
Wind Energ. Sci., 3, 693–712, 2018

https://doi.org/10.5194/wes-3-693-2018

© Author(s) 2018. This work is distributed under

the Creative Commons Attribution 4.0 License.

An efficient frequency-domain model for quick load

analysis of floating offshore wind turbines

Antonio Pegalajar-Jurado, Michael Borg, and Henrik Bredmose

Department of Wind Energy, Technical University of Denmark, Nils Koppels Allé 403,

2800 Kongens Lyngby, Denmark

Correspondence: Antonio Pegalajar-Jurado (ampj@dtu.dk)

Received: 24 March 2018 – Discussion started: 9 April 2018

Revised: 15 August 2018 – Accepted: 2 September 2018 – Published: 16 October 2018

Abstract. A model for Quick Load Analysis of Floating wind turbines (QuLAF) is presented and validated here.

The model is a linear, frequency-domain, efficient tool with four planar degrees of freedom: floater surge, heave,

pitch and first tower modal deflection. The model relies on state-of-the-art tools from which hydrodynamic,

aerodynamic and mooring loads are extracted and cascaded into QuLAF. Hydrodynamic and aerodynamic loads

are pre-computed in WAMIT and FAST, respectively, while the mooring system is linearized around the equilib-

rium position for each wind speed using MoorDyn. An approximate approach to viscous hydrodynamic damping

is developed, and the aerodynamic damping is extracted from decay tests specific for each degree of freedom.

Without any calibration, the model predicts the motions of the system in stochastic wind and waves with good

accuracy when compared to FAST. The damage-equivalent bending moment at the tower base is estimated with

errors between 0.2 % and 11.3 % for all the load cases considered. The largest errors are associated with the most

severe wave climates for wave-only conditions and with turbine operation around rated wind speed for combined

wind and waves. The computational speed of the model is between 1300 and 2700 times faster than real time.

1 Introduction: the need for an efficient,

frequency-domain tool

Offshore wind energy is a key contributor to a carbon-free

energy supply. Most of today’s offshore wind farms are

bottom-fixed, meaning their feasibility is limited to shallow

and intermediate water depths. On the other hand, the wind

resource in deep water represents an enormous potential that

can be unlocked with the deployment of floating wind farms.

An important step in making floating wind turbines econom-

ically feasible is the application of larger wind turbines and

the ability to design the floater to a minimum cost. The design

of a floating substructure for offshore wind deployment de-

pends on many design variables, and each possible combina-

tion is a potential design. In the design process, the candidate

designs need to be simulated in different environmental con-

ditions in order to assess the magnitude of the motions and

loads in the system. These simulations are typically carried

out with time-domain numerical tools, which allow a repre-

sentative modelling of the physical phenomena involved and

can simulate at about real-time CPU speed. However, this ap-

proach can be computationally expensive, especially if one

needs to evaluate different floater designs under several envi-

ronmental conditions. For an improved design process, faster

tools are needed to allow optimization in the initial design

stage, where the design space has to be thoroughly explored

and a broad overview of the system response is desirable.

A few studies of simplified design models for offshore

wind turbine floaters exist in the literature. Lupton (2014)

presented a frequency-domain numerical tool for the analy-

sis of the OC3-Hywind spar floating wind turbine (Jonkman,

2010), with eight degrees of freedom (DoFs): one normal

mode per blade, two tower fore-aft modes, and floater surge,

heave and pitch. The model included linear hydrodynamics

computed with a potential-flow panel code. The aerodynamic

forces were included through harmonic linearization, and the

mooring lines were represented by a stiffness matrix. The

frequency-domain code was benchmarked against an equiva-

lent Bladed (DNV-GL AS, 2016) model with Morison-based
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hydrodynamics, and with a stiffness mooring matrix. Nei-

ther the frequency-domain model nor the Bladed model in-

cluded viscous drag. Results were shown for regular waves

and uniform, harmonic wind, and the frequency-domain code

was reported to be up to 37 times faster than the Bladed

model. In Lemmer et al. (2016), simplified time-domain

models of the OC3-Hywind spar (Jonkman, 2010) and OC4-

DeepCwind semi-submersible (Robertson et al., 2014) float-

ing wind turbines were introduced. The models had four

DoFs: floater surge and pitch, tower first fore-aft mode,

and rotor azimuthal position. Linear hydrodynamics from a

radiation-diffraction panel code were included in the time-

domain model through the Cummins equation (Cummins,

1962). Aerodynamics were computed by coupling the code

to AeroDyn. Quasi-static mooring forces were computed by

solving the catenary mooring equations at each time step. A

linearized version of the code was also presented. In the re-

sults, the linearized frequency-domain version was success-

fully benchmarked against the nonlinear time-domain ver-

sion, by comparing the linear transfer function from wave

height to tower-top displacement with its nonlinear equiva-

lent. The work of Wang et al. (2017) involved a frequency-

domain model of the DeepCwind semi-submersible (Robert-

son et al., 2014) with two rigid-body DoFs: floater surge and

pitch. Linear hydrodynamics, linearized drag and drift forces

were computed with the commercial software AQWA. The

aerodynamic loads were included through a linearized ver-

sion of the actuator point equation, where the aerodynamic

contribution was divided into a constant force and a damping

term – thus neglecting stochastic wind forcing. The moor-

ing loads were included through a stiffness matrix, obtained

from both quasi-static and dynamic mooring models. The

model was validated against DeepCwind test data in terms of

natural frequencies, response-amplitude operators and power

spectral density (PSD) plots of surge and pitch response, gen-

erally obtaining a good agreement. However, a frequency-

domain model for floating wind turbines able to incorporate

realistic aerodynamic loads is still needed.

For bottom-fixed offshore wind turbines, Schløer et al.

(2018) recently developed an efficient, frequency-domain

model named QuLA (Quick Load Analysis), considering the

DTU 10 MW Reference Wind Turbine (RWT; Bak et al.,

2013). The mono-pile foundation and the wind turbine tower

were defined as an Euler beam, and the first fore-aft modal

deflection of this beam was the only DoF. Inspired by the

work of van der Tempel (2006), the rotor and nacelle were

represented by a point mass at the tower top, and aerody-

namic loads and damping coefficients were pre-computed in

the time-domain aero-elastic tool Flex5 (Øye, 1996). Com-

pared to the work of van der Tempel (2006), the aerodynamic

damping in QuLA was considered as dependent on mean

wind speed. Hydrodynamic forcing was included through the

Morison equation (Morison et al., 1950), where the struc-

ture velocity and acceleration were neglected. The code was

validated against Flex5 in terms of time series, PSD, ex-

ceedance probability curves and fatigue damage-equivalent

load (DEL). The bending moment at the seabed was esti-

mated by QuLA within a 5 % error, and the code was reported

to be approximately 40 times faster than its Flex5 equivalent.

This study presents the extension of QuLA to floating off-

shore wind turbines. The resulting model, QuLAF (Quick

Load Analysis of Floating wind turbines), was first pre-

sented in Pegalajar-Jurado et al. (2016), with only two DoFs:

floater surge and tower first fore-aft bending mode. Here

we present an improved version of the model, a frequency-

domain code that captures the four dominant DoFs in the

in-plane global motion: floater surge, heave and pitch, and

tower first fore-aft modal deflection. The model, which is

here adapted to the DTU 10 MW RWT mounted on the

OO-Star Wind Floater Semi 10 MW (Yu et al., 2018) was

set up through cascading techniques. In the cascading pro-

cess, information is pre-computed or extracted from more

advanced models (parent models) to enhance the simplified

models (children models). In this case, the hydrodynamic

loads are extracted from the radiation-diffraction potential-

flow solver WAMIT (Lee and Newman, 2016). The aero-

dynamic loads and aerodynamic damping coefficients are

pre-computed in the numerical tool FAST v8 (Jonkman and

Jonkman, 2016), and the mooring module MoorDyn (Hall,

2017) is employed to extract a mooring stiffness matrix for

different operating positions. This way, the model includes

standard radiation-diffraction theory and realistic rotor loads

through pre-computed aero-elastic simulations. In the model,

the system response is obtained by solving the linear equa-

tions of motion (EoMs) in the frequency domain, leading to

a very efficient tool. While the radiation-diffraction results

allow for a full linear response evaluation for rigid structure

motion in waves, the ambition of this model is to extend them

with the flexible tower and realistic stochastic rotor loads,

thus going one step further than other simplified models in

the literature. The results from QuLAF are here benchmarked

against results from its time-domain, state-of-the-art (SoA)

parent model in terms of time series, PSD, exceedance prob-

ability and fatigue DEL. We assess the strengths and weak-

nesses of the cascading process by comparison with the orig-

inal time-domain model, and further develop techniques to

improve the accuracy of the simplified model with respect to

planar motion and tower-base loads. In this way, the potential

of the model as a reliable tool for pre-design and as a comple-

ment to SoA models is demonstrated. The idea is that once

the conceptual floater design is established with the efficient

pre-design model, more advanced SoA models can be used

for further design verification with a full design load basis

that includes extreme and transient events.

