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An Efficient Forward–Backward Algorithm for an
Explicit-Duration Hidden Markov Model

Shun-Zheng Yu and Hisashi Kobayashi, Fellow, IEEE

Abstract—Existing algorithms for estimating the model param-
eters of an explicit-duration hidden Markov model (HMM) usu-
ally require computations as large as (( 2 + 2) ) or
( 2 ), where is the number of states; is the maximum

possible interval between state transitions; and is the period of
observations used to estimate the model parameters. Because of
such computational requirements, these algorithms are not prac-
tical when we wish to construct an HMM model with large state
space and large explicit state duration and process a large amount
of measurement data to obtain high accuracy. We propose a new
forward–backward algorithm whose computational complexity is
only (( + 2) ), a reduction by almost a factor of when

and whose memory requirement is ( ). As an ap-
plication example, we discuss an HMM characterization of access
traffic observed at a large-scale Web site: we formulate the Web
access pattern in terms of an HMM with explicit duration and es-
timate the model parameters using our algorithm.

Index Terms—Explicit-duration HMM, hidden Markov model
(HMM), hidden semi-Markov model, traffic characterization,
variable-duration HMM.

I. INTRODUCTION

T HE HIDDEN Markov model (HMM) has been success-
fully applied to a number of scientific and engineering

problems [4]. Most studies found in the literature, however, im-
plicitly assume that the duration of any system state is constant
(i.e., a unit time in a discrete-time model) or exponentially (i.e.,
geometrically) distributed. This simplifying assumption is made
because efficient computation algorithms have been well devel-
oped to deal with such HMMs. There are a few studies that dis-
cuss more general situations, where the duration of any state is
explicitly assumed to be nonexponential. Such an HMM is often
referred to as an explicit-duration HMM, HMM with variable
duration, HMM with explicit duration, and hidden semi-Markov
model [1]–[3].

To the best of our knowledge, Ferguson [1] (see also [4]) is
the first to investigate estimation algorithms for the explicit-du-
ration HMM. However, Ferguson’s algorithm is computation-
ally too expensive to be of practical use in many applications,
since its computational complexity is . The
product term, i.e., the joint probability distribution of a sequence
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of observations, required in Ferguson’s algorithm can be calcu-
lated more efficiently by a recursive method as suggested in [2]
and further refined in [3]. In [2] and [3], the product terms re-
quire only computations; but at every (discrete) time,
the previous observations must be retrieved, and the recur-
sive steps must be performed. Therefore, the total number of
recursive steps required in [2] and [3] increases by a factor of
compared with Ferguson’s algorithm.

An alternative approach is to transform a given explicit-dura-
tion HMM into an equivalent “super HMM” [1], [5], [6]. In this
case, however, the number of superstates becomes, i.e.,

times as large as the original state size. The number of
nonzero entries of the transition probability matrix for the super-
states largely determines the computational complexity, which
turns out to be . Therefore, these refined algorithms
are still too computationally intensive in some applications.

In Section II, we discuss our new forward–backward al-
gorithm, and we show that its computational complexity is

and that its memory requirement is .
In Section III, we discuss an application of the new algorithm
to Web workload characterization. We use actual Web access
data obtained at a large-scale Web site and represent the
Web access traffic pattern as a probabilistic function of an
underlying explicit-duration HMM and then estimate the model
parameters from the data.

II. NEW FORWARD–BACKWARD ALGORITHM

Consider a semi-Markov chain of states, denoted ,
, with the probability of transition from state

to state being denoted ( ). The
initial state probability distribution is given by . Let
denote the state of the semi-Markov chain at time, where

and let stand for the observable output at.
The observable and the state are related through the conditional
probability distribution ,
where is a set of distinct values that may be assumed by
the observation . In the sequel, however, we shall often write

instead to simplify the notation. We assume the “con-
ditional independence” of outputs given the state in the sense
that , where .
We also assume that the duration of a given state is a discrete
random variable, taking valuewith probability , where

. The integer is the maximum duration
possible in any state, or equivalently, the maximum interval
between any two consecutive state transitions.

