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ABSTRACT Gait is a unique non-invasive biometric form that can be utilized to effectively recognize

persons, even when they prove to be uncooperative. Computer-aided gait recognition systems usually use

image sequences without considering covariates like clothing and possessions of carrier bags whilst on

the move. Similarly, in gait recognition, there may exist unknown covariate conditions that may affect

the training and testing conditions for a given individual. Consequently, common techniques for gait

recognition and measurement require a degree of intervention leading to the introduction of unknown

covariate conditions, and hence this significantly limits the practical use of the present gait recognition and

analysis systems. To overcome these key issues, we propose a method of gait analysis accounting for both

known and unknown covariate conditions. For this purpose, we propose two methods, i.e., a Convolutional

Neural Network (CNN) based gait recognition and a discriminative features-based classification method

for unknown covariate conditions. The first method can handle known covariate conditions efficiently

while the second method focuses on identifying and selecting unique covariate invariant features from the

gallery and probe sequences. The feature set utilized here includes Local Binary Patterns (LBP), Histogram

of Oriented Gradients (HOG), and Haralick texture features. Furthermore, we utilize the Fisher Linear

Discriminant Analysis for dimensionality reduction and selecting the most discriminant features. Three

classifiers, namely Random Forest, Support Vector Machine (SVM), and Multilayer Perceptron are used

for gait recognition under strict unknown covariate conditions. We evaluated our results using CASIA and

OUR-ISIR datasets for both clothing and speed variations. As a result, we report that on average we obtain an

accuracy of 90.32% for the CASIA dataset with unknown covariates and similarly performed excellently on

the ISIR dataset. Therefore, our proposed method outperforms existing methods for gait recognition under

known and unknown covariate conditions.

INDEX TERMS Gait recognition, covariate conditions, discriminative feature learning, FLDA.

I. INTRODUCTION

Gait is a biometric trait that depicts and measures how people

move. Over the decades, gait analysis has been successfully

used in different domains, including biometrics and posture

analysis for healthcare applications. It has also been used

in human psychology where gait analysis using point lights

employed for recognition of emotional patterns. The same

The associate editor coordinating the review of this manuscript and

approving it for publication was Yeliz Karaca .

idea was extended and ultimately resulted in the development

of gait signatures through which the identification of individ-

uals can be performed [1]. Borrowing from this, computer

vision-based approaches have also used motion analysis and

human movement modeling for person identification [2].

In the early days of gait recognition, the focus was to iden-

tify and classify the different movement patterns such as

walking, jogging, and climbing. Gradually, the focus shifted

towards human identification and has become an active area

of research. As compared to other biometric traits such as
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FIGURE 1. The Samples GEI Sequences from CASIA and ISIR Dataset, the first row corresponds to CASIA GEI and
the second row corresponds to ISIR.

fingerprint and iris, gait recognition can work without the

cooperation of a person. Moreover, it can work without inter-

fering with a person’s activity. This makes gait more suitable

for different real-time applications like surveillance and long-

distance security [3], [4].

Existing techniques employed for gait analysis are divided

intomodel-based and appearance-basedmethods. The former

requires high-resolution videos whereas the latter can deal

with low-resolution imagery. Model-based approaches use

the parameters of the body, appearance-based approaches on

the other hand employ the features extracted directly from

image sequences of gait. The simplicity of appearance-based

methods and their robustness against noise make them more

suitable for real-world scenarios. Appearance-based methods

rely on silhouettes extracted from a gait sequence. Silhouettes

contain important information about the stance and shape of

the human body.

Gait representations used in appearance-based approaches

include frequency-domain features, chrono-gait images, fea-

tures extracted from silhouettes (Gait Energy Image (GEI)),

and Gabor GEIs [5]. GEI is popular and creates a single

grayscale image from the normalized binary frames over

a complete gait cycle and is not susceptible to segmenta-

tion errors [6]. It is reported that, in the absence of covari-

ates, direct matching with GEI templates exhibits excellent

results [7]. However, in a real-world scenario, the absence

of covariates is not always feasible, which makes gait recog-

nition a challenging task. A covariate is a condition when a

person appears with a carrying condition, i.e. bag or clothing

condition like a coat or long coat, and the system is trained

with only normal walk data. To handle this issue, various

techniques are used to capture discriminant information from

GEIs. One such scheme is proposed in [6], which uses Prin-

cipal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA) for feature extraction. A similar approach is

adopted in () [8] where Discriminant Locally Linear Embed-

ding (DLLE) based framework is used for preserving the local

structure. However, the main drawback of appearance-based

approaches is that they are sensitive to covariate conditions.