2 The case study

The floating wind turbine chosen for the present study is the

DTU 10 MW RWT (Bak et al., 2013) mounted on the OO-
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Figure 1. The OO-Star Wind Floater Semi 10 MW concept (http:

//www.olavolsen.no; last access: 24 November 2017).

Star Wind Floater Semi 10 MW (Yu et al., 2018). The main

properties of the DTU 10 MW RWT are given in Table 1, and

further information can be found in Bak et al. (2013). The

basic DTU Wind Energy controller (Hansen and Henriksen,

2013) is utilized, and tuned to avoid the floater pitch instabil-

ity (commonly known as the “negative damping problem”)

reported in, for example, Larsen and Hanson (2007).

The floating substructure (see Fig. 1), developed by

Dr.techn. Olav Olsen AS (http://www.olavolsen.no; last ac-

cess: 24 November 2017), is a semi-submersible floater made

of post-tensioned concrete. It has a central column and three

outer columns mounted on a star-shaped pontoon with three

legs. Each outer column is connected to the seabed by a

catenary mooring line with a suspended clump weight. The

main properties of the floating substructure are collected in

Table 2, and further information can be found in Yu et al.

(2018).

3 Time vs. frequency domain: advantages and

disadvantages

Floating wind turbines can be considered harmonic oscilla-

tors with multiple coupled DoFs. To illustrate the strengths

and weaknesses of solving the relevant EoM in the time

or the frequency domain, a simple one-DoF mass-spring-

damper system is considered,

mξ̈ (t) + bξ̇ (t) + cξ (t) = F (t), (1)

where m is the system mass, b is the damping coefficient, c

is the restoring coefficient, ξ (t) is the system displacement

from its equilibrium position, and F (t) is a harmonic excita-

tion force. Equation (1) can be also written in complex nota-

tion, by expressing the excitation force at the frequency ω as

F (t) = ℜ{F̂ (ω)eiωt }, where ℜ indicates the real part, F̂ (ω)

is the Fourier transform of F (t) and i is the imaginary unit.

If the initial transient part of the response is neglected, the

steady-state system response at the given frequency can also

be written as ξ (t) = ℜ{ξ̂ (ω)eiωt }, leading to the EoM in the

frequency domain,

[−ω2m + iωb + c]ξ̂ (ω) = F̂ (ω),

⇒ ξ̂ (ω) = F̂ (ω)

−ω2m + iωb + c
≡ H (ω)F̂ (ω). (2)

The frequency-domain response ξ̂ (ω) may be obtained by

simply multiplying the frequency-domain excitation force

F̂ (ω) by the transfer function H (ω). This can be done at

all frequencies and, due to the linearity, one can add the

results at each frequency to obtain the total solution. Thus,

once ξ̂ (ω) has been determined for all frequencies, the time-

domain response ξ (t) is obtained through an inverse Fourier

transform of ξ̂ (ω). If fast Fourier transform (FFT) and in-

verse fast Fourier transform (iFFT) are used, the solution can

be obtained very quickly.

Figure 2 shows the surge response ξ (t) of a one-DoF

model of the OC3-Hywind spar floating wind turbine

(Jonkman, 2010) subjected to stochastic hydrodynamic lin-

ear forcing. The response labelled as “Time domain” was ob-

tained by time-stepping of Eq. (1) with the classical fourth-

order Runge–Kutta method and initial conditions ξ (0) = 0

and ξ̇ (0) = 0. The response labelled as “Frequency domain”

was computed by first obtaining the frequency-domain ex-

citation force F̂ (ω) = FFT(F (t)), calculating the frequency-

domain response using Eq. (2) and finally going back to

the time-domain response ξ (t) = ℜ{iFFT(ξ̂ (ω))}. The sim-

ulation time step was 0.025 s and the total simulated time

was 5400 s, although only the first 1000 s are shown here.

The time-domain solution took 69.41 s to run, while the

frequency-domain solution was done in 0.03 s, or 2344 times

faster. The two responses diverge at the beginning, where

the time-domain solution is dominated by the transient re-

sponse to the initial conditions, which is not present in the

frequency-domain solution. However, after approximately

800 s (or six natural periods) and until the end of the sim-

ulation, the two solutions are practically identical, with er-

rors between 0.2 % and 0.5 %, likely due to the time and fre-

quency discretizations.

In addition to the gain in CPU speed, solving the EoM

in the frequency domain allows for an easier handling

of frequency-dependent properties, such as hydrodynamic

added mass and radiation damping. On the other hand, it has

also been shown that transient response due to initial con-

ditions is only captured by time-domain models. However,

as in the above example, the transient response due to ini-

tial conditions is an artifact of the time-domain formulation

and is often discarded in the analysis. Perhaps the most clear

disadvantage of frequency-domain models is that they can

only accommodate loads that depend linearly on the response

and its time derivatives, such as hydrodynamic added mass

loads or hydrostatic loads. They cannot directly accommo-
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Figure 2. (a) Surge response of the OC3-Hywind floating wind turbine (Jonkman, 2010) to stochastic hydrodynamic linear forcing in a one-

DoF linear model, computed in both the time and frequency domains. (b) Relative error between the time- and frequency-domain solutions.

Only the first 1000 s are shown.

Table 1. Key figures for the DTU 10 MW RWT.

Rated power Rated wind speed Wind regime Rotor diameter Hub height

10 MW 11.4 ms−1 IEC Class 1A 178.3 m 119 m

date loads that depend on the response in a nonlinear manner,

such as viscous drag from relative structural motion or cate-

nary mooring loads. In those cases, simplified or linearized

formulations have to be implemented instead.

4 The time-domain, state-of-the-art numerical model

In SoA models the nacelle, hub and floater are often con-

sidered rigid, whereas the tower and blades are flexible.

The floater motion typically has six DoFs: surge, sway,

heave, roll, pitch and yaw. Aerodynamics are normally

computed using unsteady blade element momentum theory

(Hansen, 2008). Hydrodynamics are typically represented by

radiation-diffraction theory (Newman, 1980), the Morison

equation or a combination of both. The mooring lines can

be modelled with either quasi-static or dynamic approaches.

In general, SoA models are more accurate than simplified

models, but they also have a higher CPU cost.

A SoA, time-domain numerical model of the OO-Star

Semi + DTU 10 MW floating wind turbine was used in this

study as a parent model to QuLAF. The SoA model was im-

plemented in FAST v8.16.00a-bjj (Jonkman and Jonkman,

2016) with active control and 15 DoFs for turbine and floater:

first and second flap-wise blade modal deflections; first edge-

wise blade modal deflection; drivetrain rotational flexibility;

drivetrain speed; first and second fore-aft and side-side tower

modal deflections; and floater surge, sway, heave, roll, pitch

and yaw. The turbulent wind fields were computed in Turb-

Sim, and the aerodynamic loads were modelled with Aero-

Dyn v14. The basic DTU Wind Energy controller was ap-

plied through a dynamic-link library (DLL). The mooring

loads, calculated by MoorDyn (Hall, 2017), included buoy-

ancy, mass inertia and hydrodynamic loads resulting from

the motion of the mooring lines in calm water. Hydrody-

namic loads on the floater were first computed in WAMIT

(Lee and Newman, 2016) and coupled to FAST through the

Cummins equation. Viscous effects were modelled internally

by the Morison drag term. Further details on the modelling

of floating wind turbines in FAST can be found in Jonkman

(2009), while a thorough description of the FAST model used

in this study is presented in Pegalajar-Jurado et al. (2018b)

and Pegalajar-Jurado et al. (2018a).

5 The frequency-domain, cascaded numerical

model

The simplest model for the dynamic analysis of floating wind

turbines would only have a few DoFs, typically rigid-body

motion of the floater in surge and pitch. Aerodynamic loads

would be represented by a point force at the rotor hub and de-

fined by an actuator point model. If the floating substructure

is slender compared to the incident waves, a strip-theory ap-
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Table 2. Key figures for the OO-Star Wind Floater Semi 10 MW anchored at the selected site.

Water depth Mooring length Draught Freeboard Displaced volume Mass incl. ballast

130 m 703 m 22 m 11 m 23 509 m3 21 709 t

Figure 3. Sketch of the floating wind turbine as seen by the QuLAF model.

proach may be applied to compute the hydrodynamic loads

from the Morison equation. The forces exerted by the moor-

ing system can be included through a stiffness matrix in the

linear EoMs. Simplified, low-order models are very CPU ef-

ficient but their accuracy is often limited. In the following we

present a simplified model that combines elements extracted

from a SoA model into a very efficient tool, which aims at

getting close to the accuracy of the SoA model while still

retaining the CPU efficiency of low-order models.

