential transverse shear

strain component is assumed on each side of the

elementary domain (Figure 2). Thus, the supplemen-

tary dof introduced at the previous step can be

expressed as a linear combination of the rotation

and transverse displacement values. Therefore, a

new FE approximation is obtained for the transverse

displacement w0.

. The interpolation of the reduced transverse shear

strain components is defined in the following polyno-

mial bases, which represent the intersection sets of

monomial terms from � and �:

Bð�0�3Þ ¼ Bð
�Þ \ Bðw0,�Þ ¼ f1, �, �, � �, �2g ð38aÞ

Bð�0�3Þ ¼ Bð
�Þ \ Bðw0,�Þ ¼ f1, �, �, � �, �2g ð38bÞ

. According to the dimension of the polynomial basis,

five points are needed for each reduced transverse

shear strain. These points were chosen as indicated

in Figure 3 because this location gives the best results

in the case of distorted meshes (for more details see

Polit et al., 1994). The following FE approximation

is finally obtained for the reduced transverse shear

strains:

�0
�3ð�, �Þ ¼

X

5

I¼1

C�Ið�, �Þ��I

�0
�3ð�, �Þ ¼

X

5

J¼1

C�Jð�, �Þ��J ð39Þ

This modified interpolation for the transverse shear

strain substitutes that of Equation (34).

MEMBRANE STRAIN INTERPOLATIONS

The construction of a new consistent approximation

for the membrane strain field is based on the same

Figure 3. Point locations for the transverse shear strain evaluations.



arguments outlined in the previous section. The mem-

brane strain terms ~"R0p

h i

in the local basis read:

~"R0p

h i

¼

"0��

"0��

"0��

"0��

2

6

6

6

4

3

7

7

7

5

¼

v� ,�

v�,�

v� ,�

v�,�

2

6

6

6

4

3

7

7

7

5

ð40Þ

If the isoparametric approach is used, these membrane

strain interpolations refer to incomplete second-order

polynomials. Therefore, a consistent polynomial for

the interpolation of ~"R0p

h i

is chosen by adopting the fol-

lowing set of monomial terms: {1, �, �, � �}. This poly-
nomial basis requires four points for evaluating each

membrane strain component, two in the � direction

and two in the � direction. Numerical plate membrane

tests with distorted meshes indicate that the best choice

is to take the reduced integration points K1,. . ., K4 illus-

trated in Figure 4. The new interpolation of each mem-

brane strain component is thus given by:

"�
ð�, �Þ ¼
X

4

K¼1

C��Kð�, �Þ"�
K for ð�,
Þ 2 f�, �g2 ð41Þ

This interpolation substitutes the isoparametric one in

Equation (32).

Strain Components in the Local Basis

The strains defined in Equations (32)�(35) being

expressed in the reduced basis, a tensorial transforma-

tion is necessary in order to express these strains in the

physical local basis. The tensorial transformation is

performed as:

"L�p

h i

¼ TTLR½ � "R�p

h i

, � ¼ 0, 1 ð42aÞ

�L�
� �

¼ TLR½ � �R�
� �

, � ¼ 0, 1, 2 ð42bÞ

where the second-order tensorial matrix:

is constructed from the following transformation

matrix:

TLR½ � ¼ TRL½ ��1 with TRL½ � ¼
~a1 � ~t1 ~a1 � ~t2
~a2 � ~t1 ~a2 � ~t2


 �

ð43bÞ

The FE Approximation for the Electric Potential

We assume that the electric potential remains constant

across the element coordinates (�, �):

�ð�, �Þ ¼ �e ð44Þ

This choice allows us to develop a simple numerical

tool which can be used in conjunction with active

control algorithms and optimization processes. The

previous study by Polit and Bruant (2006) has demon-

strated that this approach yields good results.

Moreover, it permits to easily enforce the equipotenti-

ality condition at piezoelectric patch electrodes. Upon

introduction of Equation (44) into Equation (21b), the

in-plane derivatives of the electric potential terms

vanish and a very simple expression is obtained for

the array ½E
ðkÞ
� �:

½E
ðkÞ
� � ¼ ½Bconst��½q�

ðkÞ
e � ð45Þ

where [Bconst�] contains only constant terms and

the vector of the elementary electric dof contains the

electric potential values at the top and bottom of the

layer (k):

½q�
ðkÞ
e � ¼

q�
ðkÞ
ebot

q�
ðkÞ
etop

2

4

3

5 ð46Þ

TTLR½ � ¼

TLRð1, 1Þ
2 TLRð1, 2Þ

2 TLRð1, 1Þ TLRð1, 2Þ

TLRð2, 1Þ
2 TLRð2, 2Þ

2 TLRð2, 1Þ TLRð2, 2Þ

2 TLRð1, 1Þ TLRð2, 1Þ 2 TLRð1, 2Þ TLRð2, 2Þ TLRð1, 1Þ TLRð2, 2Þ þ TLRð1, 2Þ TLRð2, 1Þ

2

6

4

3

7

5
ð43aÞ

Figure 4. Point locations for the membrane strains evaluations.



