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Digital image processing is an exciting area of research with a variety of applications including medical, surveillance security
systems, defence, and space applications. Noise removal as a preprocessing step helps to improve the performance of the signal
processing algorithms, thereby enhancing image quality. Anisotropic di	usion 
ltering proposed by Perona andMalik can be used
as an edge-preserving smoother, removing high-frequency components of images without blurring their edges. In this paper, we
present the FPGA implementation of an edge-preserving anisotropic di	usion 
lter for digital images. �e designed architecture
completely replaced the convolution operation and implemented the same using simple arithmetic subtraction of the neighboring
intensities within a kernel, preceded by multiple operations in parallel within the kernel. To improve the image reconstruction
quality, the di	usion coe�cient parameter, responsible for controlling the 
ltering process, has been properly analyzed. Its signal
behavior has been studied by subsequently scaling and di	erentiating the signal. �e hardware implementation of the proposed
design shows better performance in terms of reconstruction quality and accelerated performance with respect to its so�ware
implementation. It also reduces computation, power consumption, and resource utilization with respect to other related works.

1. Introduction

Image denoising is o�en employed as a preprocessing step in
various applications like medical imaging, microscopy, and
remote sensing. It helps to reduce speckles in the image and
preserves edge information leading to higher image quality
for further information processing [1]. Normal smoothing
operations using low-pass 
ltering do not take into account
intensity variations within an image and hence blurring
occurs. Anisotropic di	usion 
lter performs edge-preserving
smoothing and is a popular technique for image denoising
[2]. Anisotropic di	usion 
ltering follows an iterative process
and it requires a fairly large amount of computations to
compute each successive denoised image version a�er every
iteration. �is process is continued until a su�cient degree
of smoothing is obtained. However, a proper selection of
parameters as well as complexity reduction of the algorithm
can make it simple. Various edge-preserving denoising 
lters
do exist targeting various applications according to the cost,

power, and performance requirements. However, as a case
study, we have undertaken to optimize the anisotropic di	u-
sion algorithm and design an e�cient hardware equivalent to
the di	usion 
lter that can be applied to embedded imaging
systems.

Traditional digital signal processors are microprocessors
designed to perform a special purpose.�ey are well suited to
algorithmic-intensive tasks but are limited in performance by
clock rate and the sequential nature of their internal design,
limiting their maximum number of operations per unit time.
A solution to this increasing complexity of DSP (Digital Sig-
nal Processing) implementations (e.g., digital 
lter design
for multimedia applications) came with the introduction of
FPGA technology. �is serves as a means to combine and
concentrate discrete memory and logic, enabling higher inte-
gration, higher performance, and increased 
exibility with
their massively parallel structures. FPGA contains a uniform
array of con
gurable logic blocks (CLBs) [3–5], memory, and
DSP slices, along with other elements [6]. Most machine
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vision algorithms are dominated by low and intermediate
level image processing operations, many of which are inher-
ently parallel.�ismakes them amenable to parallel hardware
implementation on an FPGA [7], which have the poten-
tial to signi
cantly accelerate the image processing com-
ponent of a machine vision system.

2. Related Works

A lot of research can be found on the requirements and chal-
lenges of designing digital image processing algorithms using
recon
gurable hardware [3, 8]. In [1], the authors have
designed an optimized architecture capable of processing
real-time ultrasound images for speckle reduction using
anisotropic di	usion. �e architecture has been optimized
in both so�ware and hardware. A prototype of the speckle
reducing anisotropic di	usion (SRAD) algorithm on a
Virtex-4 FPGAhas been designed and tested. It achieves real-
time processing of 128 × 128 video sequences at 30 fps as well
as 320 × 240 pixels with a video rate speed of 30 fps [8, 9].
Atabany and Degenaar [10] described the architecture of
splitting the data stream into multiple processing pipelines. It
reduced the power consumption in contrast to the traditional
spatial (pipeline) parallel processing technique. But their
systempartitioning architecture clearly reveals nonoptimized
architecture as the � × � kernel has been repeated over
each partition (complexity of which is �(�2)). Moreover,
their power value is completely estimated. �e power mea-
surements of very recent hardware designed 
lters, namely,
the bilateral and the trilateral 
lter [11–13], have also been
undertaken. In [14], the authors have introduced a novel
FPGA-based implementation of 3D anisotropic di	usion 
l-
tering capable of processing intraoperative 3D images in real
timemaking them suitable for applications like image-guided
interventions. However, it did not reveal the acceleration rate
achieved in hardwarewith respect to the so�ware counterpart
(anisotropic di	usion) and energy e�ciency information as
well as any 
ltered output image analysis. Authors in [15] have
utilized the ability of Very Long Instruction Word (VLIW)
processor to perform multiple operations in parallel using
a low cost Texas Instruments (TI) digital signal processor
(DSP) of series TMS320C64x+. However, they have used the
traditional approach of 3 × 3 
lter masks for the convolution
operation used to calculate the 
lter gradients within the
window. It increased the computation of arithmetic oper-
ations. �ere is also no information regarding the power
consumption and energy e�ciency.

We have also compared our design with the GPU imple-
mentations of anisotropic di	usion 
lters for 3D biomedical
datasets [16]. In [16], the authors have implemented biomed-
ical image datasets in NVIDIA’s CUDA programming lan-
guage to take advantage of the high computational through-
put of GPU accelerators.�eir results show an execution time
of 0.206 sec for a 1283 dataset for 9 iterations, that is, for a total
number of (1283∗9) pixels where 9 is the number of iterations
to receive a denoised image. However, once we consider 3D
image information, the number of pixels increases thrice. In
this scenario, we need only 0.1 seconds of execution time

in FPGA platform as an approximation ratio with a much
reduced MSE (Mean Square Error) of 53.67 instead of their
average of 174.�e acceleration rate becomes 91x with respect
to CPU implementation platform unlike the case in GPU
with 13x. Secondly, their timing (execution) data does not
include the constant cost of data transfer (cost of transferring
data between main memory on the host system and the
GPU’s memory which is around 0.1 seconds). It measures
only the runtime of the actual CUDA kernel which is an
inherent drawback of GPU. �is is due to the architecture
which separates the memory space of the GPU from that
of its controlling processor. Actually, GPU implementation
takes more time to execute the same [17] due to lot of
memory overhead and thread synchronization. Besides GPU
implementation or customized implementations on DSP kits
of Texas Instruments have got their own separate purpose of
implementation.