QuLAF represents the floating wind turbine as two lumped

masses – floater and rotor-nacelle assembly – connected by a

flexible tower. The model captures four planar DoFs – floater

surge, heave, pitch and first tower fore-aft modal deflection

– and is thus applicable to aligned wind and wave situations.

The floating wind turbine is represented as depicted in Fig. 3.

The EoM is a matrix version of Eq. (2),
[
−ω2(M + A(ω)) + iωB(ω) + C

]
ξ̂ (ω) = F̂ (ω),

⇒ ξ̂ (ω) = H(ω)F̂ (ω), (3)

where M is the structural mass and inertia matrix, A(ω) is

the frequency-dependent, hydrodynamic added mass and in-

ertia matrix, B(ω) is the frequency-dependent damping ma-

trix, and C is the restoring matrix. The vector ξ̂ (ω) is the

dynamic response in the frequency domain for the four DoFs

and F̂ (ω) is the dynamic vector of excitation forces and mo-

ments in the frequency domain. The system transfer function

is given by H(ω). The different elements in Eq. (3) are de-

scribed in detail below.

5.1 Dynamic response vector

The dynamic response vector,

ξ̂ (ω) =




ξ̂1(ω)

ξ̂3(ω)

ξ̂5(ω)

α̂(ω)


 , (4)

has one element for each DoF: floater surge, heave, pitch

and first tower fore-aft modal deflection. The sign conven-

tion is that shown in Fig. 3, with positive surge in the down-

wind direction, positive heave upwards, positive pitch (about

flotation point O) clockwise and positive tower deflection in

www.wind-energ-sci.net/3/693/2018/ Wind Energ. Sci., 3, 693–712, 2018
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the downwind direction. The physical tower deflection at any

height z can be obtained by multiplying the mode shape φ(z)

and the modal deflection α(t). The tower deflection at the hub

height hhub is therefore given by δ(t) = φhubα(t). If the ab-

solute nacelle displacement is sought, the contributions from

floater surge and pitch motions must be added to the tower

deflection, and the global response vector ξ̂glob(ω) is found

by introducing a transformation matrix Tglob,

ξ̂glob(ω) =




1 0 0 0

0 1 0 0

0 0 1 0

1 0 hhub φhub







ξ̂1(ω)

ξ̂3(ω)

ξ̂5(ω)

α̂(ω)


 = Tglobξ̂ (ω).

(5)

5.2 Dynamic load vector

The dynamic load vector,

F̂ (ω) = F̂ hydro(ω) + F̂ aero(ω), (6)

contains hydrodynamic loads F̂ hydro(ω) and aerodynamic

loads F̂ aero(ω). Hydrodynamic loads are extracted from the

solution to the diffraction problem, which provides a vec-

tor of wave excitation forces and moments in all six DoFs,

namely X̂(ω). These excitation forces are normalized to

waves of unit amplitude, therefore the wave loads for a spe-

cific time series of free-surface elevation η(t) are obtained by

the product X̂(ω)η̂(ω). The vector of wave excitation forces

and moments is reduced to adapt it to the simplified model,

and a zero is added in the fourth element for the tower DoF,

F̂ hydro(ω) = X̂(ω)η̂(ω) ≡




X̂1(ω)

X̂3(ω)

X̂5(ω)

0


 η̂(ω), (7)

where η̂(ω) can be computed from an input time series η(t)

or from a theoretical wave spectrum. The only viscous effect

considered in the model is viscous damping (see Sect. 5.8.1),

but viscous forcing is neglected to keep the model computa-

tionally efficient. This simplification, however, is considered

reasonable because hydrodynamics for this floater are domi-

nated by inertia loads, and viscous forcing is expected to be

relevant mainly for severe sea states, which lie on the border

of the model’s applicability. The vector of aerodynamic loads

only contains the dynamic part of the wind loads and has the

format

F̂ aero(ω) =




F̂aero,1(ω)

F̂aero,3(ω)

F̂aero,1(ω)hhub + τ̂aero(ω)

F̂aero,1(ω)φhub + τ̂aero(ω)φz,hub


 , (8)

where F̂aero,1(ω) and F̂aero,3(ω) represent the horizontal and

vertical components of the aerodynamic loads on the rotor,

respectively. The aerodynamic tilt torque on the rotor is given

by τ̂aero(ω). The fourth element of F̂ aero represents the ef-

fect of the aerodynamic loads on the tower modal deflection,

hence the mode shape deflection φhub and its slope φz,hub

evaluated at the hub are involved. The time-domain aerody-

namic loads for each mean wind speed W are pre-computed

in the SoA model, as detailed in Sect. 5.8.2.

5.3 Structural mass and inertia matrix

The symmetric matrix of structural mass and inertia, ob-

tained by looking at the forces needed to produce unit ac-

celerations in the different DoFs, is defined as

M =




mtot 0 mtotz
CM
tot mrnφhub +

Nt∑
i=1

ρ̃iφi1zi

mtot 0 0
IO

tot mrnφhubhhub + ITT
rn φz,hub

+
Nt∑
i=1

ρ̃iφizi1zi

mrnφ
2
hub + ITT

rn φ2
z,hub

+
Nt∑
i=1

ρ̃iφ
2
i 1zi




, (9)

where mtot is the total mass of the floating wind turbine,

mtot = mf + mrn +
∑Nt

i=1ρ̃i1zi , which includes the mass of

the floater mf, the rotor-nacelle mass mrn and the mass sum

of all the Nt elements that compose the flexible tower, each

with a mass per length ρ̃i and a height 1zi . The total mass

inertia of the system about the y axis at the flotation point

O is given by IO
tot = IO

f + IO
rn +

Nt∑
i=1

ρ̃iz
2
i 1zi , including the

floater inertia IO
f , the rotor-nacelle inertia IO

rn and the inertia

of each of the tower elements, located at an absolute height

zi = (zt,i + ht ), where zt,i is the vertical position of the el-

ement i with respect to the tower base, located at a height

ht . The centre of mass (CM) of the whole structure is located

at zCM
tot = (mfz

CM
f +mrnhhub+

∑Nt

i=1ρ̃izi1zi)/mtot, with con-

tributions from the floater CM at zCM
f , the rotor-nacelle CM

at the hub height hhub and the CM of each of the tower el-

ements. The mode shape deflection of the tower evaluated

at a generic tower element i is φi , while φhub and φz,hub are

the mode shape deflection and its slope evaluated at the hub.

Finally, ITT
rn represents the mass inertia of the rotor-nacelle

assembly referred to the tower top. The tower structural prop-

erties and first mode shape are the same as the ones given as

an input to the SoA model.

5.4 Hydrodynamic added mass matrix and damping

matrix

The frequency-dependent, hydrodynamic added-mass and

radiation-damping matrices, A(ω) and Brad(ω), can be pre-

computed in a radiation-diffraction solver. Here, the same

WAMIT output files used for the SoA model are loaded into

QuLAF. However, the original 6×6 matrices are reduced by
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removing the rows and columns corresponding to the DoFs

not included in the simplified model (sway, roll, yaw), and a

row and column of zeros is added for compatibility with the

tower DoF,

A(ω) =




a11(ω) a13(ω) a15(ω) 0

a31(ω) a33(ω) a35(ω) 0

a51(ω) a53(ω) a55(ω) 0

0 0 0 0


 ,

Brad(ω) =




b11(ω) b13(ω) b15(ω) 0

b31(ω) b33(ω) b35(ω) 0

b51(ω) b53(ω) b55(ω) 0

0 0 0 0


 . (10)

The global damping matrix includes contributions from

the hydrodynamic radiation damping Brad(ω), the hydro-

dynamic viscous damping Bvis, the aerodynamic damping

Baero(ω) and the tower structural damping Bstruc:

B(ω) = Brad(ω) + Bvis + Baero(ω) + Bstruc. (11)

The hydrodynamic viscous damping matrix Bvis is ana-

lytically extracted from the Morison equation, as shown in

Section 5.8.1. The diagonal matrix of aerodynamic damping,

Baero(ω) =




baero,11(ω) 0 0 0
0 0 0

baero,55(ω) 0
baero,tow


 , (12)

is extracted from the SoA model for each mean wind speed

W , as detailed in Section 5.8.2. The matrix of structural

damping only concerns the tower and is given by

Bstruc =




0 0 0 0
0 0 0

0 0
2ζstruc,tow

√
CtowMtow


 , (13)

where the structural damping ratio for the first fore-aft tower

mode, ζstruc,tow, is directly taken from the input to the SoA

model, and Ctow and Mtow are the last diagonal elements of

the system restoring matrix C and the mass inertia matrix M,

respectively.

5.5 Restoring matrix

The restoring matrix includes hydrostatic stiffness Chst,

structural stiffness Cstruc and mooring stiffness Cmoor:

C = Chst + Cstruc + Cmoor. (14)

The hydrostatic matrix should only include the contribu-

tions from the centre of buoyancy (CB) and waterplane area.