Let denote the remaining (or residual) time of the current
state . Then, if the pair process ( ) takes on value ( ),
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the semi-Markov chain will remain in the current stateuntil
time and transits to another state at time , where

. For brevity of notation, let stand for the complete set of
model parameters: .
We initially estimate these model parameters, but after we col-
lect observations , we reestimate the parameters and update
the model accordingly. This process is referred to asparameter
reestimation. Thus, we first evaluate the various probabilities
conditioned on . For brevity of notation, however, we drop this
conditioning on .

We define theforward variableby

(1)

A transition into state takes place either from
or from

for some . Therefore, we readily obtain the following
forward recursion formula:

(2)

for a given state and time , with the initial condition

(3)

We define thebackward variableby

(4)

By examining the possible states that follow ,
we see that when the next state must be

, and when it must be
for some and . We thus have the following back-
ward recursion formula:

for (5)

and

(6)

for a given states and time , with the initial condition
(in the backward recursive steps)

(7)

To evaluate the forward variable of (2), we first
compute the sum for all (in steps)
and then for all and (in steps). Therefore,
updating the forward variables at everyrequires
steps. Similarly, in the backward formulae (5) and (6), we first
compute for all (in steps)
and then for all (in steps). Therefore, eval-
uation of at each also requires steps.
Hence, the total number of computation steps for evaluating the
forward and backward variables is , where
is the total number of observations.

III. STATE ESTIMATION AND PARAMETER REESTIMATION

Now we discuss how to estimate the statefrom the observa-
tion sequence and reestimate the model parameters. First,
we find that the joint probability of observing and a transi-
tion from to another state ( ) at time given can
be expressed in terms of the assumed model parameters and the
forward and backward variables defined above

(8)

for . Next we find that the joint probability of observing
and a transition to state at time and remaining in state
for time units can also be expressed in terms of the vari-

ables and parameters defined earlier

(9)

In order to estimate the statefrom the observation sequence
, let us consider the joint probability of and

(10)

Then using the following identity

(11)

and the definitions of (8) and (10), we obtain the following back-
ward recursion formula for :

(12)

with the initial condition

(13)

Now we can readily derive various estimation and reestima-
tion formulae of our interest.

• The maximuma posteriori(MAP) estimate of state is

for (14)

• The maximum-likelihood reestimate of the initial state
probability is , where is the
normalization constant obtained by summing over

.
• The maximum-likelihood reestimate of the transition

probability is , for
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, where is the normalization constant.
Note that in the explicit-duration HMM formulation, a
transition from a state back to itself cannot occur. Thus,

and for all .
• The maximum-likelihood reestimate of the state duration

probability is
where .

• The reestimate of the conditional probability dis-
tribution of observing under a given state is

, where
is the set of values that an observation can

take on, and , if and 0 if
. Here, is the normalization constant, i.e.,

.
In the state estimation and model parameter reestimation

formulae given above, we find that the estimation algorithm
can be combined with the backward algorithm. There-
fore, the backward variables and the probabilities

, , and do not have to be stored for
later use. Among the forward variables, only and

(for all and ) need to be stored, since
they are used in (8) and (9), respectively. Hence, the storage
requirement is .

Because the sums (for all ) and
(for all ) are obtained during the

computation of the forward–backward variables, the number
of computation steps required for evaluating of (8)
and of (9) is linearly proportional to the number
of parameters. Evaluation of in (10) requires ad-
ditions, but no multiplications. Hence, the computational
complexity of the reestimation algorithm is , where

is the total number of model
parameters. Recall that the integer stands for the number
of distinct values that an observation can take on, i.e., the
cardinality of the set .

IV. A PPLICATION TOWEB WORKLOAD CHARACTERIZATION

In this section, we apply the explicit-duration HMM formu-
lation to characterize the user request patterns to a Web server.
We use the example discussed in [10] to illustrate this appli-
cation. The empirical data we use were extracted from actual
traffic data collected at a large-scale Web site.