The success of gait as a biometric is largely affected

due to covariate factors. Some of these factors are clothing,

camera viewpoint, carrying conditions, walking style, shoe

wear, and walking surface. Some of the examples of clothing

and carrying covariate conditions are shown in Figure 1.

Currently, most of the gait analysis applications use gait

sequences under normal conditions in the training phase and

must deal with gait sequences under variable covariate con-

ditions in the testing phase. Owing to this, the performance

of these methods for gait recognition under covariate con-

ditions remains unsatisfactory in real-world conditions. The

unsatisfactory performance is related to the changes in the

underlying representation caused by these conditions. It is

evident from Figure. 1 that major changes are seen in portions

of the representation that belong to non-moving regions. This

leads to the observation that dynamic information is more

important as compared to the static part of the representation.

When models are trained with covariate conditions and test-

ing is performed on similar covariate conditions, it is known

as known covariates. While on the other hand, when models

are trained only with simple GEI of a normal walk and tested

on different covariate conditions, it is known as unknown

covariate conditions.

GEI is a compact representation of a gait sequence rep-

resenting it in a single image. It is considered a good can-

didate to extract gait features. Under real-world conditions,

the covariate conditions are unknown for the gallery and

probe set. However, the known covariate conditions are rela-

tively easy to handle. From this line of research, we propose

two methods for gait recognition- one for known covariate

conditions and the second for unknown covariate conditions.

The first method only takes GEI as input and CNN is used

for gait recognition. The second method uses a unique set

of features extracted from the ROIs extracted from GEI,

which excludes clothing or carrying conditions. The feature

set includes Local Binary Patterns (LBP), Histogram of Ori-

ented Gradients (HOG), and Haralick texture features. Fisher

Linear Discriminant Analysis is used for dimensionality

reduction and selecting the most discriminant features. Three

classifiers- Random Forest, SVM, and Multilayer Perceptron

are used for gait recognition. The objective of this proposed

work is to extract discriminative features for unknown covari-

ate conditions. The two standard datasets CASIA and OUR-

ISIR are used to evaluate the performance of the proposed

work. There are different and complex covariate conditions

available in both these datasets, which include clothing and

speed variations. The experiments include an extensive set of
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covariate possibilities for both clothing and speed variation

to show the performance of the proposed work under diffi-

cult conditions. The results for both these datasets are good

and outperforms existing published literature on covariate-

based gait recognition. The proposed work has the following

contributions:
• A CNN based method to efficiently handle known

covariate conditions using only simple GEI

• A discriminative feature learning-based method to han-

dle unknown covariate conditions

• The extraction and selection of discriminative features

from ROIs to identify and select unique covariate invari-

ant features from the gallery and probe sequences

The rest of the paper is organized as follows. In Section 2 we

explain the related work, Section 3 presents the proposed

methodology, Section 4 presents the experiments and results

which is followed by a conclusion.

II. LITERATURE REVIEW

A. SPATIAL METRIC LEARNING BASED APPROACHES

These approaches learn a feature space from the origi-

nal appearance features, which provides resistance against

covariates and proves to be more robust. Methods in this

category can be further subdivided into whole-based and

part-based approaches [9]. In the whole-based approach,

to counter against covariates, holistic appearance features are

calculated in a discriminative space, an example of this is [5]

where LDA is applied on synthesized as well as real GEI

templates for the reduction in interclass variation to some

extent. The use of a similar approach was advocated in [10]

where an RSM framework is proposed to combine inductive

biases.

Part-based approaches on the other hand try to divide the

holistic appearance-based features into different body parts

to enhance features important for gait recognition. This is

an important aspect because variation in clothes and carry-

ing status affects only certain parts of a gait representation

leaving some of the other parts unaffected. The affected

parts are the reason for reduced accuracy. In [11] anatomical

knowledge is used, and the body is divided into eight sections.

To counter the effects of variations, different weights are

assigned to the unaffected and affected sections. A similar

strategy is proposed in [12] where the representation of the

human body is divided into equal parts and weights are

assigned to each part based on similar features extracted from

the gait.

B. INTENSITY TRANSFORMATION BASED APPROACHES

As the name suggests, intensity transformation changes the

value of the intensity of the gait feature so that it pro-

vides resilience against covariate conditions by providing

more discriminate values. This approach is exploited in [11]

where GEnI is calculated, by using the Shannon entropy

method, of the foreground probability of each pixel. GEnI is

used for encoding the randomness of each pixel in the gait

image within a complete gait cycle. This provides important

motion information, instead of the static information, about

the change in clothing and change in carrying status. Another

such approach known asMasked GEI is proposed in [12]. It is

yet another intensity transformation approach that by adopt-

ing a certain threshold value keeps the motion information at

its original value but it zero-pads the static information (most

background and foreground parts). Similarly [13] proposes

a so-called gait energy response function that changes the

intensities of the pixel thus eliminating the need for native

transformation. The concept of joint intensity transformation

is extended to include a pair of images instead of one image

in [14]. In this approach, a linear SVM based framework is

used to learn the intensitymetric alongwith the spatial metric.