3. Our Approach

�e main contributions of our work are highlighted as fol-
lows:

(i) Firstly, the independent sections of the algorithm
that can be executed in parallel have been identi
ed
followed by a detailed analysis of algorithm opti-
mization. �erea�er, a complete pipeline hardware
design of the parallel sections of the algorithm has
been accomplished (gradient computations, di	usion
coe�cients, and CORDIC divisions).

(ii) Our proposed hardware design architecture com-
pletely substituted standard convolution operation
[18], required for the evaluation of the intensity
gradients within the mask. We used simple arith-
metic subtraction to calculate the intensity gradients
of the neighboring pixels within a window kernel,
by computing only one arithmetic (pixel intensity
subtraction) operation.�eproposed operation saved
9 multiplications and 8 addition operations per con-
volution, respectively (in a 3 × 3 window).

(iii) �e number of iterations, which is required during
the 
ltering process, has been made completely adap-
tive.

(iv) Besides increasing the accuracy and reducing the
power reduction, a huge amount of computational
time has been reduced and the system has achieved
constant computational complexity, that is, �(1).

(v) We performed some performance analysis on the
di	usion coe�cient responsible for controlling the

ltering process, by subsequently di	erentiating and
scaling, which resulted in enhanced denoising and
better quality of reconstruction.

(vi) Due to its low power consumption and resource
utilization with respect to other implementations, the
proposed system can be considered to be used in low
power, battery operated portable medical devices.
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Figure 1: �e structure of the discrete computational scheme for
simulating the di	usion equation. �e brightness values ��,� are
associated with the nodes of a lattice and the conduction coe�cients�with the arcs. One node of the lattice and its four north, east, west,
and south neighbors are shown [2].

�e detailed description of the algorithm optimization
and the hardware parallelism as well as the achieved accelera-
tion are described in Section 5. As discussed above, in order to
implement each equation, one convolution operation needs
to be computed with a speci
ed mask as per the directional
gradient. Further optimization has been achieved by paral-
lel execution of multiple operations, namely, the intensity
gradient (∇�) and the di	usion coe�cients (��) within the

lter kernel architecture, being discussed in hardware design
sections. To the best of our knowledge, this is one of the

rst e�cient implementations of the anisotropic di	usion

ltering, with respect to throughput, energy e�ciency, and
image quality realized in hardware.

�e paper is organized as follows. Section 4 describes the
algorithm background, Section 5 brie
y explains the mate-
rials and methods of the approach in multiple subsections,
Section 6 discusses the results, and Section 7 ends up with
the conclusions and future projections.

4. Algorithm (Background Work)

�ewell known anisotropic di	usion equation is given in [2]

�� = div (� (	, 
, �) ∇�) = � (	, 
, �) Δ� + ∇� ⋅ ∇�, (1)

where div is the divergence operator and ∇ and Δ, respec-
tively, denote the gradient and Laplacian operator with
respect to the space variables. � denotes the time (scale)
where the locations of the region boundaries appropriate for
that scale are known with coordinate (	, 
). �e anisotropic
di	usion equation can be expressed as a simple numerical
scheme explained as follows.

Equation (1) above can be discretized on a square lattice
with vertices representing the brightness, and arcs represent-
ing the conduction coe�cients, as shown in Figure 1.

An 8-nearest-neighbor discretization of the Laplacian
operator can be used:

�N = ∇N��,� ≡ ��−1,� − ��,�,�S = ∇S��,� ≡ ��+1,� − ��,�...
(2)

leading to

��+1�,� = ���,� + � [�N ⋅ ∇N� + �S ⋅ ∇S� + �E ⋅ ∇E� + �W⋅ ∇W� + �NE ⋅ ∇NE� + �NW ⋅ ∇NW� + �SE ⋅ ∇SE�+ �SW ⋅ ∇SW�] ,
(3)

where 0 ≤ � ≤ 1/4 for the numerical scheme to be stable,N, S,
E, W are the mnemonic subscripts for north, south, east, and
west, the superscripts and subscripts on the square brackets
are applied to all the terms they enclose, the symbol ∇,
the gradient operator, indicates nearest-neighbor di	erences,
which de
nes the edge estimation method, say �, and � is the
number of iterations.

Perona and Malik [2] tried with two di	erent � de
ni-
tions, which controls blurring intensity according to ‖�‖; �
has to be a monotonically decreasing function:

� (‖�‖) = �− ((‖�‖� )2) ,
� (‖�‖) = 11 + (‖�‖ /�)2 .

(4)

Wede
ne new “�” to identify the conduction coe�cients.
�e conduction coe�cients are updated at every iteration as
a function of the brightness gradient shown in equationarray
(2).�e coe�cients control the amount of smoothing done at
each pixel position (	, 
) represented as

� (	, 
, �) = � (����∇� (	, 
, �)����) . (5)

Considering all the directions, we have

��
N�,�

= � (�����∇N���,������) ,��
S�,�

= � (�����∇S���,������)...
(6)

If �(	, 
, �) is large, then 	, 
 is not a part of an edge and
vice versa. �us, substituting the value of the coe�cient (��)
by �() as shown in (6), this is performed for all the gradient
directions which is 
nally substituted to get (3).
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Figure 2: Convolution architecture concept. (a) 3 × 3 
lter kernel. (b) Convolution operation (see equations (8) and (10)).