It is computed as part of the radiation-diffraction solution,

and is reduced following the same procedure as for the added

mass and radiation damping matrices. The symmetric matrix

of structural stiffness is given by

Cstruc =




0 0 0 0
0 0 0

−mtotgzCM
tot −mrngφhub −

Nt∑
i=1

ρ̃igφi1zi

Nt∑
i=1

EIiφ
2
zz,i1zi




, (15)

where g is the acceleration of gravity, and EIi and φzz,i are

the bending stiffness and the curvature of the mode shape

for the tower element i, respectively. The off-diagonal term

represents the negative restoring effect of the tower and rotor-

nacelle mass on the tower DoF when the floater pitches. The

mooring restoring matrix Cmoor is position-dependent and

therefore extracted from the SoA model for each mean wind

speed W , as detailed in Sect. 5.8.3. Although in this study

wind is the only effect considered to affect the mean posi-

tion of the floating wind turbine, other effects such as mean

drift forces and current can be taken into account in the SoA

model when linearizing the mooring system.

5.6 Static load and response

Static loads are related to the equilibrium of the structure. In

the model, the static part of the response, ξ st, is added to the

dynamic part ξ̂ (ω) when it is converted from the frequency

to the time domain via iFFT. The static loads applied are

F st = F aero,st + F grav + F buoy, (16)

which include the static part of the aerodynamic loads

F aero,st, the gravity loads F grav and the buoyancy loads

F buoy. The gravity load vector is given by

F grav =




0

−mtotg − Fmoor,z

mrngxCM
rn

mrngxCM
rn φz,hub


 , (17)

where Fmoor,z is the vertical force exerted by the mooring

lines in equilibrium, and xCM
rn is the horizontal coordinate of

the rotor-nacelle CM.

The buoyancy load vector is

F buoy =




0

ρwgVf

−ρwgVfx
CB
f

0


 , (18)

where ρw is the water density, Vf is the volume displaced by

the floater and xCB
f is the horizontal coordinate of the floater

CB. With no wind and only linear wave forcing, the floating

wind turbine operates around its equilibrium position with

a stiffness matrix C0. If wind (or any other mean force) is

introduced, the floating wind turbine is moved to a new equi-

librium position, where the stiffness matrix is CW. The static
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response ξ st is therefore obtained from the static loads by

considering a mean stiffness matrix Cst,

Cst = C0 + CW

2
⇒ Cstξ st = F st. (19)

This approximation is accurate to second order.

5.7 System natural frequencies

The vector of natural frequencies ω0 is found by solving the

undamped eigenvalue problem given by

[
−ω0

2(M + A(ω0)) + C
]
ξ̂ (ω0) = 0,

⇒ ω2
0ξ̂ (ω0) = (M + A(ω0))−1Cξ̂ (ω0). (20)

Since the matrix of added mass depends on frequency, the

eigenvalue problem is solved in a frequency loop. For each

frequency ω, the four possible natural frequencies are com-

puted. When one of the four possible frequencies obtained is

equal to the frequency of that particular iteration in the loop,

then a system natural frequency has been found. The sys-

tem natural frequencies computed in QuLAF are compared

to those obtained with the SoA model in Sect. 6.1.

5.8 Cascading techniques applied to the simplified

model

In Sect. 3 it was stated that one disadvantage of frequency-

domain models is their inability to directly capture loads that

depend on the response in a nonlinear way. Some relevant

examples are viscous drag, aerodynamic loads and catenary

mooring loads. This section gives a description of the cascad-

ing methods employed to incorporate such nonlinear loads

into the simplified model.

5.8.1 Hydrodynamic viscous loads

Viscous effects on submerged bodies depend nonlinearly on

the relative velocity between the wave particles and the struc-

ture, hence they can only be directly incorporated in time-

domain models. In the offshore community this is normally

done through the drag term of the Morison equation, which

provides the transversal drag force Fd on a cylindrical mem-

ber section of diameter D and length dl as

Fd = 1

2
ρCDD|vf − vs|(vf − vs)dl, (21)

where ρ is the fluid density, CD is a drag coefficient, and vf

and vs are the local fluid and structure velocities perpendic-

ular to the member axis. The equation can be also written

as

Fd = 1

2
ρCDDsgn(vf − vs) (vf − vs)

2dl

= 1

2
ρCDDsgn(vf − vs)

(
v2

f + v2
s − 2vfvs

)
dl, (22)

which shows that the drag effects can be separated into a pure

forcing term, a nonlinear damping term and a linear damp-

ing term. Since the hydrodynamics on the given floating sub-

structure are inertia-dominated and under the assumption of

small displacements around the equilibrium position, the two

first terms are neglected and only the linear damping term is

retained in the QuLAF model. Invoking further the assump-

tion of small displacements and velocities relative to the fluid

velocity, we have sgn(vf − vs) ≈ sgn(vf). With this assump-

tion, the linear damping term of the viscous force becomes

Fdl = 1

2
ρCDDsgn(vf − vs) (−2vfvs)dl

≈ −ρCDD|vf|vsdl. (23)

A symmetric viscous damping matrix Bvis is now derived

by applying Eq. (23) to the different DoFs. For the surge mo-

tion, integration over the submerged body gives the total vis-

cous force in the x direction as

F1 = −
0∫

zmin

ρCDD|u|ξ̇1dz, (24)

where zmin is the structure’s deepest submerged point, u is

the horizontal wave particle velocity and ξ̇1 is the surge ve-

locity. The integral in Eq. (24) requires the estimation of drag

coefficients and the computation of wave kinematics at sev-

eral locations on the submerged structure, which can be in-

volved for complex geometries. These computations would

reduce the CPU efficiency relative to the radiation-diffraction

terms, so instead the local drag coefficient and wave veloc-

ity inside the integral are replaced by global, representative

values outside the integral, CDx and urep. Hereby the force

becomes

F1 = −ρξ̇1

0∫

zmin

CDD|u|dz ≈ −ρCDxurepξ̇1

0∫

zmin

Ddz

= −ρCDxAxurepξ̇1 ≡ −b11ξ̇1, (25)

where Ax is the integral of the local diameter D over depth,

or the floater’s area projected on the yz plane. This defines

the surge-surge element of the viscous damping matrix Bvis.

Further the b51 element of the matrix is obtained by consid-

eration of the moment from F1 around the point of flotation,

τ1 = −ρξ̇1

0∫

zmin

CDD|u|zdz ≈ −ρCDxurepξ̇1

0∫

zmin

Dzdz

= −ρCDxSy,Axurepξ̇1 ≡ −b51ξ̇1, (26)

where Sy,Ax is the first moment of area of Ax about the y axis

(negative due to z ≤ 0) and b51 is the surge-pitch element

of the viscous damping matrix. In a similar way, the heave-

heave and heave-pitch coefficients of Bvis are obtained by
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applying Eq. (23) to the heave motion,

F3 = −ρξ̇3

xmax∫

xmin

CDD|w|dx ≈ −ρCDzwrepξ̇3

xmax∫

xmin

Ddx

= −ρCDzAzwrepξ̇3 ≡ −b33ξ̇3, (27)

τ3 = ρξ̇3

xmax∫

xmin

CDD|w|xdx ≈ ρCDzwrepξ̇3

xmax∫

xmin

Dxdx

= ρCDzSy,Azwrepξ̇3 ≡ −b53ξ̇3. (28)

Here ξ̇3 is the heave velocity, w is the wave particle verti-

cal velocity, Az is the floater’s bottom area projected on the

xy plane and Sy,Az is the first moment of area of Az about the

y axis, which is zero for the present floating substructure due

to symmetry. Finally, by applying Eq. (23) to the pitch mo-

tion, the pitch-pitch element of the viscous damping matrix,

b55, is found. When the floater pitches with a velocity ξ̇5, an

arbitrary point on the floater with coordinates (x,z) moves

with a velocity (zξ̇5,−xξ̇5). The motion creates a moment

due to viscous effects given by

τ5 = −ρξ̇5

0∫

zmin

CDD|u|z2dz − ρξ̇5

xmax∫

xmin

CDD|w|x2dx

≈ −ρ(CDxIy,Axurep + CDzIy,Azwrep)ξ̇5 ≡ −b55ξ̇5, (29)

where Iy,Ax and Iy,Az are the second moments of area of Ax

and Az about the y axis, respectively. The complete symmet-

ric matrix of viscous damping is therefore

Bvis =




ρCDxAxurep 0 ρCDxSy,Axurep 0
ρCDzAzwrep 0 0

ρ
(
CDxIy,Axurep 0

+CDzIy,Azwrep

)
0


 . (30)

The global drag coefficients above have been chosen as

CDx = 1 and CDz = 2, given that the bottom slab of the

floater under consideration has sharp corners and is expected

to oppose a greater resistance to the flow than the smooth

vertical columns (see Fig. 1). To obtain the representative

velocity urep, the time- and depth-dependent horizontal wave

velocity at the floater’s centreline u(0,z, t) is first averaged

over depth and then over time,

uavg(t) = 1

|zmin|

0∫

zmin

u(0,z, t)dz ≡

1

|zmin|
ℜ

{
iFFT

(
ωη̂(ω)

k

(
1 − sinh(k(zmin + h))

sinh(kh)

))}
,

⇒ urep = |uavg|. (31)

Here k is the wave number for the angular frequency ω

and h is the water depth. The representative velocity wrep is

chosen as the time average of the vertical wave velocity at

the centre of the bottom plate,

wavg(t) = w(0,zmin, t) ⇒ wrep = |wavg|. (32)

This simplification of the wave kinematics history, al-

though drastic, allows for the characterization of the viscous

damping for each sea state and avoids the need to compute

wave kinematics locally and integrate the drag loads.

