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An Efficient Forward—Backward Algorithm for an
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Abstract—EXxisting algorithms for estimating the model param-  of observations, required in Ferguson'’s algorithm can be calcu-
eltlﬂs of an explicit-duration hllddeﬂ Mfg IEC()\J/\/[mBSeL(HMML\A)):I’U)SU- lated more efficiently by a recursive method as suggested in [2]
ally require computations as large as of  and further refined in In 121 an he or rms re-
O(M?DT), where M is the number of states;D is the maximum a d u tIeO 3) ed [3t].t' [ ] g S [?]’t € pdqducttte fi S e
possible interval between state transitions; andl’ is the period of quire on_y (D) compu_a lons, but & every (discrete) time
observations used to estimate the model parameters. Because oth€ previousD observations must be retrieved, and the recur-
such computational requirements, these algorithms are not prac- sive steps must be performed. Therefore, the total number of
tical when we wish to construct an HMM model with large state recursive steps required in [2] and [3] increases by a factér of
space and large explicit state duration and process a large amount compared with Ferguson’s algorithm

of measurement data to obtain high accuracy. We propose a new An alt ti histot f . licit-d
forward—backward algorithm whose computational complexity is n alternative approach Is to transform a given explicit-aura-

only O((M D+ M?)T), areduction by almost a factor of D when ~ tion HMM into an equivalent “super HMM" [1], [5], [6]. In this
D > M and whose memory requirement isO(MT). As an ap- case, however, the number of superstates becdmes i.e.,

plication example, we discuss an HMM characterization of access D) times as large as the original state side The number of
traffic observed at a large-scale Web site: we formulate the Web ;616 entries of the transition probability matrix for the super-
access pattern in terms of an HMM with explicit duration and es- . . . -
timate the model parameters using our algorithm. states largely determines the computational c_omplexny, which
turns out to be) (M2 DT). Therefore, these refined algorithms
are still too computationally intensive in some applications.

In Section Il, we discuss our new forward—backward al-
gorithm, and we show that its computational complexity is
O((M D+ M?)T) and that its memory requirementi M T').

. INTRODUCTION In Section Ill, we discuss an application of the new algorithm
HE HIDDEN Markov model (HMM) has been successt0 Web workload characterization. We use actual Web access

fully applied to a number of scientific and engineerinrgjlta obtained at a large-scale Web site and represent the

problems [4]. Most studies found in the literature, however, inf¥eb access traffic pattern as a probabilistic function of an

plicitly assume that the duration of any system state is const&fderlying explicit-duration HMM and then estimate the model

(i.e., a unit time in a discrete-time model) or exponentially (i.eParameters from the data.

geometrically) distributed. This simplifying assumption is made

because efficient computation algorithms have been well devel- II. NEW FORWARD-BACKWARD ALGORITHM

oped to deal with such HMMs. There are a few studies that dis- . . :

cuss more general situations, where the duration of any state igonS|der a sem|-Markov.(':ha|n av/ Sftates’ denoted,

explicitly assumed to be nonexponential. Such an HMM is oftéif’ - > 5> with the probability of transition from state,

referred to as an explicit-duration HMM, HMM with variablel® Stat€sn being denotedu,.,,(m,n = 1,2,...,M). The
nitial state probability distribution is given byr,,}. Let ¢

duration, HMM with explicit duration, and hidden semi-Marko X . ;
denote the state of the semi-Markov chain at tithevhere

I [11-]3].
model [1}-{3] =1,2,...,T and leto; stand for the observable outputtat

To the best of our knowledge, Ferguson [1] (see also [4]) "
the first to investigate estimation algorithms for the explicit-du: < observable and the state are related through the conditional

ration HMM. However, Ferguson’s algorithm is computationprr?bablllty _d'smbtjt';?lgﬁ(tl_’k)t = IPr[OtthT Vk |bqt - Sm]’d b
ally too expensive to be of practical use in many application}%l], erﬁ{”k} |?_ase Ioth IStinc \llahues atmay heliasfstume 'ty
since its computational complexity @((M D? + M?)T). The € observatio,. In the sequel, however, we shall often write

product term, i.e., the joint probability distribution ofasequencﬁ’?’.(Ot) mstead to S|mp"I|fy the notatlgn. we assumg the “con-
itional independence” of outputs given the state in the sense

thatPr[o?, | s,.] = [To_, bm(0:), whereo!, = {os;a < t < b}.
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the semi-Markov chain will remain in the current state until
timet + d — 1 and transits to another state at time d, where
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I1l. STATE ESTIMATION AND PARAMETER REESTIMATION