The Discrete Piezoelectric System

The FE interpolations on � for the strains given in

Equations (33), (35), (36), (39), (41) and those for the

electric field in Equation (45) are introduced in the 2D

governing equation (28). The local orthonormal basis is

addressed by referring to the transformations given in

Equation (42). The integral over the elementary domain

is carried out by means of the Gauss quadrature scheme.

Assembling each elementary contribution in the global

reference frame, the following discrete form of the cou-

pled piezoelectric system is obtained:

½Kuu� ½Ku��

½Ku� �
T ½K���


 �

½qu�

½q��


 �

¼
½Lu�

½L��


 �

ð47Þ

where [Kuu], [K��], and [Ku�] are the global stiffness,

dielectric, and piezoelectric matrices of the shell, respec-

tively. The mechanical dof (displacements and rotations)

are included in the vector [qu], while the electrical dof

(electric potentials) are in the vector [q�]. The load vec-

tors [Lu] and [L�] represent the external loading from

applied forces and prescribed charges, respectively.

Essential boundary conditions (i.e., prescribed displace-

ments and electric potentials) are imposed numerically

by a penalty technique. The coupled system is then

solved by the classical static condensation procedure

for the electrical dof:

½q�� ¼ ½K���
�1ð½L�� � ½Ku��

T½qu�Þ ð48aÞ

which yields the following purely mechanical system

with a modified equivalent stiffness matrix:

h

½Kuu� � ½Ku��½K���
�1½Ku��

T
i

½qu�

¼ ½Lu� � ½Ku��½K���
�1½L�� ð48bÞ

NUMERICAL RESULTS

In this section, several tests available in open literature

are presented in order to evaluate the efficiency of the

present C7CL8PZ element (laminated shell element with

seven mechanical dof per node, based on the CL8 strain

interpolations of Polit et al. (1994) and including piezo-

electric coupling). Flat plates are considered in Section

‘Piezoelectric bimorph plate’, open- and closed-cylindri-

cal shell geometries are addressed in Section ‘Closed

cylindrical rings’ and Section ‘Composite cylindrical

shell panels’, respectively. Different stacking sequences

are also included in this study in order to demonstrate

the capabilities of the present piezoelectric composite

shell element. Linear static actuator and sensor applica-

tions are discussed. For the sake of brevity, the robust-

ness of the element with respect to transverse shear and

membrane locking problems will not be assessed since

this result has been already presented by Polit et al.

(1994) and Polit and Touratier (1999).

We have chosen the case studies among those that

have been more often reported in literature. A complete

description in a unified format of the case studies is pro-

posed so that there is no need to retrieve the original

articles reported in the references. For compatibility

with the reported references, the results will be often

provided in graphical format. A new reference solution

issued from a 3D FE simulation performed with the

commercial software ANSYS is provided for those

cases for which an uncertainty exists in the graphical

evaluation of the reference results.

The results of the present element are compared with

those obtained by other piezoelectric shell finite ele-

ments. Reference will be made to the element ISOP4

of Sze et al. (2000), the ISOP9 of Lee et al. (2003), the

GEXP4 proposed by Kulikov and Plotnikova (2008) as

well as to the elements denoted S-1997 (Saravanos,

1997), BN-2001 (Balamurugan and Narayanan, 2001),

TVQ-2005 (Tan and Vu-Quoc, 2005) and BN-2008

(Balamurugan and Narayanan, 2008). All these elements

employ the electrostatic potential as electrical dof.

Table 2 summarizes the main features of these shell ele-

ments, namely the number of mechanical dof per node

as well as the through-thickness assumptions and the

FE approximations used for the electric potential.

The notation LW (layer-wise) is employed if the assump-

tion for the electric potential can be refined upon intro-

duction of numerical interfaces.

Table 2. Main features of the finite shell elements used for the numerical assessment.