5.8.2 Aerodynamic loads

Aerodynamic loads depend on the square of the relative wind

speed seen by the blades. The relative wind speed includes

contributions from the rotor speed, the blade deflection, the

tower deflection and the motion of the floater. The fact that

the aerodynamic thrust depends on the blade relative veloc-

ity produces the well-known aerodynamic damping. State-

of-the-art numerical models incorporate aerodynamic loads

based on relative velocity, because both the wind speed and

the blade structural velocity are known at each time step.

However, this cannot be done in a frequency-domain model.

In the approach implemented in QuLAF, the aerodynamic

loads considering the motion of the blades are simplified and

approximated by loads considering a fixed hub with rigid

blades and linear damping terms. The time series of fixed-

hub loads and the aerodynamic damping coefficients are ex-

tracted from the SoA model for each mean wind speed.

The aerodynamic loads are obtained at each wind speed

W by a SoA simulation with turbulent wind and no waves,

where all DoFs except shaft rotation and blade pitch are dis-

abled and where the wind turbine controller is enabled. The

time series of fixed-hub, pure aerodynamic loads Faero,1(t),

Faero,3(t) and τaero(t) are extracted from the results and stored

in a data file which is loaded into the model. Hence, these

SoA simulations need to be as long as the maximum sim-

ulation time needed in the simplified model (5400 s in this

case).

For a given rotor, the work carried out by the aerodynamic

damping is a function of wind speed, rotational speed, turbu-

lence intensity, motion frequency and oscillation amplitude.

Here, we define an equivalent linear damping which deliv-

ers the same work over one oscillation cycle and can be ex-

tracted from a decay test. Schløer et al. (2018) used this prin-

ciple for the tower fore-aft mode of a bottom-fixed offshore

turbine and found that the damping was only slightly depen-

dent of the motion amplitude. We make a further simplifica-

tion and carry out the decay tests in steady wind. Since the

mass and stiffness of floater and tower only affect the aero-

dynamic damping through the motion frequency, we trans-

fer the damping coefficients b from the decay tests in FAST

to the QuLAF model. On the contrary, if the damping ra-

tio ζ was transferred, changes in mass or stiffness properties

would imply a change in the aerodynamic forcing, which is

not physically correct. With the transfer of damping coeffi-

cients b, recalculation of the decay tests is only necessary in
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Figure 4. Example of time series of hub position and selected peaks for the extraction of aerodynamic damping. From top to bottom: surge,

pitch and clamped tower DoFs.

the event that the change of natural frequencies should affect

the damping values significantly. Here, the decay tests from

which aerodynamic damping ratios were extracted were car-

ried out at representative natural frequencies equal to those of

the present floater. These decay tests in calm water and with

the wind turbine controller active were carried out for each

DoF with all the other DoFs locked. This way, the floating

wind turbine was a one-DoF spring-mass-damper system in

each case, where the horizontal position of the hub xhub was

of interest. The decay tests were carried out as a step test in

steady wind where the wind speed goes from the minimum

to the maximum value with step changes every 600 s. With

every step change of wind speed, the structure moves to a

new equilibrium position. If all sources of hydrodynamic and

structural damping are disabled, the aerodynamic damping is

the only one responsible for the decay of the hub motion, and

it can be extracted from the time series of xhub. The n peaks

extracted from the signal are used in pairs to estimate each

local logarithmic decrement di and, from it, a local damping

ratio ζi , which is then averaged to obtain the aerodynamic

damping ratio ζaero for the given DoF and W :

di = log
xhub,i

xhub,i+1
, ⇒ ζi = di√

4π2 + d2
i

,

⇒ ζaero = 1

n − 1

n−1∑

1

ζi . (33)

Figure 4 shows examples of xhub(t) and selected peaks for

surge, pitch and clamped tower DoFs for a wind speed of

13 ms−1. The wind changed from 12 to 13 ms−1 at t = 0,

and the mean of the signals has been subtracted. For surge

and pitch, peaks within the first 40 s are neglected to allow

the unsteady aerodynamic effects to disappear. For the tower

DoF, however, the frequency is much higher and the signal

has died out by the time the aerodynamics are steady. For that

reason, the tower decay peaks are extracted after 300 s, and

a sudden impulse in wind speed is introduced at t = 300 s to

excite the tower. This method was chosen since the standard

version of FAST does not allow an instantaneous force to be

applied.

In Fig. 5 the aerodynamic damping ratio is shown for all

DoFs as a function of W . It is observed that the aerodynamic

damping in surge is negative for wind speeds between 11.4

and 16 ms−1, due to the wind turbine controller. However,

in real environmental conditions with wind and waves, it has

been observed that the hydrodynamic damping contributes

to a positive global damping of the surge motion. This con-

troller effect is similar to the “negative damping problem”

reported in, for example, Larsen and Hanson (2007). The

negative aerodynamic damping in surge may be eliminated

if one tunes the controller natural frequency so it lies suffi-

ciently below the surge natural frequency of the floating wind

turbine, as it was done in Larsen and Hanson (2007) for the

floater pitch motion. This solution, however, would make the

controller too slow and would affect power production, thus

it was not adopted here because the global damping in surge

has been observed to be positive when all other damping con-

tributions are taken into account.

The damping ratio for the ith DoF and each wind speed,

ζaero,i(W ), is next converted to a damping coefficient by

baero,i(W ) = 2ζaero,i(W )
√

Cii(Mii + Aii(ω)), (34)

Wind Energ. Sci., 3, 693–712, 2018 www.wind-energ-sci.net/3/693/2018/



A. Pegalajar-Jurado et al.: An efficient frequency-domain model 703

4 6 8 10 12 14 16 18 20 22 24
W [m s-1]

-5

0

5

10

15

20

25

30

ζ ae
ro

 [%
]

Surge
Pitch
Tower

Figure 5. Aerodynamic damping ratios for different DoFs as a function of wind speed.

where Cii , Mii and Aii(ω) are taken from the one-DoF os-

cillator in the corresponding decay test. The table of aero-

dynamic damping coefficients as a function of wind speed

baero(W ) is stored in a data file, which is loaded into the

model. Since the aerodynamic damping coefficients are ex-

tracted from simulations with steady wind, but applied in the

model in simulations with turbulent wind, an averaging is ap-

plied to account for the variability in the wind speed in tur-

bulent conditions. Given the time series of wind speed at hub

height V (t), the probability density function (PDF) of a nor-

mal distribution given by N (V ,σV ) is used to estimate the

probability of occurrence within V (t) of each discrete value

of W . Then the aerodynamic coefficient for the given turbu-

lent wind conditions and the ith DoF is

baero,i =
NW∑

j=1

PDF(Wj )baero,i(Wj ). (35)

5.8.3 Mooring loads

The equations that provide the loads on a catenary cable de-

pend nonlinearly on the fairlead position. In dynamic moor-

ing models the drag forces on the mooring cables are also

included; therefore, the mooring loads also depend on the

square of the relative velocity seen by the lines. These non-

linear effects can easily be captured by time-domain models,

but cannot be directly accommodated in a linear frequency-

domain model. In QuLAF, the mooring system is represented

by a linearized stiffness matrix for each wind speed, which

is extracted from the SoA model and where hydrodynamic

loads on the mooring lines are neglected. The dependence of

the mooring matrix on wind speed is necessary because dif-

ferent mean wind speeds generally produce different mean

thrust forces, which displace the floating wind turbine to dif-

ferent equilibrium states. The stiffness of the mooring system

is different at each equilibrium position because of the non-

linear force-displacement behaviour of the catenary mooring

lines.

For each wind speed a first SoA simulation is needed with

steady, uniform wind and no waves, where only the tower

fore-aft and floater surge, heave and pitch DoFs are enabled.