Now we discuss how to estimate the statfrom the observa-

d > 1. For brevity of notation, lek stand for the complete set of

model parameterst = ({amn }, {mm}, {bm (vk)}, {pm (d)}). we find that the joint probability of observing! and a transi-
We initially estimate these model parameters, but after we CObn from .. to another state (n # m) at timet given A can

lect observatlon$c_>t}, we re_estlmate the parameters and updakg% expressed in terms of the assumed model parameters and the
the model accordingly. This process is referred tp@ammeter forward and backward variables defined above
reestimation Thus, we first evaluate the various probabilities

conditioned on\. For brevity of notation, however, we drop thig, (1m, n) <" Pr [oT, q;_1 = $m,¢: = $a]

tion sequence! and reestimate the model parametgrgirst,

conditioning onA.
We define thdforward variableby

ae(m, d) = Pr [of, (g, 1) = ($m,d)] - @)

A transition into statéq;, 7:) = (sm, d) takes place either from
(¢t-1,7-1) = (Sm,d + 1) or from (g:1,71) = (8n, 1)
for somen # m. Therefore, we readily obtain the following
forward recursion formula:

ar(m,d) = az—1(m,d + 1)by,(04)

+ (Z ai—1(n, )anm

n#m
for a given state,,, and timet > 1, with the initial condition

) “bm (04)pm (d), d>1 (2

a1(m, d) = by (01)pm (d). ©))
We define thebackward variableby
Bi(m, )= Pr [of ] (a1,70) = (smrd)] . (&)

By examining the possible states that follyy, 7:) = (s, d),
we see that whed > 1 the next state must b@;41, 7¢+1) =
(8m,d —1),and whend = 1 it must be(qi41, 7¢4+1) = (8n,d’)
for somen # m andd’ > 1. We thus have the following back-
ward recursion formula:

Br(m, d) = bm(0141)Be41(m, d = 1), ®)

and
( ) ©

for a given states,,, and timet < 7', with the initial condition
(in the backward recursive steps)

ford > 1

ﬂt(m7 1) = Z anlnbn(ot—'rl)

n#m

S pu(d)Bisa(n, d)

d>1

Br(m,d)=1, d>1. @)

To evaluate the forward variablke,(m, d) of (2), we first
compute the su@#m t_1(n, 1)an,, forallm (in M? steps)
and therw,(m, d) for allm andd (in O(M D) steps). Therefore,
updating the forward variables at evémgquiresO(M D+ M?)

steps. Similarly, in the backward formulae (5) and (6), we first

compute)_ ;. pn(d)Bit1(n, d) for all n (in O(MD) steps)
and then3;(m, 1) for all m (in O(M?) steps). Therefore, eval-
uation of3;(m, d) at eacht also require®) (M D + M?) steps.

Hence, the total number of computation steps for evaluating the

forward and backward variables¥ (M D + M?)T), whereT
is the total number of observations.

=1 (m, Damnbn(or) - | Y pn(d)Bi(n, d)

d>1

8

for m # n. Next we find that the joint probability of observing
ol and a transition to state,, at timet and remaining in state
sm for d time units can also be expressed in terms of the vari-
ables and parameters defined earlier

def
ne(m,d)= Pr [0{7%—1 F Sm,qt = Sm, Tt = d]

= Z (lt_l(’fl7 1)anm bnz(ot)pm(d)ﬂt(m7 d)

n#m

9)
In order to estimate the stajefrom the observation sequence
oT, let us consider the joint probability of  andg; = s,,

Y (m) = Pr [o] gy = sm] - (10)

Then using the following identity

PI‘[O,{_/ qt = Sm, qt+1 = SM]
= PI‘[O,{, gt = Sm] - PI‘[O,{, Gt = Sm, qt+1 # Sm]
= PI‘[O{./ dt+1 = Sm]

- PI‘[O{7 qt ;é Sm, qt+1 = S’m] (11)

and the definitions of (8) and (10), we obtain the following back-
ward recursion formula fof(m):

¥e(m) = yera(m) + Y (Gera(m,n) = Gya(n,m))  (12)
n#m

with the initial condition

(13)

ar(m,d).
d>1

Now we can readily derive various estimation and reestima-
tion formulae of our interest.