Shell FE

Mechanical

dof per node

Thickness electric

approximation

In-plane electric

approximation

S-1997 (Saravanos, 1997) 5 LW linear Quadratic

ISOP4 (Sze et al., 2000) 3 Linear Bilinear

BN-2001 (Balamurugan and Narayanan, 2001) 5 Linear Constant

ISOP9 (Lee et al., 2003) 6 Linear Biquadratic

TVQ-2005 (Tan and Vu-Quoc, 2005) 3 Linear Bilinear

GEXP4 (Kulikov and Plotnikova, 2008) 6 Linear Bilinear

BN-2008 (Balamurugan and Narayanan, 2008) 5 Quadratic Constanta

C7CL8PZ (this study) 7 LW Linear Constant

aIn the BN-2008 element, the electric potential is element-wise constant at the outer surfaces of the piezoelectric layer, while a biquadratic interpolation is used for
the induced electric potential at the middle surface.



Piezoelectric Bimorph Plate

The first numerical validation concerns the bimorph

pointer illustrated in Figure 5, for which experimental

results and an analytical solution have been provided by

Tzou et al. (1990) and Tzou (1993), respectively. This

experiment has been widely used in literature to validate

the static response of piezoelectric shell elements.

Geometry: The bimorph consists of a rectangular

plate with length a¼ 100mm, width b¼ 5mm, and

thickness h¼ 1mm (Figure 5).

Material: The bimorph consists of a stack of two

PVDF layers with opposite polarization (bimorph in

series or anti-parallel configuration, see also

Fernandes and Pouget, 2003), which have the follow-

ing properties:

E1¼ 2GPa n12¼ 0 G12¼ 1GPa

E2¼ 2GPa n13¼ 0 G13¼ 1GPa

E3¼ 2GPa n23¼ 0 G23¼ 1GPa

e31¼ 0.046C/m2 e32¼ 0.046C/m2 e33¼ 0C/m2

e15¼ 0C/m2 e24¼ 0C/m2

e11¼ 0F/m e22¼ 0F/m e33¼ 0.1062 nF/m

The piezoelectric coefficients and dielectric permittiv-

ities for which no values were reported in the reference

works have been set to zero.

Boundary Conditions: The cantilevered plate has all

mechanical dof blocked on the boundary at x1¼ 0.

The boundary conditions for the actuator and sensor

configuration are as follows:

. Actuator case: Prescribed electric potential at the

top and bottom faces of the plate: �(z¼�h/2)¼

��(z¼þh/2)¼ 0.5V.

. Sensor case: As reported by Tan and Vu-Quoc (2005),

the tip of the plate is loaded by a vertical force

F¼ 0.0254371N, which corresponds to a deflection

of 0.01m. The bottom face of the plate is grounded,

�(z¼�h/2)¼ 0V, while the electric potential at the

top face is free.

Mesh: A regular mesh with five elements is used with

mx1
¼ 5, mx2

¼ 1 as depicted in Figure 5. One numeri-

cal layer is used for each PVDF ply.

Results: For the actuator case, the plate deflection at

the mean surface u3(z¼ 0) is reported. For the sensor

case, the electric potential at the top surface �(z¼ h/2)

is given.

ACTUATOR CASE

The deflection of the bimorph under the action of an

imposed electric field is computed. The numerical results

are reported in Table 3 along with the experimental out-

put and the analytical result. The present C7CL8PZ ele-

ment yields results similar to those found in literature.

In general, the predicted tip deflection is about 9%

larger than the experimentally measured one. This may

be explained by voltage leakage, imperfect bonding,

energy dissipation, etc. (Suleman and Venkayya, 1995).

SENSOR CASE

The electrostatic potential measured at the top surface

at various distances from the clamped edge is reported in

Table 4 and Figure 6. A good agreement is found with

results found in literature. Note that the values of the

literature have been extracted from graphical results

reported in the cited references. While the element

TVQ-2005 has a bilinear interpolation for the electric

Table 3. Nodal deflection of the bimorph piezoelectric actuator (km).