Measurements of real workload often indicate that a signifi-
cant amount of variability is present in the traffic observed over a
wide range of time scales, exhibiting self-similar or long-range-
dependent characteristics [7]. Such characteristics can have a
significant impact on the performance of networks and systems
[8], [9]. Therefore, better understanding of the nature of the Web
workload is critical to the proper design and implementation of
Web servers. A major advantage of using an explicit-duration
HMM is its efficiency in estimating the model parameters to ac-
count for an observed sequence. Furthermore, the estimated pa-
rameters can capture various statistical properties of the work-
load, including long-range and short-range dependence. Thus,
the model can be applied to generate synthetic workload pat-
terns to be used for system performance evaluation and capacity
planning [10]. They can also be used together with, for example,

TABLE I
PARAMETERS OVER HOURS OF THEWORKLOAD

matrix-analytic methods to obtain analytically tractable solu-
tions to queueing-theoretic models of Web server performance.

In the Web application example, the observation sequence
represents the number of user requests arriving at the Web

site in the th second, and the maximum observed value was
. The total number of observations is

, where the time unit is 1 s. Hence, the observation period
is over one day. We characterize the request arrivals as a dis-
crete-time random process modulated by an underlying (hidden
state) semi-Markov process.

We consider the case in which the probability distributions
of the model parameters are assumed to be general. Based on
empirical analysis of the workload data, we find that a rule of
thumb for an appropriate choice of , the number of Markov
states, should be approximately 0.8 . We chose the value

in this study. Similarly, we set to be sufficiently
large to cover the maximum duration of any state. In this study,
we used , which is close to the average HTTP session
length from our measurement data.

Given these model assumptions, we now apply our for-
ward–backward algorithm to estimate the model parameters,
where the initial values of are simply assumed to be uniformly
distributed or randomly selected. In our experiments, the final
results are found to be robust in terms of their convergence
to the estimated value of model parameters: the final value
is independent of the initially selected values and is reached
in about 20 iterations. We summarize the results in Table I.
From this table, we can see that during the “peak” hours (i.e.,
Hours 20 and 21) as many as 19 or 20 hidden states are actually
used to modulate the rate of the Web access traffic, and the
remaining 10 to 11 states are never visited. During the “valley”
hours (i.e., Hours 10 and 11) only four hidden states are visited.
The maximum duration goes up to 405 (seconds) during
the peak time (Hour 21), whereas during the slack time (Hour
10) it only reaches 65 (seconds). This suggests that the state
duration distributions in the peak period and those in the slack
period may be significantly different in their tails.

Fig. 1 plots the number of requests per second together with
the estimated hidden states for 1) the whole day, 2) the valley
hour (Hour 10), 3) the sharpest rising hour (Hour 14), and 4) the
peak hour (Hour 21). From Fig. 1(a), we can see that the hidden
states modulate the arrival rates over the day. When the arrival
rate is low, as shown in Fig. 1(b), there are frequent transitions
among the hidden states. In this case, the model is essentially
a two-state Markov chain with transitions between states 1 and
3. When the arrival rate has a deterministic trend, as shown in
Fig. 1(c), the transition probabilities will have a corresponding
trend. For example, a given state exhibits more frequent transi-
tions to states with higher indices than to those states with lower



14 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 1, JANUARY 2003

(a)

(b)

(c)

(d)

Fig. 1. Observed data (i.e., number of requests per second) and the hidden
states of the modulate. (a) Whole day. (b) Valley hour. (c) Sharpest rising hour.
(d) Peak hour.

indices, while the deterministic trend is increasing. When the ar-
rival rate reaches its peak, as shown in Fig. 1(d), the process will
stay in the same state for a long period of time with a mean du-
ration of 87.8 s and only 41 state transitions occurring during
the period of 3600 s.

V. CONCLUSION

Our forward–backward algorithm for an explicit-duration
HMM requires only computations and

memory capacity to evaluate all the forward and back-
ward variables, where is the number of Markov states;
is the maximum duration between successive state transitions;
and is the period of the observation data. Once the forward
and backward variables are obtained, various performance
measures of interest such as the MAP estimate of a state
sequence and the maximum-likelihood estimate of the state
probability distribution can be obtained with little computation
and memory cost.

Reestimation of the set of model parametersfrom the ob-
servation sequence can be done with additional computa-
tions of only . The algorithm
has been successfully applied to estimate the parameters of a
hidden semi-Markov model that is designed to characterize the
access traffic pattern observed at a large-scale Web site. Such
a model requires a large number of states, a long maximum
state duration , and a long observation periodfor an accu-
rate characterization, and a practical solution is made possible
by our efficient algorithm.
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