» The maximuma posteriori(MAP) estimate of state; is

q tef arg max
t
1<m<AM

p Pr [qt = sm|01T]

_arglglnagﬂ/[”yt(m), fort =T,T—1,...,1. (14)

* The maximum-likelihood reestimate of the initial state
probability 7, is #,,, = v1(m)/G1, whereG; is the
normalization constant obtained by summingm) over
m=1,...,M.

» The maximume-likelihood reestimate of the transition
probability d,my, IS dmn = 31—y Ci(m,n)/G(m), for
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n # m, where G(m) is the normalization constant. TABLE |
Note that in the explicit-duration HMM formulation, a PARAMETERS OVER HOURS OF THEWORKLOAD
transition from a state back to itself cannot occur. Thus Hour 1 (1011 ] 14 [ 15 | 20 | 21 | 24
amm = 0 @anda,,,,, = 0 for all m. valley rising peak

» The maximume-likelihood reestimate of the state duratior___Mean arrvis/s 212 /4.6 48 183226302 322212
probability p,,,(d) is p,,(d) = 23:1 ne(m,d)/H(m) Maximum arrvls/s | 51 | 27 | 25 | 52 | 55 | 71 | 74 | 56
WhereH(m) _ ZdD:1 23121 77t(m; d). I\;;). o\fstatcs entc?md 16 | 4 4 15 17 19 | 20 13

aximum duration | 344 | 65 | 143 | 278 | 318 | 388 | 405 | 327

» The reestimate of the conditional probability dis-
tribution of observing v, under a given state is
bn(v) = Y1 7(m)s(or — w)/V(m), where matrix-analytic methods to obtain analytically tractable solu-
{vx} is the set of values that an observation cafions to queueing-theoretic models of Web server performance.
take on, andj(o; — vx) = 1,if o, = v, and 0 if  In the Web application example, the observation sequence
o; # vi. Here,V(m) is the normalization constant, i.e.,{o,} represents the number of user requests arriving at the Web
V(m) =3 S v (m)s(o; — vg). site in thetth second, and the maximum observed value was

In the state estimation and model parameter reestimatioiax{v,} = 74. The total number of observations s =

formulae given above, we find that the estimation algorithi®6 400, where the time unitis 1 s. Hence, the observation period
can be combined with the backward algorithm. Therdés over one day. We characterize the request arrivals as a dis-
fore, the backward variables;(m,d) and the probabilities crete-time random process modulated by an underlying (hidden
¢e(m,n), n(m,d), and~;(m) do not have to be stored forstate) semi-Markov process.

later use. Among the forward variables, oniy(m,1) and We consider the case in which the probability distributions
Zn;ﬁm s 1(n, 1)anm, (for allm andt) need to be stored, sinceof the model parameters are assumed to be general. Based on
they are used in (8) and (9), respectively. Hence, the storegjgpirical analysis of the workload data, we find that a rule of
requirement isD)(MT). thumb for an appropriate choice 8f, the number of Markov

Because the Sumgn?ém ai_1(n,1)anm, (for all m) and States, sh_ould_ be appro>§|m_ately B8]8;]. We chose the_ value

Zd>1pn(d)ﬂt+l(n7 d) (for all 7’1,) are obtained during the M = 30 in this Study.. S|m|lar|y, \{VG seD to be SufflCIGtﬂtly
computation of the forward-backward variables, the numbirge to cover the maximum duration of any state. In this study,
of computation steps required for evaluatitgm,n) of (8) We usedD = 500, whichis close to the average HTTP session
and ,(m,d) of (9) is linearly proportional to the number!€ngth from our measurement data.