5. Design Method and Hardware Details

5.1. Replacing the Convolution Architecture (Proposed by Us).
Consider


 [1, 1] = 1∑
�=−1

1∑
�=−1

	 [", #] ⋅ ℎ [1 − ", 1 − #]
= 	 [0, 0] ℎ [1, 1] + 	 [1, 0] ℎ [0, 1]+ 	 [2, 0] ℎ [−1, 1]= 	 [0, 1] ℎ [1, 0] + 	 [1, 1] ℎ [0, 0]+ 	 [2, 1] ℎ [−1, 0]= 	 [0, 2] ℎ [1, −1] + 	 [1, 2] ℎ [0, −1]+ 	 [2, 2] ℎ [−1, −1] .

(7)

Equation (7) describes a simple 2-dimensional convolu-
tion. Referring to Figure 2, we use 	 as the input image andℎ as the 
lter coe�cient kernel to perform the convolution as
shown in (7). Now, as a case study, substituting the value of
the 
lter coe�cient kernel (north gradient 
lter coe�cient)
is shown as follows:

ℎN = (0 1 00 −1 00 0 0) . (8)

In (7), we get


 [1, 1] = 0 + ⋅ ⋅ ⋅ + 	 [1, 0] − 	 [1, 1] + ⋅ ⋅ ⋅ + 0= 	 [1, 0] − 	 [1, 1] . (9)

Similarly, for south gradient 
lter coe�cient

ℎS = (0 0 00 −1 00 1 0) , (10)

we get the south directional gradient as
 [1, 1] = 0 + ⋅ ⋅ ⋅ + 	 [1, 2] − 	 [1, 1] + ⋅ ⋅ ⋅ + 0= 	 [1, 2] − 	 [1, 1] . (11)

�is operation is continued for all other directions. �is
shows that the convolution operation can be simpli
ed
down to a single arithmetic subtraction, thereby drastically
reducing the number of operations, the complexity, and the
hardware resources. It also enhances the speed, as discussed
in the latter sections of the paper.

�e gradient estimation of the algorithm for various
directions is shown in equationarray (2), whichwas originally
realized in so�ware [19] by means of convolution of 3 × 3
gradient kernel sliding over the image. It consisted of 9multi-
plications and 8 additions for a single convolution operation
(so total of 17 operations).�erefore, our hardware realization
of the convolution kernel operation (computing gradient
(2)) has been substituted by a single arithmetic subtraction
operation, reducing a huge amount of computation. �e
detailed hardware implementation is described in Section 5.5.

5.2. Adaptive Iteration (Proposed by Us). �e iteration step of
the 
lter shown in (3) needs to bemanually set in the classical
version of the algorithm, which was its main drawback.
However, that has been made adaptive by the proposed
Algorithm 1. �e number of iterations completely depend
upon nature of the image under consideration.
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Input: Denoised images ��,� at every iteration step of (3).

Comments: Referring (3).
(1) �e di	erences between denoised output images at every iteration step is found out.�'� = ��+1�,� − ���,�
(2) �e di	erence between the maximum and minimum of the di	erence matrix found out in
Step (1) is computed at every iteration step.�'�

di�
= max(�')� −min(�')�

(3) Steps (1) and (2) are continued until the condition shown below is met.‖�'�+1
di�

− �'�
di�

‖ = 0
(4) Once the condition in Step (3) is met the execution is stopped which in turn stops the
number of iteration thereby making it adaptive.
(5) Display the number of iteration thus encountered and exit.

Algorithm 1: Adaptive iteration algorithm.

5.3. In-Depth Analysis of the Di
usion Coe�cient (Proposed by
Us). To control of the properties of the di	usion coe�cient
in (5) is required to analyze the signal behavior. Considering a
1-dimensional di	usion coe�cient of the form shown in (12)
as 1/(1 + 	2), which is a function of the gradient, we get

� (∇��) = 1(1 + ∇�2�) , (12)

where ∇�� is the gradient computation shown in equation-
array (2). Observing the coe�cients timing variation by
computing the di	erentiation of the coe�cient �, we get

∇�� = d� (∇��)
d	 = �� (∇��) ⋅ ∇��� = − 2	(	2 + 1)2 , (13)

where �(∇��) > 0 and the di	erentiation order may be com-
plimented since we are interested in its timing variance:

d (∇��)
d� = d (d� (∇��) /d	)

d� = ��� ⋅ ∇��2� + �� ⋅ ∇���� . (14)

�erefore, substituting the value of �(∇��), we get
d (∇��)
d� = d [−2∇��/ (∇�2� + 1)2]

d	
= −2 ((∇�2� + 1)2 − 4∇�2� (∇�2� + 1))(∇�2� + 1)4 .

(15)

Upon performing some algebra and rewriting, we get

d (∇��)
d� = 8∇�2�(∇�2� + 1)3 − 2(∇�2� + 1)2 = 2 (3∇�2� − 1)(∇�2� + 1)3 . (16)

Now, as a test case, the magnitude of the second-order
derivative of the coe�cient is scaled by 3 (tested on images)
which changes the signal attribute as shown in Figure 3(b):

d (∇��)
d� = 6 (3∇�2� − 1)(∇�2� + 1)3 . (17)

Upon solving (17), the roots appear as ±1/√3. How-
ever, keeping the roots coordinate the same, the magnitude
increases upon scaling as is clear from graphs (see Fig-
ure 3(b)).

So we can conclude here that the smoothing e	ect can
be performed in a controlled manner by properly scaling the
derivative of the coe�cient. As a result, images with high-
frequency spectrum are handled in a di	erent way unlike
their counterpart.

Since the coe�cient controls the smoothing e	ect while
denoising, it also e	ects the number of iterations incurred
to achieve the magnitude threshold � in (4) for smoothing.
�is signal behavior of the di	usion coe�cient should be very
carefully handled. Proper selection of its magnitude depends
upon the image selected for denoising.

5.4. Algorithm of Hardware Design Flow. �e 
rst step
requires a detailed algorithmic understanding and its cor-
responding so�ware implementation. Secondly, the design
should be optimized a�er some numerical analysis (e.g.,
using algebraic transforms) to reduce its complexity. �is
is followed by the hardware design (using e�cient storage
schemes and adjusting 
xed-point computation speci
ca-
tions) and its e�cient and robust implementation. Finally,
the overall evaluation in terms of speed, resource utilization,
and image 
delity decides whether additional adjustments in
the design decisions are needed (ref. Figure 4).�e algorithm
background has been described in the previous Section 4.