Distance from clamping (mm) 20 40 60 80 100

Experiment (Tzou et al., 1990) � � � � 0.315

Analytical (Tzou, 1993) 0.0138 0.0552 0.1242 0.2208 0.3450

ISOP4 0.0138 0.0552 0.1242 0.2208 0.3450

BN-2001 0.0144 0.0557 0.1240 0.2192 0.3415

ISOP9 0.0137 0.0551 0.1241 0.2207 0.3449

TVQ-2005 0.0138 0.0552 0.1242 0.2208 0.3450

GEXP4 0.0138 0.0552 0.1242 0.2208 0.3450

C7CL8PZ 0.0137 0.0551 0.1241 0.2207 0.3449

a
b

h

z

x1

Figure 5. Piezoelectric bimorph beam.



potential distribution across the element, the electric

potential is constant across the C7CL8PZ and BN-

2001 elements (Table 2). For these elements, Table 4

reports two nodal values corresponding to the adjacent

elements and a piece-wise constant distribution is

obtained along the axis (Figure 6). In reality, the voltage

is averaged at the common node between adjacent ele-

ments due to conductivity.

Closed Cylindrical Rings

We consider a problem formulated by Heyliger

et al. (1996), which addresses the static response of

mechanically loaded circular rings. Two cases are

considered, a homogeneous ring made of PZT-4 and

a composite ring made of Titanium and PZT-4. A

new reference solution is additionally proposed which

has been obtained by a 3D FE model calculated by

ANSYS.

HOMOGENEOUS PZT-4 RING

Geometry

The circular ring has an inner radius of Ri¼ 0.289m

and a depth of b¼ 0.3048m, see the notation in

Figure 9. Two values for the ring wall thickness are

considered, a thin ring with h¼ 0.004m and a thick

ring with h¼ 0.04m (Heyliger et al., 1996).

Material

The PZT-4 has the following properties (Heyliger

et al., 1996):

E1¼ 81.3GPa n12¼ 0.329 G12¼ 30.6GPa

E2¼ 81.3GPa n13¼ 0.432 G13¼ 25.6GPa

E3¼ 64.5GPa n23¼ 0.432 G23¼ 25.6GPa

e31¼�5.2C/m2 e32¼�5.2C/m2 e33¼ 15.08C/m2

e15¼ 12.72C/m2 e24¼ 12.72C/m2

e11¼ 13.06 nF/m e22¼ 13.06 nF/m e33¼ 11.51 nF/m

Boundary Conditions

The ring is unsupported and loaded at y¼� 90	 by a

radial line load FX1
¼ 656.17N/m. Differently from

Heyliger et al. (1996), we consider that both the inner

and outer surfaces are grounded (short-circuit condition,

�(z¼�h/2)¼ 0V) for both the thick and thin ring cases.

Due to symmetry, the model can be reduced to one

eighth of the ring by applying corresponding symmetry

boundary conditions at �¼ 0	, 90	 and x2¼ b/2 (the

same notation of Figure 9 is employed).

Mesh

The symmetric model is discretized with mx2
¼ 2 ele-

ments along the cylinder axis x2 and with mx1
¼ 16 ele-

ments along the hoop axis x1 (Figure 9). Additionally,

the piezoelectric ring will be subdivided into various

numerical layers, denoted mz, in order to refine the

description of the electrostatic potential.

Results

The distributions along the circumferential direction

of the electric potential �(�) and of the radial deflection

uz(�) are given. The values are taken at the center of the

ring, x2¼ b/2, and at the middle surface z¼ 0 (Figure 9).

We compare the results of the present C7CL8PZ ele-

ment with the reference solution issued from a 3D FE

calculation of ANSYS. The proper mesh densities to be

used for the 3D FE solutions have been obtained from

preliminary convergence studies like the one reported in

Table 5.
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Figure 6. Distribution along the axis of the induced potential at the
top surface of the PVDF bimorph.

Table 5. Convergence study for the 3D FE computation
of the thick PZT-4 ring: uz(h^0	).

Refinement along x1: mx2
¼ 20; mz¼ 16

mx1
10 20 30 40 60

Error (%) 2.2 2.2 0.1 0.0 0.0

Refinement along x2: mx1
¼ 60; mz¼ 16

mx2
� 5 10 15 20

Error (%) � 1.2 0.05 0.01 0.0

Refinement along z: mx1
¼ 60; mx2

¼ 20

mz � 2 4 8 16

Error (%) � 0.2 0.07 0.01 0.0

Table 4. Induced electrostatic potential at the top
surface of the bimorph piezoelectric plate (V).

Distance from

clamping (mm)

0 20 40 60 80 100

TVQ-2005 309 264 192 131 59 18

BN-2001 297 224 157 93 30

297 224 157 93 30

C7CL8PZ 293 228 163 98 32

293 228 163 98 32

683



A convergence analysis is presented in Table 6 for the

present shell element C7CL8PZ. The radial displace-

ments uz at �¼ 0	 and �¼ 90	 are analyzed. We vary

both the in-plane discretization and the number of

numerical layers into which the piezoelectric material

is subdivided along the thickness direction. Table 6

shows that the element has a high convergence velocity

toward the reference solution issued from the 3D FE

computation even for a thin ring. Based on these results,

the mesh density with mx1
¼ 16 and mx2

¼ 2 will be taken

for the following computations.