The main issue with intensity transformation methods is the

use of linear optimization for independent transformations.

C. DEEP LEARNING APPROACHES

Deep learning-based approaches have gained popularity in

many applications including gait recognition [15]. A Convo-

lutional Neural Network (CNN) takes input from raw silhou-

ettes in each gait sequence. Temporal information along with

skeleton data is obtained from the silhouettes with the help

of deep graph learning in [16]. Another deep learning-based

method is the GEINet which is an eight-layer CNN obtained

through average silhouettes (GEI) [17]. They handled the gait

recognition as a person classification problem from the same

gaits. Similarly, [18] proposes multiple networks with pairs

of images (query and enrollment images) which compares

images at the start of the input layer. A comparison of input

and output architectures for gait recognition using CNN is

discussed in [19].

The proposed network compares two input images (GEIs)

and determines whether the images are of the same person or

not. To counter against multiple covariates an autoencoder is

proposed [20] which removes invariant gait features. Gener-

ative Adversarial Networks (GAN) have also been used for

handling variable covariate conditions in gait. GaitGAN [21]

is an adversarial network that is used to generate feature maps

removing covariates. The generation of motion features such

as optical flow is proposed in [22]. A deep neural network

is proposed which provides gait based gender identification

aided by clothing and carrying status [23].

III. PROPOSED METHODOLOGY

There are two different methods for cooperative (known

covariates) gait recognition and gait recognition under the

unknown covariate condition presented in Figure 2 and

Figure 3 respectively.

A. GAIT RECOGNITION WITH KNOWN COVARIATE

CONDITIONS

1) GATE ENERGY IMAGE (GEI)

By using the method proposed in [12] human silhouettes are

extracted from the given gait sequence.
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FIGURE 2. The overview of the proposed CNN based gait recognition under normal conditions.

FIGURE 3. The overview of the proposed gait recognition under covariate conditions.

All the images are processed by applying size normaliza-

tion and horizontal alignment. This is followed by estimation

of gait cycle segmentation done by estimation of gait fre-

quency and maximum entropy estimation technique. Finally,

Gait Energy Image (GEI) is computed as shown as samples

in Figure 1 through the following Equation 1,

GEI = G(x, y) =
1

T

∑T

t=1
I(x, y, t) (1)

where T is the total number of frames per gait cycle shown

in Figure 2, x and y are the pixel coordinate of the silhouette

image I shown in Figure 2 and t correspond to frame num-

ber in a gait cycle. High-intensity areas provide information

about the shape of the body and stance. Whereas the lower

intensity areas describe the movement while walking [12].

The higher intensity areas are known as static areas and lower

intensity ones are dynamic areas of a GEI. The dynamic

parts have the most important information of a GEI as they

are not susceptible to the change of human appearance by

clothing and carrying condition. Which is generally the com-

mon covariate conditions. Thus, the dynamic areas are most

important for human identification in the presence of variable

covariate conditions. The static area also provides useful

information for human identification (such as hairstyle, body

structure). However, they are susceptible to change in covari-

ate conditions.

2) CONVOLUTIONAL NEURAL NETWORKS (CNNS)

The grayscale GEI is given as an input with a 240∗240∗1
dimension to the first input layer as shown in Figure 4.
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FIGURE 4. The CNN architecture used for cooperative gait recognition process.

We have utilized a total of 10 layers of CNN model with four

convolutional layers. The weights of the convolutional filters

are initialized through ‘‘Xavier Initialization’’.

The default weight initialization method used in our net-

work is Glorot uniform initialization or ‘‘Xavier initializa-

tion’’ and these weights are optimized by the optimizer to best

classify the GEI of every subject. In our CNN architecture

shown in Figure 4, the filters are generated from the uniform

distribution of [-limit, limit], where the limit is,

Limit =
√
6

(fanin + fanout)
(2)

where fanin is the number of inputs to layer and fanout is the

number of outputs to layer as shown in Figure 4. Therefore,

W = [low = limit, high = limit, size = (fanin, fanout)].

The weights of the network are updated every iteration using

an input batch size of 4. The optimization algorithm for

optimizing weights is ‘‘Adam’’. Thus, the feature maps of

these 1-4 convo layers are 16, 32, 64, and 124, respectively.