After some time the floating wind turbine settles at its equi-

librium position (ξeq,1,ξeq,3,ξeq,5), which is stored. These

simulations should be just long enough so that the equilib-

rium state is reached (600 s in this case). Then, a new short

SoA simulation with all DoFs disabled is run, where the

floater initial position is the equilibrium with a small posi-

tive perturbation in surge, (ξeq,1+1ξ1,ξeq,3,ξeq,5). This sim-

ulation should be just long enough for the mooring lines to

settle at rest (120 s in this case). The global mooring forces

in surge and heave and the global mooring moment in pitch

are stored, namely (F
ξ1+
moor,1,F

ξ1+
moor,3,τ

ξ1+
moor,5). The process is

repeated now with a negative perturbation in surge (ξeq,1 −
1ξ1,ξeq,3,ξeq,5), giving (F

ξ1−
moor,1,F

ξ1−
moor,3,τ

ξ1−
moor,5). All this

information is enough to compute the first column of the

mooring matrix Cmoor for the wind speed W . Perturbations

in heave ±1ξ3 and pitch ±1ξ5 provide the necessary infor-

mation to compute the rest of the columns, and therefore the

full matrix:

Cmoor(W ) = (36)

−




F
ξ1+
moor,1 − F

ξ1−
moor,1

21ξ1

F
ξ3+
moor,1 − F

ξ3−
moor,1

21ξ3

F
ξ5+
moor,1 − F

ξ5−
moor,1

21ξ5
0

F
ξ1+
moor,3 − F

ξ1−
moor,3

21ξ1

F
ξ3+
moor,3 − F

ξ3−
moor,3

21ξ3

F
ξ5+
moor,3 − F

ξ5−
moor,3

21ξ5
0

τ
ξ1+
moor,5 − τ

ξ1−
moor,5

21ξ1

τ
ξ3+
moor,5 − τ

ξ3−
moor,5

21ξ3

τ
ξ5+
moor,5 − τ

ξ5−
moor,5

21ξ5
0

0 0 0 0




The first element of the mooring matrix Cmoor,11 is shown

as a function of wind speed in Fig. 6. It is observed that the

stiffness in surge reaches its maximum around rated wind

speed (11.4 ms−1), where the thrust is also maximum and

the floating wind turbine is the furthest from the equilibrium

position with no wind.

In the method applied here the linearization of the mooring

system has been done with the SoA model. However, in a real

design study where the mooring characteristics change, the
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Figure 6. Surge mooring stiffness as a function of wind speed.

above procedure can be made significantly faster by direct

static analysis of the nonlinear mooring reactions around the

floater equilibrium positions.

5.9 Estimation of extreme responses: a spectral

approach

Classical Monte Carlo analysis of response to stochastic

loads entails running a simulation, extracting the peaks from

the response time series, sorting them in ascending order and

assigning an exceedance probability to each peak based on

their position in the sorted list. Several simulations of the

same environmental conditions with different random seeds

provide a family of curves in the exceedance probability plot,

which can be used to estimate the expected response level for

a given exceedance probability. We note that the extracted

exceedance probability curves are based on the assumption

that the peaks are independent, which may not always be the

case. Yet, in this section the linear nature of the simplified

model will be further exploited to obtain an estimation of the

extreme responses to wave loads by solely using the wave

spectrum and the system transfer function, thus eliminating

the need for a response time series and the bias introduced

by a particular random seed. An extension of the method to

wind and wave forcing is further presented and discussed.

In a Gaussian, narrow-banded process, the peaks follow

a Rayleigh distribution. In linear stochastic sea states, the

free-surface elevation η(t) is a Gaussian random variable Rη

with zero mean. Thus, within the narrow-banded assump-

tion, which often applies to good approximation, the crest

heights follow a Rayleigh distribution (Longuet-Higgins,

1956) given by

P (Rη > η) = e
− 1

2

(
η
ση

)2

, (37)

where the variance in η(t) is σ 2
η , which can be obtained from

the integral of the wave spectrum,

σ 2
η =

∞∫

0

Sη(ω)dω. (38)

If we only consider linear wave forcing, the response is

also Gaussian for the linear system in Eq. (3). If the re-

sponse is also narrow-banded, its exceedance probability can

be found via the standard deviation of the response, which in

turn can be obtained by integration of the response spectrum.

From Eq. (3) we have

ξ̂ (ω) = H(ω)X̂(ω)η̂(ω),

⇒ ξ̂glob(ω) = TglobH(ω)X̂(ω)η̂(ω) ≡ TFη→ξ (ω)η̂(ω), (39)

where TFη→ξ (ω) is a direct transfer function from surface

elevation to global response. The global response spectra

Sξ,glob(ω) is related to the wave spectrum Sη(ω) in a simi-

lar way (Naess and Moan, 2013),

Sξ,glob(ω) = TFη→ξ (ω)Sη(ω)TF∗T
η→ξ (ω). (40)

Here ∗T indicates the transpose and complex conjugate.

By virtue of Eq. (37), the exceedance probability of, for ex-

ample, the surge response ξ1 is known from the variance in

the surge response σ 2
ξ,1, which is given by

σ 2
ξ,1 =

∞∫

0

Sξ,glob,11(ω)dω. (41)

For nacelle acceleration we can write the response as a

function of the global nacelle displacement ξglob,4; therefore,

ˆ̈ξglob,4(ω) = −ω2ξ̂glob,4(ω),

⇒ σ 2
ξ̈ ,4

=
∞∫

0

ω4Sξ,glob,44(ω)dω. (42)
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The turbulent part of the wind speed can also be consid-

ered a Gaussian random variable (Longuet-Higgins, 1956).

On the other hand, aerodynamic loads are not a linear func-

tion of wind speed. Therefore the response to wind loads

cannot be assumed to be Gaussian, and the approach shown

above is not valid. However, the method above can be applied

to cases with wind and wave forcing, bearing in mind that the

results may not be accurate since the necessary assumptions

are not fulfilled. If wind and wave forcing are considered,

Eq. (3) can be written as

ξ̂ (ω) = H(ω)F̂ (ω),

⇒ ξ̂glob(ω) = TglobH(ω)F̂ (ω) ≡ TFF→ξ (ω)F̂ (ω), (43)

where TFF→ξ (ω) is a direct transfer function from load to

global response. The global response spectra Sξ,glob(ω) is

now given by (Naess and Moan, 2013)

Sξ,glob(ω) = TFF→ξ (ω)SF (ω)TF∗T
F→ξ (ω). (44)

Here SF (ω) is the spectra of the total loads (hydrodynamic

and aerodynamic),

SF (ω) = 1

2dω
F̂ (ω)F̂ ∗T (ω). (45)

This method provides the exceedance probability of the

dynamic part of the response, therefore the static part should

be added after applying Eq. (37). Exceedance probability re-

sults from this method are compared in the next section to the

traditional way of peak extraction from response time series.

5.10 Integration of QuLAF in optimization loops

The main purpose of QuLAF is to provide a quick assess-

ment of loads, response and natural frequencies early in the

design phase, where several variations of the baseline design

are to be evaluated. The efficiency in the model is achieved

by (i) considering only a few DoFs; (ii) solving the linear

EoMs in the frequency domain; and (iii) pre-computing the

aerodynamic loads and aerodynamic damping coefficients.

The application of the model to an optimization loop can be

divided into two stages: a preparation stage, which needs to

be done only once for a given baseline floating wind turbine,

and a calculation stage, which can be repeated for each varia-

tion in the baseline design. After the optimal design has been

found through optimization, it should be verified by running

a complete load basis in a SoA model.

– Preparation stage. Once the wind turbine, the base-

line floater design and the design basis are defined, the

preparation stage entails the following.

a. Computation of time series of aerodynamic loads

at the shaft for the needed wind speeds and turbu-

lence random seeds, considering rigid blades and

fixed nacelle. The wind turbine controller should be

active and tuned according to the pitch frequency of

the baseline design.

b. Extraction of aerodynamic damping coefficients for

the needed wind speeds, by carrying out decay tests

in steady wind of the surge, pitch and clamped

tower DoFs.

c. Storage of the aerodynamic loads and damping co-

efficients in a database that can be reused for several

candidate designs.

– Calculation stage. The calculation stage is done for

each candidate design in the pre-design optimization

loop by following these steps.

a. Computation of the radiation-diffraction solution

in, for example, WAMIT.

b. Extraction of structural mass and stiffness proper-

ties.

c. For each wind speed, calculation of the equilibrium

position and linearization of the mooring system

around it.

d. Prediction of the natural frequencies, response and

loads for several environmental conditions using

QuLAF.

When compared to the same number of simulations in

the SoA model, the advantage of the simplified model re-

sides in the low computational cost of applying the calcu-

lation step 4 to several environmental conditions and differ-

ent variations in the baseline design. The extra work needed

to achieve the speed up comes from the aerodynamic pre-

computations in the preparation stage and from the lineariza-

tion of the mooring system (step 3) in each iteration of the

calculation stage. However, the aerodynamic loads need to

be extracted from the SoA model only once for a given wind

turbine, while the aerodynamic damping coefficients can also

be reused for different variations of the baseline floating wind

turbine, provided that the system natural frequencies do not

change significantly between different design iterations. The

linearization of the mooring system and the computation of

the radiation-diffraction solution may also be automated. Al-

ternatively, for slender, simpler geometries (such as spars),

a Morison approach may be implemented in QuLAF, thus

eliminating step 1 in the calculation stage. For the present

study, however, the radiation-diffraction solution was chosen

due to the shape and size of the floating substructure in con-

sideration, and a comparison to the Morison-based alterna-

tive has not been conducted.