�e work
ow graph shown in Figure 5 shows the basic
steps of our design implementation in hardware.

5.5. Proposed Hardware Design Implementation. �e noisy
image is taken as an input to the FPGA through the;<��?<
�@ (see Figure 5) which de
nes the FPGA boundary and
converts the pixel values from
oating to 
xed-point types for
the hardware to execute. �e anisotropic di	usion 
ltering is
carried out a�er this. �e processed pixels are then moved
out through the ;<��?<
 �A� again converting the System
Generator 
xed-point or 
oating-point data type.

Figure 5 describes the abstract view of the implemen-
tation process. �e core 
lter design has been elaborated
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Figure 3: Di	usion coe�cient �� signal analysis of (12).
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Figure 4: Algorithm to hardware design 
ow graph.

in descriptive components in a work
ow modular structure
shown in Figure 6.�e hardware design of the corresponding
algorithm is described in Figures 7–14.

Explanation of Hardware Modules as per the Work
ow Dia-
gram. Figure 7 shows the magni
ed view of the blue bound-
ary block implementing equation (3) of Figure 5 (i.e., the
anisotropic di	usion 
ltering block). Figure 7 shows the
hardware design which gets 
red � times due to � number of
iterations from the script when executed.

Equation (3) has been described in words in detail
in Figure 6 with iteration required to meet the necessary
condition for the classical anisotropic di	usion equation.
Equation (3) shows that ���,� gets updated at every iteration and
has been realized with the hardware design in Figure 8. �e

green outlined box in Figure 7 has been detailed in Figure 8.
�e line bu	er reference block bu	ers a sequential stream
of pixels to construct 3 lines of output. Each line is delayed
by 150 samples, where 150 is the length of the line. Line 1 is
delayed by (2 ∗ 150 = 300) samples, each of the following
lines are delayed by 150 fewer samples, and line 3 is a copy of
the input. It is to be noted that the image under consideration
used here is of resolution 150 × 150, and in order to properly
align and bu	er the streaming pixels, the line bu	er should be
of the same size as the image. As shown in Figure 9, C1 toC9
imply a chunk of 9 pixels and their corresponding positions
with respect to the middle pixel C5 as north (N), south (S),
east (E), west (W), north-east (NE), north-west (NW), and
so forth, as shown with a one-to-one mapping in the lower
second square box.

�is hardware realization of the gradient computation is
achieved by a single arithmetic subtraction as described in
Section 5.1.

Now, referring to this window, the di	erence in pixel
intensities from the center position of the window to its
neighbors gives its gradient as explained in equationarray
(2). �is di	erence in pixel intensities is calculated in the
middle of the hardware section as shown in Figure 8. Here,C1denotes the central pixel of the processingwindowand the
corresponding di	erences with pixel intensities in positionC1,C2,C3, . . . , C9 denote the directional gradient (C1 −C5 = �D<' @ED�ℎ?�F�,C2−C5 = �D<' ?�F�, . . . , C9−C5 =�D<' FEA�ℎ�<F�). �e pixels are passed through the line
bu	ers (discussed in Section 5.6) needed for proper align-
ment of the pixels before computation. �is underlying
architecture is basically a memory bu	er needed to store two
image lines (see Section 5.6) implemented in the FPGA as
a RAM block. �e deep brown outlined block in Figure 8
(from where the three out lines are coming out) contains
the detailed diagram and working principle of the bu	ering
scheme in Figure 12.
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(i + 1)th image
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Figure 6:Work 
ow of design module of anisotropic di	usion 
lter
of Figure 5 in detail.

�e pixels C1 to C9 are passed out of the bu	er line
blocks through various delays into the next level of circuitry
as shown in Figure 8. Referring to Figure 8, the Out 1 of
the line bu	er block which outputs three pixels C7 to C1
as per Figure 9 of which C7 moves out 
rst, then C8 andC9 a�er encountering the delay blocks. Similarly, pixel data

ow occurs for Out 2 and Out 3 blocks, respectively, with
the pixel positions as shown from C1 to C9. Pixel positions
at this instant of time shown in Figure 8 have been shown
a�er encountering the bu	er delays. In this model, pixel C5
denotes the center pixel and subtracting it from the remaining
pixels denotes the gradient in their corresponding positions
as shown in the following:

C1 − C5 = ∇NW�,C2 − C5 = ∇W�,C3 − C5 = ∇SW�,C4 − C5 = ∇N�,C6 − C5 = ∇S�,C7 − C5 = ∇NE�,C8 − C5 = ∇E�,C9 − C5 = ∇SE�.

(18)

Now, let us discuss the bottom-up design approach to
make things more transparent. Referring to (3), the coef-

cient �� is de
ned in equationarray (6) which has been

realized in hardware as shown in Figure 11 where ‖�‖ is the
intensity gradient calculating variable and � is the constant
value 15. So 1/� = 1/15 = 0.0667 which gets multiplied
with the input gradient ‖�‖ squared up and then added with
a unitary value and the resultant becomes the divisor with 1
the dividend. Referring to the hardware design in Figure 11,
the CORDIC divisor has been used to compute the division
operation in (4) and the rest is quite clear. Now, Figure 10
is the hardware design of the equations ���� and 1/2����
as per the individual components of (3). For the gradient
north, south, east, and west, it is needed to multiply only
1/2 with ���� and 1 for others. We have seen the coe�cient
computation of equationarray (6) where the input is the
gradient �� = ∇��. �is is the same input in the hardware
module in Figure 10 needed to compute coe�cient ��. �e
output of Figure 10 is nothing but the coe�cient multiplied
with the gradient �� as shown.