The influence of the number of numerical layers mz is

assessed in Table 7 for the thin and thick PZT-4 ring.

Convergence toward the 3D FE solution is recognized.

A noticeable influence of mz is remarked, which con-

firms the important role played by the induced electric

potential by taking mz¼ 1, the linear approximation for

the electric potential � neglects the additional stiffness

due to the direct piezoelectric effect and leads to errors

greater than 10%. Note that this error is greater for the

thin piezoelectric ring. Upon increasing mz, a piece-wise

linear refinement of the radial distribution of � allows to

take into account the piezoelectric stiffening effect. In

the following, mz¼ 4 numerical layers will be employed

for the piezoelectric layer, which bounds the error to

about 2%.

Finally, the variation along the circumferential direc-

tion of the radial deflection uz and of the electric poten-

tial � at the mid-surface are reported in Figures 7 and 8,

respectively. An excellent agreement is found between

the results of the present shell element and the reference

3D FE computation for both the thin and the thick case.

Note that the electric potential remains constant across

the present shell element.

COMPOSITE TITANIUM/PZT-4 RING

Geometry

A circular cylindrical ring is considered that is made

of an inner Titanium layer with an attached continuous

PZT-4 layer. The inner radius is fixed at Ri¼ 0.289m,

the depth of the ring is b¼ 0.3048m and the total thick-

ness of the composite ring is h¼ 0.04m, where the thick-

ness of the Titanium and of the PZT-4 layers are
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Figure 7. Distributions of the radial displacement uz(y) for the thin (left) and thick (right) PZT-4 ring.

Table 7. Convergence study of the present shell
element: influence of the number of numerical layers
mz on the radial deflections uz(h^0	) and uz(h^90	)
and the percentage errors with respect to the 3D FE
solution (mx1

^16, mx2
^2).

Thin homogeneous PZT-4 ring

mz uz(h^0	) Error (%) uz(h^90	) Error (%)

1 0.50519E-02 16 �0.46390E-02 16

2 0.45033E-02 4 �0.41353E-02 4

4 0.43870E-02 1.2 �0.40285E-02 1.2

8 0.43590E-02 0.6 �0.40028E-02 0.6

3D FEM 0.43320E-02 �0.39788E-02

1 0.64665E-05 13 �0.58305E-05 11

2 0.59253E-05 4 �0.53397E-05 4

4 0.58136E-05 2 �0.52386E-05 1.8

8 0.57869E-05 1.7 �0.52144E-05 1.3

3D FEM 0.56899E-05 �0.51435E-05

Table 6. In-plane convergence study for the present
shell element, thin PZT-4 ring: percentage error with
respect to 3D FE solution for uz(h^0	) and uz(h^90

	

).

mx2
�mx1

; mz¼ 8

2�2 2�4 2�8 2�16 2�24

Error (%) for uz(0
	) 7 2.5 1 0.7 0.6

Error (%) for uz(90
	) 6.7 2.1 0.9 0.6 0.6



hT¼ 0.03m and hP¼ 0.01m, respectively (Heyliger et al.,

1996). For further convenience, we identify the location

of the interface between the Titanium and the PZT-4

plies as zI¼�h/2þ hT and the location of the mid-sur-

face of the PZT-4 ply as zP¼ zIþ hP/2¼h/2� hP/2. The

geometry is depicted in Figure 9 along with the used

coordinate axes.

Material

The material properties for the PZT-4 coincide with

those listed in the previous section, those for the isotro-

pic Titanium layer read (Heyliger et al., 1996):

E1¼ 114GPa n12¼ 0.3 G12¼ 43.8GPa

E2¼ 114GPa n13¼ 0.3 G13¼ 43.8GPa

E3¼ 114GPa n23¼ 0.3 G23¼ 43.8GPa

e31¼ 0C/m2 e32¼ 0C/m2 e33¼ 0C/m2

e15¼ 0C/m2 e24¼ 0C/m2

e11¼ 13.06 nF/m e22¼ 13.06 nF/m e33¼ 13.06 nF/m

Boundary Conditions

The cylindrical ring is unsupported and loaded at

�¼�90	 by a radial line load FX1
¼ 656.17N/m. The

interface between the perfectly bonded Titanium and

PZT-4 layers is grounded, �(z¼ zI)¼ 0, while the electric

potential of the outer surface of the piezoelectric layer

�(z¼ h/2) is let free (Heyliger et al., 1996). Symmetry is

exploited by modeling only one eighth of the ring upon

application of corresponding symmetry conditions at

�¼ 0	, 90	 and at x2¼ b/2.