6 Validation of the QuLAF model

We now compare and discuss the QuLAF and FAST re-

sponses to the same environmental conditions (see Table 4)

representative of the Gulf of Maine (Krieger et al., 2015).

The cases considered include five irregular sea states with

and without turbulent wind, with a single realization for each

www.wind-energ-sci.net/3/693/2018/ Wind Energ. Sci., 3, 693–712, 2018



706 A. Pegalajar-Jurado et al.: An efficient frequency-domain model

Table 3. Natural frequencies and periods obtained in FAST and

QuLAF.

Surge Heave Pitch Tower

Natural frequency 0.0054 0.0478 0.0316 0.746

FAST (Hz)

Natural frequency 0.0054 0.0480 0.0320 0.682

QuLAF (Hz)

Error (%) 0.00 +0.42 +1.27 −8.58

Natural period 185.19 20.92 31.65 1.34

FAST (s)

Natural period 185.19 20.83 31.25 1.47

QuLAF (s)

Error (%) 0.00 −0.42 −1.25 +9.38

sea state. In all cases the total simulated time was 5400 s in

both models. The first 1800 s were neglected to discard initial

transient effects in the time-domain model. The free-surface

elevation of irregular sea states was computed in FAST from

a Pierson–Moskowitz spectrum, and the turbulent wind fields

in TurbSim from an IEC Kaimal spectrum. Since the turbu-

lent wind fields used in the SoA simulations are the same

employed for the pre-computation of aerodynamic loads, and

the free-surface elevation signal in the cascaded model is also

taken from the FAST simulation, a deterministic comparison

of time series is possible for all cases. In the plots shown in

this section (Figs. 7 and 9), the left-hand side shows a portion

of the time series of wind speed at hub height, free-surface

elevation, floater surge, heave and pitch, and nacelle accel-

eration; and the right-hand side shows the PSDs of the same

signals. The PSD signals were smoothened with a moving-

average filter of 20 points to ease the spectral comparison be-

tween models. The short blue vertical lines in the PSD plots

indicate the position of the system natural frequencies pre-

dicted by the simplified model (see Table 3). In addition, ex-

ceedance probability plots of the responses with both models

are shown (Figs. 8 and 10), based on peaks extracted from

the time series. The peaks were sorted and assigned an ex-

ceedance probability based on their position in the sorted

list. The exceedance probability of the extracted peaks is

compared to the one estimated with the method described

in Sect. 5.9, labelled as “Rayleigh”.

6.1 System identification

The system natural frequencies were calculated in QuLAF by

solving the eigenvalue problem in Eq. (20). In FAST, decay

simulations were carried out with all DoFs active, where an

initial displacement was introduced in each relevant DoF and

the system was left to decay. A PSD of the relevant response

revealed the natural frequency of each DoF. A comparison of

natural frequencies and periods found with the two models

is given in Table 3, where it is shown that all floater natu-

ral frequencies in the simplified model are within 1.3 % error

compared to the SoA model. On the other hand, the tower

frequency is 8.6 % below the one estimated in FAST. This

difference is due to the absence of flexible blades in the sim-

plified model, which are known to affect the coupled tower

natural frequency. With rigid blades, the SoA model predicts

a coupled tower natural frequency of 0.684 Hz, only 0.3 %

above the tower frequency in QuLAF.

The model presented here may be calibrated against other

numerical or physical models if needed, by introducing user-

defined additional restoring and damping matrices. For the

present study, however, no calibration against the SoA model

was applied, in order to keep the model calibration free and

assess its suitability for optimization loops.

6.2 Response to irregular waves

The response to irregular waves with Hs = 6.14 m and Tp =
12.5 s (case “Waves 5” in Table 4) is shown in Fig. 7. On

the frequency side, all motions show response mainly at the

wave frequency range, and there is a very good agreement

between both models for surge and heave. In pitch – and con-

sequently in nacelle acceleration – the QuLAF model shows

a lower level of excitation at the wave frequency range when

compared to FAST. This deviation was traced to the absence

of viscous forcing in the simplified model, since the two

pitch responses are almost identical if viscous effects are dis-

abled in both models. As expected, the agreement is better

for milder sea states, where viscous forcing is less important.

In surge and pitch some energy is visible at the natural fre-

quencies, but only in the FAST model. Since the peaks lie out

of the wave spectrum and are not captured by QuLAF, they

could originate from nonlinear mooring effects or from the

drag loads, which are also nonlinear.

Figure 8 shows exceedance probability plots of the re-

sponse to irregular waves. The Rayleigh curves fit well to the

responses given by the simplified model, which is expected,

given that the free-surface elevation and the hydrodynamic

forcing are linear in the model, and the response can be con-

sidered narrow-banded. In the comparison between the two

models, the surge and heave peaks are very well estimated by

QuLAF. In nacelle acceleration and especially in pitch, how-

ever, the model underpredicts the response, with a difference

of about 30 % in pitch and about 8 % in nacelle acceleration

for the largest peak when compared to FAST. These obser-

vations in extreme response are consistent with the spectral

results of Fig. 7 discussed above.

6.3 Response to irregular waves and turbulent wind

The response to irregular waves with Hs = 6.14 m and Tp =
12.5 s and turbulent wind at W = 22 ms−1 (case “Waves +

wind 5” in Table 4) is shown in Fig. 9. The surge motion is

dominated by the surge natural frequency, which is clearly

excited by the wind forcing. The linear model slightly un-

derpredicts this resonance of the wind forcing with the surge
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Figure 7. Response to irregular waves in the time and frequency domains.

natural frequency. Heave is dominated by the wave forcing,

and the response of both models agree well. In pitch, res-

onance with the natural frequency also exists in both mod-

els, although QuLAF predicts more energy at that frequency

than FAST. Both surge and pitch responses are resonant, thus

they are especially sensitive to the amount of damping. The

overprediction of pitch motion also leaves a footprint on the

PSD of nacelle acceleration, which shows energy at the pitch

natural frequency, the wave frequency range and the tower

natural frequency. The level of excitation of the tower mode

at 0.682 Hz, however, is slightly underpredicted by QuLAF,

likely due to an overestimation of the aerodynamic damping

on the tower DoF.

The associated exceedance probability plots are shown in

Fig. 10. In this case the Rayleigh curves generally do not

fit the responses predicted by the linear model, as the ex-

treme peaks are no longer Rayleigh-distributed. This is be-

cause the nonlinear nature of the wind loads makes the re-

sponse non-Gaussian, and in some cases broad-banded with

distinct frequency bands excited (e.g. the tower response can-

not be considered narrow-banded here). The best fit is seen

for heave, which is mainly excited by linear wave loads and

is also narrow-banded. When compared to FAST, however,

QuLAF shows a good agreement with errors in the largest

response peaks of approximately 8 % in surge, 12 % in pitch

and 4 % in nacelle acceleration.

6.4 Comparison of fatigue damage-equivalent loads

Table 4 shows a summary of fatigue DELs for a wider range

of environmental conditions. Each case is defined by the sig-

nificant wave height Hs, the wave peak period Tp and the

mean wind speed W . The fatigue damage-equivalent bend-

ing moment at the tower base estimated with the two models

is presented, as well as the error for the simplified model. Fi-

nally, the last column shows the ratio between the simulated

time and the CPU time in QuLAF, Trel. The cases labelled as

“5” correspond to the results discussed in the previous sec-

tion. The two DEL columns in Table 4 are also shown in

Fig. 11 as a bar plot.

For the cases with waves only, the model underpredicts the

DEL at the tower base with errors from 0.2 % to 11.3 % that

increase with the sea state, as observed in Fig. 11. The sig-

nificant wave height also increases with the sea state, as do

the associated nonlinear effects of position-dependent moor-

ing stiffness and viscous hydrodynamic forcing, which are

both included in FAST. QuLAF does not include viscous hy-

drodynamic forcing, and as a linear model, its accuracy is

bound to the assumptions of small displacements around the
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Figure 8. Exceedance probability of the response to irregular waves.

Table 4. Summary of environmental conditions (Krieger et al., 2015) and DEL results obtained in FAST and QuLAF.