�e delays are injected at the intervals to properly balance
(synchronize) the net propagation delays. Finally, all the out-
put individual components of the design shown in Figure 8
are summed up and the lambda (�) is 
nally multiplied with
the added results. �is implementation of the line bu	er is
described in the next subsection.

Each component in (3), that is,�⋅∇�, requires an initial 41-
unit delay for each processed pixel to produce (CORDIC: 31-
unit delay, multiplier: 3-unit delay, and register: 1-unit delay).
�e delay balancing is done as per the circuitry. However, this
delay is encountered at 
rst and from the next clock pulse
each pixel gets executed per clock pulse since the CORDIC
architecture is completely pipelined.

5.6. E�cient Storage/Bu
ering Schemes. Figure 12 describes
the e�ciency in the storage/bu	ering scheme. Figures 12 and
13 describe a window generator to bu	er reused image inten-
sities diminishing data redundancies.�is implementation of
the line bu	er uses a single port RAM block with the read
before write option as shown in Figure 13. Two bu	er lines
are used to generate eight neighborhood pixels.�e length of
the bu	er line depends on the number of pixels in a row of an
image. A FIFO structure is used to implement a 3 × 3 window
kernel used for 
ltering to maximize the pipeline implemen-
tation. Leaving the 
rst 9 clock cycles, each pixel is processed
per clock cycle starting from the 10th clock cycle.�eprocess-
ing hardware elements never remain idle due to the bu	ering
scheme implemented with FIFO (Figure 14). Basically, this
FIFO architecture is used to implement the bu	er lines.

With reference to Figure 14, it is necessary that the output
of the window architecture should be vectors for pixels in the
window, together with an enable which is used to inform an
algorithm using the window generation unit as to when the
data is ready to process. To achieve maximum performance
in a relatively small space, FIFO architectural units speci
c to
the target FPGA were used.
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Figure 7: �is hardware design shows a single instance of the iterative di	usion step shown in (3). �e overall architecture with the pixels
passing from the host PC to the FPGA platform and the processed pixels being reconstructed back to the host PC.

Out 1

Out 2

Out 3

X9

X7

X6

X5

X4

X3

X2

X1

X8

NW

W

SW

N

SE

E

NE

S

−

− indicates a subtractor block indicates an addition block

−

−

−

−

−

−

−

Lambda = 1/7

Vide Figure 12

Vide
Figure 10

Vide
Figure 10

Vide
Figure 10

Vide
Figure 10

Vide
Figure 10

Vide
Figure 10

Vide
Figure 10

Vide
Figure 10

Figure 8: Hardware architecture of the second additive term of the RHS of (3).

6. Results and Discussion

In this paper, we presented an e�cient architecture of the
FPGA prototyped hardware design of an optimized ani-
sotropic di	usion 
ltering on image. �e algorithm has been

successfully implemented using FPGA hardware using the
System Generator platform with Intel(R) Core(TM) 2 Duo
CPU T6600 @ 3.2GHz platform and Xilinx Virtex-5 LX110T
OpenSPARC Evaluation Platform (100MHz) as well as Avnet
Spartan-6 FPGA IVK.
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Figure 9:�e 
gure is showing a section of an image and the neigh-
borhood pixel directions with respect to the middle pixel.

Here, the hardware 
lter design is made using the
Xilinx DSP blockset. �e algorithm [2] has been analyzed
and optimally implemented in hardware with a complete
parallel architecture. �e proposed system leads to improved
acceleration and performance of the design. �e throughput
is increased by 12 to 33% in terms of frame rate, with respect
to the existing state-of-the-art works like [20–22]. Figures 15,
16, and 17 show the denoising performances. Figure 15 shows
a denoised image of various human skeletal regions which
was a	ected by noise. Figure 16 shows the quality compar-
ison between the hardware and its corresponding so�ware
implementations. Figure 17 shows the various denoising 
lter
performances. Fine texture regions have been magni
ed to
show the achieved di	erences and improvement.

Figures 18 and 19 denote the accuracy measures.

With regard to data transfer requirement, there is a huge
demand for fast data exchange between the image sensor
and the computing platform. For example, transferring a
1024 × 1024 grayscale video sequence in real time requires
a minimum data transfer rate of 1024 × 1024 pixels/f rame ∗1 byte/pixel ∗ 30 fps = 30Mbps. In order to achieve this data
rate, a high performance I/O interface, such as a PCI or USB,
is necessary. We have used USB 2.0 (Hi-Speed USB mode)
supporting 60Mbps data rate.

For a 512 × 512 image resolution, time taken to execute in
so�ware is 0.402 seconds and 0.101 seconds for 150 × 150 size
grayscale image approximately (cf. Table 1).

Simulation activity 
les (SAIF) from simulation is used
for accurate power analysis of a complete placed and routed
design.

As already explained, the bu	er line length needs to be
equal to that of the image resolution. Now, as the resolution
increases, the bu	ering time increases too. Now, it is obvious
that increasing image resolution, the number of pixels to
be processed in both hardware and so�ware increases. �is
di	erence is proportionate. But what makes the di	erence
in acceleration rate as a result of change in resolution (see
Table 1) is created by the bu	ering scheme of the hardware. In
so�ware, the image can be read at one go unlike in hardware

Table 1: Runtime comparison between acceleration rates of our
proposed hardware implementation of anisotropic di	usion 
lter
for di	erent image resolutions.

Image
resolution

So�ware
execu-
tion
time

(seconds)

Hardware
execution

time
(seconds)

Accelerate
rate

150 × 150 0.101 0.0011 (0.101/0.0011) = 91

512 × 512 0.402 0.0131 (0.402/0.0131) = 30

where the pixels need to be serialized while reading (see
Figures 12 and 14).

Case 1. �e image resolution used for this experiment is 150×
150, so a total of 22500 pixels. �erefore, a sum total of(22500∗5) = 112500 pixels have been processed for 
ve iter-
ations of the algorithm. Our proposed hardware architecture
is such that it can process per pixel per clock pulse (duration
10 ns). �e clock frequency of the FPGA platform on which
the experiment has been performed is 100MHz (period =
10 ns). �e ;<��?<
 �@ of the FPGA boundary has an unit
sample period. �erefore, the total time taken to process
is 22500 pixels ∗ 5 iterations ∗ 10 ns = 0.0011 seconds in
hardware (also has been cross-checked complying with (19)).