Mesh

The symmetric model is discretized with mx1
¼ 24 ele-

ments along the circumferential direction and mx2
¼ 2

elements along the axis of the cylinder.

Results

We report the circumferential distributions of the elec-

tric potential �(�) and of the radial displacement uz(�)
taken at the center of the ring (x2¼ b/2). The values of

the radial displacement are taken at the mid-surface of

the ring z¼ 0, while those of the electric potential are

taken at the middle surface of the piezoelectric ply,

z¼ zP, and at the outer surface z¼ h/2.

A preliminary convergence analysis is proposed in

order to assess the role of the number mz of numerical

layers into which the PZT-4 ply is subdivided. Table 8

reports the radial displacements at �¼ 0	 and �¼ 90	 for

different values of mz. The reference values have been

provided by a 3D FE solution of ANSYS. The employed

mesh for the 3D solution is mx1
�mx2

�mz¼ 60�

20� 16. In contrast to the homogeneous short-circuited

PZT-4 ring discussed in the previous section, only a mar-

ginal influence of mz can be appreciated with differences

of less than 1%. This completely different behavior is

attributed to the different electrical boundary

0 20 40 60 80
−300

−200

−100

0

100

200

300

400

500

θ (°)

Φ
 (

V
)

3D FEM

C7CL8PZ

0 20 40 60 80
−30

−20

−10

0

10

20

30

40

50

θ (°)

Φ
 (

V
)

3D FEM

C7CL8PZ

(a) (b)
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Figure 9. Quarter model of the composite Ti/PZT-4 cylindrical ring:
geometry and loading.



conditions. In fact, an induced electric field can be con-

structed by a non-zero value of the electric potential at

the outer surface, which can be readily obtained by a

linear distribution of the electric potential.

The circumferential distributions of the radial dis-

placement uz(�, z¼ 0) and of the electrostatic potential

�(�, z¼ zP) and �(�, z¼ h/2) are illustrated in Figures 10

and 11, respectively. An excellent agreement is found

between the results of the present shell element and

those issued from the 3D FE solution.

Composite Cylindrical Shell Panels

The last examples shall validate our C7CL8PZ ele-

ment with respect to applications involving composite

layups made of orthotropic elastic materials and piezo-

electric plies. Two case studies are addressed, a simply

supported orthotropic panel and a cantilever panel with

bending�twisting elastic coupling.

SIMPLY-SUPPORTED COMPOSITE

CYLINDRICAL SHELL PANEL

This example has been formulated by Saravanos (1997)

for validating his 8-node quadrilateral element S-1997. It

consists of a simply supported 90	 cylindrical shell panel

made of the symmetric stack [0/90]s of graphite�epoxy

(Gr�Ep) composite. A continuous piezoelectric actuator

is either embedded into the stack or attached to the inner

or outer surface of the panel. Figure 12 illustrates the

configuration with the actuator placed at the inner

(bottom) surface of the composite stack.

Geometry

The 90	 cylindrical panel has a thickness of h¼ 2mm

and a mid-surface radius R¼ 200mm (R/h¼ 100).

The panel is square with b¼ pR/2 (Figure 12). Each

composite Gr�Ep ply has a thickness hC¼ 0.375mm

and the thickness of the piezoelectric actuator is

hP¼ 0.5mm. Three configurations are considered for

the laminated actuator: [p/0/90/90/0], [0/90/p/90/0],

and [0/90/90/0/p], where the placement of the
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Figure 11. Distributions of the electric potential f(y) at the middle surface of the PZT-4 ply (z¼ zP , left) and at the outer surface (z¼h/2, right) for
the mechanically loaded Ti/PZT-4 composite cylindrical ring.
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Figure 10. Distribution of the radial displacement uz(y) for the
mechanically loaded Ti/PZT-4 composite cylindrical ring.

Table 8. Convergence study of the present shell
element: influence of the number of numerical layers
mz on the radial deflection at h^0	 and h^90	 and the
percentage errors with respect to the 3D FE solution.