Case Hs Tp W DELFAST DELQuLAF Error Trel

(m) (s) (ms−1) (MNm) (MNm) (%) (–)

Waves 1 1.51 7.65 – 75.69 76.44 +1.00 2402

Waves 2 1.97 8.00 – 98.44 98.62 +0.19 2695

Waves 3 2.43 8.29 – 120.74 119.95 −0.65 2595

Waves 4 3.97 9.85 – 179.45 170.55 −4.96 2404

Waves 5 (Figs. 7, 8) 6.14 12.50 – 219.31 194.63 −11.25 2595

Waves + wind 1 1.51 7.65 6.0 167.13 158.74 −5.02 1354

Waves + wind 2 1.97 8.00 9.0 290.96 284.53 −2.21 1409

Waves + wind 3 2.43 8.29 11.4 375.12 349.37 −6.87 1400

Waves + wind 4 3.97 9.85 17.0 319.95 324.68 +1.48 1365

Waves + wind 5 (Figs. 9, 10) 6.14 12.50 22.0 339.01 348.77 +2.88 1408

equilibrium point. Hence, it is expected that the linear model

performs worse for the environmental conditions where non-

linear effects are not negligible. This observation is also con-

sistent with the discussion around Fig. 7, which corresponds

to the most severe sea state considered here.

For the cases with wind, the errors range from 1.5 % to

6.9 %, but the trend is not as clear. The predictions seem to

be worst for the environmental condition corresponding to

rated wind speed. Around rated speed the wind turbine oper-

ation switches between the partial- and the full-load regions,

which correspond to very distinct regimes of the generator

torque and blade pitch controller. The complexity of the dy-

namics involved in this transition zone is not well captured

by the simplified model. The vibration of the tower is also

more likely to be excited around rated wind speed, where the

thrust is maximum. As the coupled tower natural frequency

is different for the two models, this will also have an im-

pact on the resulting DEL. This effect has been quantified

for rated wind speed (”Waves + wind 3”), where the DEL

error becomes −5.6 % when the FAST simulation is carried

Wind Energ. Sci., 3, 693–712, 2018 www.wind-energ-sci.net/3/693/2018/



A. Pegalajar-Jurado et al.: An efficient frequency-domain model 709

3450 3500 3550 3600 3650 3700 3750
0

20

40
Time domain

0 0.2 0.4 0.6 0.8 1

200

400

600
Frequency domain

FAST
QuLAF

3450 3500 3550 3600 3650 3700 3750
-5

0

5

0 0.2 0.4 0.6 0.8 1

10
20
30
40
50

3450 3500 3550 3600 3650 3700 3750
5

10

15

0 0.2 0.4 0.6 0.8 1

50
100
150

3450 3500 3550 3600 3650 3700 3750
-2

0

2

0 0.2 0.4 0.6 0.8 1

5
10
15
20

3450 3500 3550 3600 3650 3700 3750
0

2

4

0 0.2 0.4 0.6 0.8 1

20
40
60
80

100
120

3450 3500 3550 3600 3650 3700 3750
Time [s]

-2

0

2

0 0.2 0.4 0.6 0.8 1
Frequency [Hz]

0.5
1

1.5
PS

D
[m

s
H

z
]

2
-2

Su
rf.

el
ev

.
[m

]
W

in
d

sp
.

[m
s

]

PS
D

 [m
 H

z
 ]

2

Su
rg

e
[m

]

PS
D

 [m
 H

z
]

2

H
ea

ve
[m

]

PS
D

 [m
 H

z
]

2

Pi
tc

h
[d

eg
]

PS
D

[d
eg

H
z

]
2

N
ac

el
le

ac
c.

[m
s-2

]

PS
D

 [m
 s

 H
z

 ]
2

-4

-
1 -1

-1
-1

-1
-1

-1

-

Figure 9. Response to irregular waves and turbulent wind in the time and frequency domains.

out with rigid blades, which indicates that the difference in

coupled tower frequency has some impact on the DEL er-

ror. In addition, the aerodynamic damping – which plays an

important role in the resonant response of the tower – is de-

pendent on the frequency at which the rotor moves in and out

of the wind. Since the aerodynamic damping on the tower is

extracted from a SoA simulation with fixed foundation and

rigid blades, it corresponds to a tower natural frequency of

0.51 Hz, different to the coupled tower frequency observed

when the floater DoFs are active (0.682 Hz in QuLAF, 0.746

in FAST). This difference in the frequencies at which the

aerodynamic damping is extracted and applied is likely to

lead to an overprediction of the aerodynamic damping, and

an underprediction of the tower vibration and the DEL. This

observation is consistent with the level of tower response at

the coupled tower frequency shown in Fig. 9. On the other

hand, the aerodynamic simplifications in the cascaded model

seem to work best for wind speeds above rated, likely due

to the thrust curve being flatter in this region. The last col-

umn of Table 4 shows that the ratio between simulated time

and CPU time is between 1300 and 2700 for a standard lap-

top with an Intel Core i5-5300U processor at 2.30 GHz and

16 GB of RAM. In other words, all the simulations in Table 4

together, 1.5 h long each, can be done in about half a minute.

7 Conclusions

A model for Quick Load Analysis of Floating wind tur-

bines, QuLAF, has been presented and validated. The model

is a linear, frequency-domain tool with four planar degrees

of freedom (DoFs): floater surge, heave, pitch and tower

modal deflection. The model relies on higher-fidelity tools

from which hydrodynamic, aerodynamic and mooring loads

are extracted and cascaded. Hydrodynamic and aerodynamic

loads are pre-computed in WAMIT and FAST, respectively,

while the mooring system is linearized around the equilib-

rium position for each wind speed using MoorDyn. A sim-

plified approach for viscous hydrodynamic damping was im-

plemented, and the decay-based extraction of aerodynamic

damping of Schløer et al. (2018) was extended to multi-

ple DoFs. Without introducing any calibration, a case study

with a semi-submersible 10 MW configuration showed that

the model is able to predict the motions of the system in

stochastic wind and waves with acceptable accuracy. The

damage-equivalent bending moment at the tower base is es-

timated with errors between 0.2 % and 11.3 % for all the

five load cases considered in this study, covering the opera-

tional wind speed range. The largest errors were observed for

the most severe wave climates in wave-only conditions and

for turbine operation around rated wind speed for combined

wind and wave conditions, due to three main limitations in
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Figure 10. Exceedance probability of the response to irregular waves and turbulent wind.
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Figure 11. Damage-equivalent bending moment at the tower base for different environmental conditions.

the model: (i) underprediction of hydrodynamic loads in se-

vere sea states due to the omission of viscous drag forcing;

(ii) difficulty to capture the complexity of aerodynamic loads

around rated wind speed, where the controller switches be-

tween the partial- and full-load regions; and (iii) errors in the

estimation of the tower response due to underprediction of

the coupled tower natural frequency and overprediction of

the aerodynamic damping on the tower. The computational

speed in QuLAF is between 1300 and 2700 times faster than

real time. Although not done in this study, introducing vis-

cous hydrodynamic forcing and calibration of the damping

against the SoA model would likely result in improved ac-

curacy, but at the expense of lower CPU efficiency and less

generality in the model formulation.

It has been shown that the model can be used as a tool

to explore the design space in the preliminary design stages
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of a floating substructure for offshore wind. The model can

quickly give an estimate of the main natural frequencies, re-

sponse and loads for a wide range of environmental con-

ditions with aligned wind and waves, which makes it use-

ful for optimization loops. Although a better performance

may be achieved through calibration, a calibration-free ap-

proach was used here to emulate the reality of an optimiza-

tion loop, where calibration is not possible. In such a pro-

cess, once an optimized design has been found, a full aero-

hydro-servo-elastic model is still necessary to assess the per-

formance in a wider range of environmental conditions, in-

cluding nonlinearities, transient effects and real-time con-

trol. Since the model is directly extracted from such a SoA

model, this step can readily be taken. While the SoA model

should thus still be used in the design verification, the present

model provides an efficient and relatively accurate comple-

mentary tool for rational engineering design of offshore wind

turbine floaters. In addition, the QuLAF and FAST mod-

els presented in this study have been recently used in the

LIFES50+ project for a broader analysis of different design-

driving load cases, including normal operation, extreme and

transient events (Madsen et al., 2018). Generally, the results

of the broader study and the conclusions drawn are aligned

with the ones presented here, as well as the limitations ob-

served in the simplified model when compared to its SoA

counterpart.

Given the model limitations observed in this study and in

Madsen et al. (2018), possible improvements of QuLAF may

involve (i) inclusion of viscous drag forcing, (ii) modelling

the effect of blade flexibility on the tower natural frequency,

(iii) improvement of the extraction of aerodynamic damping

from the SoA model, and (iv) extension of the model to out-

of-plane DoFs to make it applicable to cases with misaligned

wind and waves.

Code and data availability. The FAST model is publicly avail-

able, as detailed in Pegalajar-Jurado et al. (2018a) and Pegalajar-

Jurado et al. (2018b). The QuLAF source code is not public due to

possible commercialization in the future. The data used in figures

and tables can be obtained by contacting the first author.
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