Whereas only in so�ware environment the total time
taken to execute in the host PC con
guration mentioned
above is 0.101 seconds, thus a total acceleration of (0.101/
0.0011 = 91x) in execution speed has been achieved in FPGA-
in-the-loop [23] experimental setting.

Case 2. �erefore, for image resolution 512 × 512, the
total hardware time required to process is 262144 pixels ∗5 iterations ∗ 10 ns = 0.0131 seconds (also has been cross-
checked complying with (19)). Figure 20 shows that per
pixel gets executed per clock cycle starting from the FPGA
boundary ;<��?<
 �@ to ;<��?<
 �A�.

�e experiment has been implemented 10 times and the
corresponding mean squared error (MSE) obtained has been
averaged by 10 to get the averaged MSEav, which is used
to calculate the PSNR. Since the noise is random, therefore
averaging is performed while computing the PSNR.

As seen from the processed images, our result resembles
the exact output very closely.�e di	erence is also clear from
the di	erence of the PSNR and SSIM values (Table 2).

A closer look has been plotted with a one-dimensional
plot shown in Figure 21, which clearly exposes the smoothing
e	ect at every iterative step.

FPGA-in-the-loop (FIL) veri
cation [23] has been car-
ried out. It includes the 
ow of data from the outside world
to move into the FPGA through its input boundary (a.k.a;<��?<
 �@), get processed with the hardware prototype in
the FPGA, and be returned back to the end user across the;<��?<
 �A� of the FPGA boundary [24, 25].�is approach
also ensures that the algorithm will behave as expected in the
real world.
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Table 2: Quality measures (performance metrics): SSIM (structural similarity) and PSNR (peak signal-to-noise ratio) for the experiments.
For each column, the best value has been highlighted for three di	erent noise standard deviations. Our proposed technique OAD (optimized
anisotropic di	usion) shows better result except for the SSIM parameter for standard deviation, 20. Comparison has beenmade with di	erent
types of benchmark edge preserving denoising 
lters.

Method
Std. dev. = 12 Std. dev. = 15 Std. dev. = 20

SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB)

(a) ADF [2] 0.9128 29 0.8729 27.82 0.8551 24.93

(b) NLM [27] 0.9346 28.2 0.9067 27.29 0.8732 25.64

(c) BF [12] 0.9277 27 0.8983 28.54 0.8809 24.28

(d) TF [13] 0.8139 25.22 0.7289 22.87 0.6990 21.98

(e) OAD
(Our proposed
optimized
anisotropic
di	usion 
lter)

0.9424 30.01 0.9245 28.87 0.8621 25.86

0.5/1

Delay

(vide Figure 11)
Cn (di�usion coe�cient)

Figure 10: �is hardware module multiplies the di	usion coe�cient �� with the pixel gradient ∇� to produce ��∇�.
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Figure 11: Hardware design for (5) generated for controlling the blurring intensity, that is, di	usion coe�cient (��).
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Figure 12: Hardware module showing the line bu	ering scheme
of the pixels as described in Section 5.6 and hardware design
(Section 4).

Figure 22 shows the frames per second achieved for
images of various resolutions. �e power measurements in
our proposed method have been analyzed a�er the imple-
mentation phase (placement and routing) and are found to
be more accurate and less than their stronger counterpart,

+ +

Bool

Single
port

RAM

Counter

Figure 13: Hardware design within the line bu	er shown in
Figure 12.

namely, the hardware implementation of the bilateral and
trilateral 
lter as shown in Table 3.

Table 4 denotes the resource utilization for both the
hardware platforms for our implementation and a very strong
benchmark implementation (its counterpart) of bilateral

lter. It shows that a lot of acceleration has been achieved
for anisotropic (cf. Table 5) with respect to its counterpart
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Figure 14: Data 
ow architecture of the window kernel implemented using the FIFO architecture.

(a) (b) (c)

True ribs

ClavicleOriginal image Noisy, 28.08 dB Filtered, 30.42dB

Scapula, humerus joint

Figure 15: Results showing the original image, its noisy counterpart, and the denoised image and its various magni
ed portions of various
sections of the denoised image of human skeleton. Image size = 512 × 512; the 
lter settings are as follows: Sigma (H) for random noise = 12,
number of iterations = 4, � in (3) = 1/7, and Kappa (�) in (4) = 15. (a), (b), and (c) show the zoomed insets of the scapula-humerus joint, true
rib region, and the clavicle bone, respectively.

(a) (b)

Figure 16: Image quality comparison between (a) FPGA implementation for the natural Einstein image (zoomed eye inset) and (b)MATLAB
implementation. Filter parameters: Sigma (H) for random noise = 12, number of iterations = 4, � in (3) = 1/7, and Kappa (�) in (4) = 15.

bilateral at the cost of a marginal increase in percentage of
resource utilization (cf. Table 5).

�e complexity analysis has been compared with some of
the benchmark works and is shown in Table 6.