Thick composite Ti/PZT-4 ring

mz uz(0
	) Error (%) uz(90

	) Error (%)

1 0.50433E-05 0.79 �0.45595E-05 0.64

2 0.50374E-05 0.67 �0.45541E-05 0.52

4 0.50360E-05 0.64 �0.45528E-05 0.50

3D FEM 0.50036E-05 �0.45301E-05



piezoelectric actuator (p) is at the inner, middle, and

outer surface, respectively.

Material

Both the elastic Gr�Ep composite and the piezoelec-

tric actuator are assumed to be transversely isotropic.

The following properties are assumed for the Gr�Ep

composite ply (Saravanos, 1997; Benjeddou et al., 2002):

E1¼ 132.4GPa n12¼ 0.24 G12¼ 5.6GPa

E2¼ 10.8GPa n13¼ 0.24 G13¼ 5.6GPa

E3¼ 10.8GPa n23¼ 0.49 G23¼ 3.6GPa

e31¼ 0C/m2 e32¼ 0C/m2 e33¼ 0C/m2

e15¼ 0C/m2 e24¼ 0C/m2

e11¼ 3.5 e0 e22¼ 3 e0 e33¼ 3 e0

where e0¼ 8.85� 10�12F/m is the vacuum permittivity

constant. The actuator consists of the piezoceramic

material PZT-4 and has the following characteristics

(Saravanos, 1997; Benjeddou et al., 2002):

E1¼ 81.3GPa n12¼ 0.33 G12¼ 30.6GPa

E2¼ 81.3GPa n13¼ 0.43 G13¼ 25.6GPa

E3¼ 64.5GPa n23¼ 0.43 G23¼ 25.6GPa

e31¼�5.2C/m2 e32¼�5.2C/m2 e33¼ 15.08C/m2

e15¼ 12.72C/m2 e24¼ 12.72C/m2

e11¼ 1475 e0 e22¼ 1475 e0 e33¼ 1300 e0

Boundary Conditions

All edges of the cylindrical shell panel are simply sup-

ported: vx2
¼ vz¼ 0 at x1¼ 0, p/2 and vx1

¼ vz¼ 0 at

x2¼ 0, b. A uniform electric field Ez¼�400 kVm�1 is

imposed in the PZT actuator through the following elec-

tric potentials at the bottom and top electrodes: �bot¼ 0,

�top¼ 200 V.

Mesh

The shell reference surface has been discretized with

mx2
¼ 4 elements along the cylinder axis x2 and mx1

¼ 15

elements in the circumferential direction (hoop axis x1).

Results

The non-dimensional radial deflection uz/h is reported

at the mid-surface along the axial mid-span of the panel

(i.e., at points located at x2¼ b/2, z¼ 0, see Figure 12).

Figure 13 illustrates the distribution of the non-

dimensional radial deflection uz/h along the axial mid-

span of the shell for the three configurations ([p/0/90/

90/0], [0/90/p/90/0], and [0/90/90/0/p]). The results of the

present element are compared with those of Saravanos

(1997) and Balamurugan and Narayanan (2008).

Additionally, we report the results issued from a 3D

FE computation made with ANSYS. The employed

mesh density for the 3D FE computation is mx1
¼ 80,

mx2
¼ 40, and mz¼ 10.

A good agreement is found between all approaches.

The comparison between the three configurations shows

that the position of the actuator in the composite stack

has an important influence on the deformed shape. Note

that the solid shell element BN-2008 retains the induced

electric field by a quadratic approximation for the elec-

tric potential. As already recognized by Balamurugan

and Narayanan (2008), their element appears to be the

stiffest one.

CANTILEVER CYLINDRICAL SHELL

A clamped composite shell panel with attached piezo-

ceramic actuators is considered as proposed by Kioua

and Mirza (2000). The piezoelectric composite shell

has the symmetric stacking [p/30/30/0]s and shows a

bending�twisting coupling under the action of the actu-

ators. The data for the case study is summarized in the

following.
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Geometry

The cylindrical shell illustrated in Figure 14 is consid-

ered. It has square in-plane dimensions a¼ b¼ 0.254m

and the mid-surface curvature radius R is varied within

the range of validity of shallow shell approximations

between R/b¼ 10 and R/b¼ 100 (Kioua and Mirza,

2000). Each composite Gr�Ep ply has a thickness of

hC¼ 0.138mm, each piezoelectric actuator has the thick-

ness hP¼ 0.254mm and the total thickness of the sym-

metric stack [p/30/30/0]s is h¼ 1.336mm.