of parameters. Evaluation of,(m) in (10) requiresM ad- ~ CGiven these model assumptions, we now apply our for-
ditions, but no multiplications. Hence, the computationdf@rd-backward algorithm to estimate the model parameters
complexity of the reestimation algorithm (|A\|T), where V\{here the initial values of are simply assumed t_o be umform!y
I\ = M? + M + MK + MD is the total number of model distributed or randomly selected_. In our experlments, the final
parameters. Recall that the integk stands for the number results are found to be robust in terms of their convergence

of distinct values that an observatiop can take on, i.e., the T[O _th;z estl(rjnatted f\{[f;l]lue_ T Irlnodell pflrgme;cers: thz flnal varlluz
cardinality of the sefuy}. is independent of the initially selected values and is reache

in about 20 iterations. We summarize the results in Table I.
From this table, we can see that during the “peak” hours (i.e.,
Hours 20 and 21) as many as 19 or 20 hidden states are actually
In this section, we apply the explicit-duration HMM formu-used to modulate the rate of the Web access traffic, and the
lation to characterize the user request patterns to a Web serk@maining 10 to 11 states are never visited. During the “valley”
We use the example discussed in [10] to illustrate this apphieurs (i.e., Hours 10 and 11) only four hidden states are visited.
cation. The empirical data we use were extracted from actddle maximum durationD goes up to 405 (seconds) during
traffic data collected at a large-scale Web site. the peak time (Hour 21), whereas during the slack time (Hour
Measurements of real workload often indicate that a signifi-0) it only reaches 65 (seconds). This suggests that the state
cantamount of variability is presentin the traffic observed overduration distributions in the peak period and those in the slack
wide range of time scales, exhibiting self-similar or long-ranggeriod may be significantly different in their tails.
dependent characteristics [7]. Such characteristics can have Big. 1 plots the number of requests per second together with
significant impact on the performance of networks and systeitte estimated hidden states for 1) the whole day, 2) the valley
[8], [9]. Therefore, better understanding of the nature of the Wélour (Hour 10), 3) the sharpest rising hour (Hour 14), and 4) the
workload is critical to the proper design and implementation geak hour (Hour 21). From Fig. 1(a), we can see that the hidden
Web servers. A major advantage of using an explicit-duratiatates modulate the arrival rates over the day. When the arrival
HMM is its efficiency in estimating the model parameters to acate is low, as shown in Fig. 1(b), there are frequent transitions
count for an observed sequence. Furthermore, the estimatedgmaeng the hidden states. In this case, the model is essentially
rameters can capture various statistical properties of the wogkbwo-state Markov chain with transitions between states 1 and
load, including long-range and short-range dependence. ThBis\When the arrival rate has a deterministic trend, as shown in
the model can be applied to generate synthetic workload pktg. 1(c), the transition probabilities will have a corresponding
terns to be used for system performance evaluation and capatriéynd. For example, a given state exhibits more frequent transi-
planning [10]. They can also be used together with, for exampt&ns to states with higher indices than to those states with lower

IV. APPLICATION TOWEB WORKLOAD CHARACTERIZATION
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V. CONCLUSION

Our forward—backward algorithm for an explicit-duration
HMM requires only O(MD + M?*)T) computations and
O(MT) memory capacity to evaluate all the forward and back-
ward variables, wher@/ is the number of Markov state€}
is the maximum duration between successive state transitions;
andT is the period of the observation data. Once the forward
and backward variables are obtained, various performance
measures of interest such as the MAP estimate of a state
sequence and the maximum-likelihood estimate of the state
probability distribution can be obtained with little computation
and memory cost.

Reestimation of the set of model parameteifsom the ob-
servation sequence! can be done with additional computa-
tions of onlyO((M? + M + MD + MK)T). The algorithm
has been successfully applied to estimate the parameters of a
hidden semi-Markov model that is designed to characterize the
access traffic pattern observed at a large-scale Web site. Such
a model requires a large number of statésa long maximum
state duratiorD, and a long observation periddfor an accu-
rate characterization, and a practical solution is made possible
by our efficient algorithm.
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