6.1. Considerations for Real-Time Implementations. �ere
remain some considerations while planning to implement

complex image processing algorithms in real time. One such
issue is to process a particular frame of a video sequence
within 33ms in order to process with a speed of 30 (frames
per second) fps. In order to make correct design decisions, a
well known standard formula is given by

�frame = �I = (J ⋅ �/�� + K)@core ⋅ I ≤ 33ms, (19)
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(a) (b) (c)

(d) (e) (f)

Figure 17: Comparison of various edge-preserving 
lters implemented using hardware on the natural grayscale image Einstein of size 150 ×
150 measured for similar number of iterations. (a) Original image. (b) Direct implementation of the anisotropic di	usion 
lter (so�ware
implementation). (c) Output of the bilateral 
lter realized using FPGA. (d) Output of nonlocal means 
lter. (e) Trilateral 
lter output.
(f) Output of our implementation of optimized anisotropic di	usion 
ltering using a novel hardware design. Note that the 
ne boundary
transitions in the moustache area (see zoomed insets) are clearly visible in our implementation in (f) unlike others which is clear from the
visual experience. Similarly, the zoomed portions of the le� eye show the clear distinctions of the lower and upper lid (also holds the contrast
information); moreover, the magni
ed area of the neck portion also shows a sharp transition. All the comparisons should be done keeping
the original image in (a) in mind as the reference image. �e PSNR di	erence is as shown in Table 2.
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Figure 18: Results showing the variance of PSNR measured against
the number of iterationsmeasured for images of various resolutions.
It has been found that the number of iterations ranges between 4 and
5 to attain the most denoised output close to the original. �e 
lter
settings are as follows: Sigma (H) for random noise = 12, number
of iterations = 4, � in (3) = 1/7, and Kappa (�) in (4) = 15. (⋅ ⋅ ⋅ ):
image resolution 150 × 150, (—): image resolution 256 × 256, and
(- - -): image resolution 512 × 512. Various images with the similar
resolution have been tested and the averages have been plotted with
identical curves with their respective resolutions.

where �frame is the processing time for one frame,� is the total
number of clock cycles required to process one frame of J

Table 3: Power utilization for Virtex-5 OpenSPARC architecture
measured for an image of resolution 150 × 150.

Filter type
Quiescent
power
(watt)

Dynamic
power
(watt)

Total power (watt)

OAD (our
proposed)

1.190 0.200 (1.100 + 0.070) = 1.170

TF [13] 2.305 0.422 (2.305 + 0.422) = 2.727

BF [12] 1.196 0.504 (1.196 + 0.504) = 1.700

Reference
[10]

NA NA 1.240

pixels,I is themaximum clock frequency at which the design
can run, @core is the number of processing units, �� is the pixel-
level throughput with one processing unit (0 < �� < 1), � is

the number of iterations in an iterative algorithm, and K is the
overhead (latency) in clock cycles for one frame [1].

So in order to process one frame, the total number of
clock cycles required is given by (J ⋅ �/�� + K) for a single
processing unit. For @core > 1, one can employ multiple proc-
essing units.

Let us evaluate a case study applying (19) for our experi-
ment.
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�

PSNR measure against kappa (�) used 
to compute di�usion coe�cient (cf. (6))
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Figure 19: Results show two graphical plots: (a) measures the change of PSNR values against the parameter kappa (�) (cf. in (4)) used to
compute the di	usion coe�cient (��), which re
ects an optimum value in the range of 15 to 17 needed to obtain the denoised accuracy as
shown with the pointers in the graphs. (b) shows a single value for � = 1/7 yields the maximum denoised output for di	erent images of
varying resolutions; the rest of the 
lter settings remain the same.
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Figure 20: Simulation results showing the time interval taken to
process the image pixels. Each clock pulse duration is 10 ns. Each
pixel requires one clock pulse to process from the FPGA boundary;<��?<
 �@ to;<��?<
 �A� together with the intermediary signal
lines as probed, following the same rate (ref. Figure 7).

(a) Noisy image

(b) First iteration 

(c) Second iteration

(d) �ird iteration

(e) Fourth iteration

Figure 21: Family of 1D signals showing the plot of only one
particular row of an image, the variation of which is shown at
di	erent iterations, starting from noisy to 
nal denoised output.

For 512 × 512 resolution image, J = 262144, � = 5,�� = 1, that is, per pixel processed per clock pulse, K = 1050,
that is, the latency in clock cycle, I = 100MHz, and@core = 1. �erefore, �frame = 0.013 seconds = 13ms ≤ 33ms
(i.e., much less than the minimum timer threshold required
to process per frame in real-time video rate). With regard to
data transfer requirement, there is a huge demand for fast data
exchange between the image sensor and the computing plat-
form. For example, transferring a 1024 × 1024 grayscale video
sequence in real time requires a minimum data transfer rate
of 1024 × 1024 pixels/f rame∗1 byte/pixel∗30 fps = 30Mbps.
In order to achieve this data rate, a high performance I/O
interface, such as a PCI orUSB, is necessary.OurUSB 2.0 (Hi-
Speed USB mode) supports 60Mbps data rate, which is just
double the minimum requirement of 30Mbps which catered
our purpose with ease.

�e highlights of our approach are the following:

(i) Accuracy. We have performed our experiments on
approximately 65–70 images (both natural and med-
ical) and they are producing successful results. We
discovered that every time they yielded themaxPSNR
for the following selected parameter values shown in
Figures 18 and 19.

(ii) Power. We can claim our design to be energy e�cient
as the power consumption for the design has reduced
in comparison to other benchmark works for an
example image of a given resolution as shown (cf.
Table 3 by reducing the number of computations
[26], NB also tested for images of various resolutions)
with respect to other state-of-the-art works cited
previously [11, 12].
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Figure 22: �e 
gure shows the frame processing rate of so�ware and hardware processing platform. 	-axis denotes the image resolutions
and 
-axis the frames per second, respectively, for image of di	erent resolutions as shown from 1 to 3 in 	-axis.
Table 4: Comparison showing resource utilization of the various optimized hardware architectures for image resolution 150 × 150
implemented in Virtex-5 LX110T OpenSPARC Evaluation Platform [28] and Spartan 6 IVK [29] realizing bilateral [12] and anisotropic
di	usion 
ltering.