Material

The material data reported by Kioua and Mirza

(2000) were limited to the in-plane properties and no

electric permittivities were indicated. In this study, the

data set has been completed by referring to similar mate-

rial properties available in literature. The material prop-

erties for Gr�Ep given by Kioua and Mirza (2000) are

close to those of the T300/976 composite, for which the

complete data set has been provided by Benjeddou et al.

(2002). The following data are used in this study:

E1¼ 150GPa n12¼ 0.3 G12¼ 7.1GPa

E2¼ 9GPa n13¼ 0.3 G13¼ 7.1GPa

E3¼ 9GPa n23¼ 0.49 G23¼ 3GPa

e31¼ 0C/m2 e32¼ 0C/m2 e33¼ 0C/m2

e15¼ 0C/m2 e24¼ 0C/m2

e11¼ 0.031 nF/m e22¼ 0.027 nF/m e33¼ 0.027 nF/m

The actuators are two PZT G1195 plies with opposite

polarization directions. Unfortunately, the elastic stiff-

ness data for the PZT G1195 reported by Benjeddou

et al. (2002) do not agree with those used in the original

work of Kioua and Mirza (2000). A piezoelectric mate-

rial with elastic properties similar to those given by

Kioua and Mirza (2000) has been found in the work

of Lee and Saravanos (1999), where reference is made

to an isotropic piezoceramic. As a result, the following

isotropic properties are employed in this study:

E1¼ 63GPa n12¼ 0.3 G12¼ 24.2GPa

E2¼ 63GPa n13¼ 0.3 G13¼ 24.2GPa

E3¼ 63GPa n23¼ 0.3 G23¼ 24.2GPa

e31¼ 22.86C/m2 e32¼ 22.86C/m2 e33¼ 0C/m2

e15¼ 0C/m2 e24¼ 0C/m2

e11¼ 15.05 nF/m e22¼ 15.05 nF/m e33¼ 15.05 nF/m

Boundary Conditions

The shell is clamped at one of its curved edges. An

electric field is induced in the piezoceramic actuators by

applying an electric potential of �¼ 100V at the outer

electrodes while the inner surfaces are grounded.

Mesh

A regular mesh with eight elements per edge is used.

Results

The magnified mid-span tip deflection 103 u3(a, b/2) is

reported along with a magnified measure of the twist.

The twist is computed as the ratio between the difference

of the deflections at the tip corners and the width b: 103

[u3(a, b)� u3(a, 0)]/b.

The results are reported in Figure 15 by plotting the

evolution of the tip deflection and twist with respect to

the curvature ratio R/b of the panel. Present results are

compared with those obtained with the finite shell ele-

ments ISOP9 (Lee et al., 2003) and GEXP4 (Kulikov

and Plotnikova, 2008), see also Table 2. A perfect agree-

ment between the different element formulations can be

seen, which validates the present element formulation

with respect to its capability of modeling piezoelectric

composite shells.
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CONCLUSION

This article has presented a new and simple finite shell

element for multilayered panels including piezoelectric

actuators and/or sensors. The shell model consists

of the classical Reissner�Mindlin kinematics with an

additional quadratic thickness stretch term that per-

mits to retain the full 3D constitutive law without

Poisson locking problems. A layer-wise linear assump-

tion has been used for the electrostatic potential. The FE

approximations of the employed 8-node element have

been detailed out along with an efficient technique

to avoid transverse shear and membrane locking. The

electric potential is constant over the elementary

domain, which ensures efficiency and a direct satisfac-

tion of the equipotentiality condition on the patch

electrodes. The element has been validated through

various linear static case studies for which a rather

large number of results were provided in literature.

Flat plates as well as open and closed shells have been

considered that were made up of homogeneous or

laminated materials. New reference solutions have

been provided by means of 3D FEM computations

with a commercial software.

In general, a very good agreement has been found

between the reference solutions and the results of the

proposed shell element. The capability to properly

represent the piezoelectric coupling in both actuator

and sensor cases has been demonstrated. In particular,

the electric field induced by the direct piezoelectric

effect could be well captured upon subdividing the

piezoelectric ply into several numerical layers. Based

on the promising results obtained for linear static

applications, future works should address the exten-

sion of the proposed shell element to linear dynamics

and its application to active control and optimization

problems.
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APPENDIX

Constitutive Relation

The elastic, piezoelectric and dielectric matrices of an

orthotropic material polarized along the thickness direc-

tion 3 are detailed out in the following expression of the

converse and direct piezoelectric effect:
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