Percentage utilization

Image size (150 × 150)

Virtex-5 LX110T
OpenSPARC FPGA

(utilized/total number)
(anisotropic di
usion)

Fully parallel and separable
single dimensional architecture
(bilateral �lter) for the same

OpenSPARC device

Avnet Spartan 6
industrial video
processing kit

(anisotropic di
usion)

Occupied slices
5225/17280 6342 and 3144 3810/23038

(30%) (37% and 18%) (16%)

Slice LUTs
14452/69120 11689 and 8535 11552/92152

(20%) (17% and 12%) (12%)

Block-RAM/FIFO/RAMB8BWERs
1/148 22 and 22 2/536

(1%) (15% and 15%) (1%)

Flip 
ops
17309/69120 16167 and 5440 15214/69120

(25%) (23% and 8%) (22%)

Bonded IOBs
46/640 1 and 1 46/396

(7%) (1% and 1%) (11%)

Mults/DSP48Es/DSP48A1s
55/64 0 and 0 81/180

(85%) (0% and 0%) (45%)

BUFGs/BUFCTRLs
1/32 4 and 4 1

(3%) (13% and 13%) (3%)

(iii) Di
usion Coe�cient Analysis. We performed some
performance analysis on the di	usion coe�cient
responsible for controlling the 
ltering process, sub-
sequently by di	erentiation and scaling. �e changes
in the signal behavior help to perform a proper selec-
tion of the scaling parameter needed for 
ltering

di	erent image types. PSNR and SSIM performance
measures re
ect the reconstructed denoising quality
a	ected by random noise.

(iv) Complexity. Previous implementations [10, 15] used
normal convolution operation to calculate the inten-
sity gradients whose computational complexity is of
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Table 5: Runtime comparison in so�ware and hardware for bilateral 
ltering (BF) and anisotropic di	usion (AD) 
ltering (note that A = 150× 150, B = 256 × 256, C = 512 × 512, and D = 1024 × 1024). �e processing platform was done on an Intel(R) Core(TM) 2 Duo CPU T6600
3.2GHz system.

Filtering techniques AD 
ltering BF

Image resolution A B C D A B C D

Execution time (so�ware in
seconds)

0.101 0.153 0.402 1.1 0.5 1.1 2.5 11.5

Acceleration rate in so�ware for
anisotropic over bilateral (approx.)

3x 3x 3x 3x — — — —

Acceleration rate when executed in
hardware with respect to so�ware
for BF

— — — — 70x 6x 7x 3x

Acceleration rate when executed in
hardware with respect to so�ware
for AD

91x 46x 30x 21x — — — —

Table 6: Complexity analysis report. �e set M of all possible image
locations. �e set N of all possible pixel values. H is the kernel
standard deviation.M × N denotes the image resolution, 	 is patch
size, and 
 is the search window size.

Algorithm Complexity

Constant time polynomial range
approach [30]

�(1)
Trilateral 
lter [13]

More than the
[12, 27, 30–35]

NLM [27] 	2 ⋅ 
2 ⋅ � ⋅ J
Brut force approach [31] �(|M|2)
Layered approach [32] �(|M| + (|M|/H2	 )(|N|/H
))
Bilateral grid [33] approach �(|M|+(|M| /H2	 ) (|N| /H
))
Separable 
lter kernel approach [34] �(|M| H	)
Local histogram approach [35] �(|M| logH	)
Constant time trigonometric range
approach [12]

�(1)
Classical anisotropic di	usion [2] Nonlinear

Optimized anisotropic di
usion (OAD)
(our approach)

�(1)
�(�2). Even if the normal convolution is substituted
by single dimensional architecture [12], the compu-
tational complexity would reduce to �(�). How-
ever, we have realized the same with a single arith-
metic subtraction operation, making it convenient by
arranging the pixels in the favorable order, thereby

reducing the complexity to �(1). �at is, �(�2) →�(�) → �(1), that is, the least complexity achievable.

(v) Speed. Besides having �(1) complexity, our hardware
architecture of the algorithm has been formulated
in parallel. �is allows us to further accelerate its
speed, since all the directional gradient computations
have been done in parallel, thereby saving the COR-
DIC (processor) divider delay time by (41 ∗ 7∗10) = 2870 ns. Each CORDIC block has 31-unit delay,
together with multipliers and registers and thereby

saving 7 directions (due to parallel executing) where
10 ns is each clock pulse.

(vi) Adaptive Iteration. We have designed Algorithm 1,
which shows the steps of intelligent adaptation of the
number of iterations.

(vii) �e 
lter design has been implemented in one gray-
scale channel; however, it can be replicated for all
other color channels.

(viii) Reconstruction Quality. Last but not least, the de-
noised image quality has been measured against
benchmark quality performance metrics.

7. Conclusions

In this paper, we presented an e�cient hardware implementa-
tion of edge-preserving anisotropic di	usion 
lter. Consider-
able gain with respect to accuracy, power, complexity, speed,
and reconstruction quality has been obtained as discussed in
Section 6. Our design has been compared to the hardware
implementation of state-of-the-art works with respect to
acceleration, energy consumption, PSNR, SSIM, and so forth.
From the point of view of the hardware realization of edge-
preserving 
lters, both bilateral and anisotropic di	usion
yield satisfying results, but still the research community
prefers bilateral 
lter as it has less parameters to tune and is
noniterative in nature. However, recent implementations of
the same are iterative for achieving higher denoised image
quality. So it can be concluded that if a proper selection of
parameters can be done (has been made adaptive without
manual intervention in our case) in case of anisotropic
di	usion 
ltering, then real-time constraints can be over-
come without much overhead. We have not performed the
hardware implementation of the nonlocal means algorithm
as it contains exponential operations at every step. Hardware
implementation of the exponential operation introduces a lot
of approximation errors.

While GPU implementations of the same do exist, how-
ever, we have undertaken this work as a case study tomeasure
the hardware performance of the same.
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Additional work on testing with more images, design
optimization, and real-time demonstration of the system and
a suitable physical design (
oorplanning to masking) is to
be carried out in future. It is to be noted that we have
designed one extended trilateral 
lter algorithm (edge-pre-
serving/denoising) which is also producing promising results
(not been published yet).

Till now, there have been more advanced versions of
anisotropic di	usion algorithms even with more optimized/
modi
ed versions. But they are all optimized and targeted
to speci
c applications. However, this design forms the base
architecture for all the other designs. Any kind of modi
ca-
tion of the algorithm and its corresponding hardware design
can be done keeping the similar base architecture.
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