These feature maps have resulted after a filter or kernel is

applied to convolve an image. In each of the convolutional

operation, a filter or kernel of size 3∗3 is applied with no zero
paddings. We have used the Leaky ReLU activation function

in our whole architecture shown in Figure 4, which is defined

as per equation, F (x) {x if x > 0 otherwise 0.01x.

In this proposed study, we use 0.05x instead of 0.01x.

To decrease spatial measurements of the input, we utilized the

max-pool with a 2×2 window size. The fully connected layer

essentially takes an info volume and outputs an n-dimensional

vector where n is the number of classes that the program

needs to browse. The last output equivalent to class labels

generated by these FC layers. The fundamental convo layer

implements filtration to the info images of 240 x 240 x 1.

As shown in Figure 4, the output is taken from the 1st convo

layer with all the filtration from the pooling layers sent to the

2nd convo layer as info and separated with 119 × 119 × 16

measurements. Essentially, the convolutional yield from the

subsequent layer is decreased through the pooling layer and

is associated with the bit size 58 × 58 × 32 in the 3rd convo

layer. The 4th convo layer includes 124 number of feature

maps of 28 × 28 × 64 dimensions. Besides with SoftMax

activation function, there are a total of 1024 neurons in this

FC layer. The final layer is the classification layer. This layer

uses SoftMax layers returned probabilities to each input to

authorize any of the manually privileged classes and calculate

the loss. The learning rate for CNN is 0.0001, the number of

epochs is 30, and the kernel size is 3∗3. The complete details

of network architecture are provided in Figure 4.

B. GAIT RECOGNITION UNDER UNKNOWN

COVARIATE CONDITION

1) REGION OF INTEREST (ROI) EXTRACTION

The covariate conditions are difficult to handle which makes

strict testing for gait recognition under unknown covari-

ate conditions extremely difficult. To handle this issue,

we extracted 2 ROIs from each GEI image to remove the

regions with covariate (bags, coats, etc.) as shown in Figure 3,

eachGEI image has twoROIs. The reason to choose twoROIs

is based on the regions that are least affected by clothing and

carrying conditions. The part of the human body which is

occluded by clothing or bag is removed in order to choose

only the discriminative features.

2) FEATURE EXTRACTION

As shown in Figure 3 after extraction of ROIs, features are

extracted using three different methods that are LBP, HOG,

and Haralick Texture. The features returned by all these three

methods from both ROIs are concatenated to a single feature

vector of a GEI image.

a: LOCAL BINARY PATTERNS (LBP)

The overall texture information of the image including the

spatial distribution is important, but the local texture may

contain important information that is extracted using LBP.

The technique is widely used and considered an efficient

technique for denoting local patterns. LBP tags the pixels so

that it can identify eight neighborhood pixels with respect to

the center value of the image window. Based on the threshold

value these pixels are assigned a binary number. In our case,

the central pixel of each ROI of GEI image is compared with

the neighboring pixels by using the following LBP equation
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as shown in Figure 3,

LBP(P,R) =
∑p−1

p=0
S

(

gp − gc
)

2p. (3)

In the above S(z) is the thresholding function, gc and gp are

the grey level values of the center and its neighbor’s pixels

respectively. P is the total number of neighbors whereas R is

the radius of the neighborhood.

b: HISTOGRAM OF ORIENTED GRADIENTS

It is observed recently that the performance of appearance-

based methods for gait recognition techniques can be

improved by applyingHOG.HOG is a technique that portrays

the direction of intensity gradients and it provides global

descriptors. The following equation is used to compute the

1st order of gradients which are applied to extract horizontal

and vertical magnitudes for each ROI of GEI image as shown

in Figure 3,

F_xdir = [-1 0 1] f _y dir [-1 0 1]T . (4)

The combination of these horizontal and vertical gradient

images is used to obtain gradient magnitude and orientation.

Based on pixel intensity in the gradient orientation, a bin

is selected, whereas the pixel intensity in gradient magni-

tude serves as the basis of the vote. This vote is cast by

every pixel of the ROI to compose HOG. A histogram of

gradients’ direction is calculated for every pixel for an ROI.

Their overall concentration is denoted as the HOG descriptor.

To account for illumination and contrast the values of each

ROI are normalized locally. This way the HOG descriptors

are created for every ROI. This research work used HOG

descriptors to characterize the shape and appearance of the

subjects based on the distribution of local intensity gradients

and directions.

c: HARALICK TEXTURE DESCRIPTOR

Haralick features consist of 14 statistical entities that are used

for indicating certain texture properties from P. These are

extracted and calculated at four directions by computing at

0o, 45o, 90o, and 135o using the GLCM based method [24].

The following equation is used for the calculation of px(g)

and py(v) where x and y are the columns and row coordinates

respectively of an entry in the co-occurrence matrix for each

ROI of GEI image as shown in Figure 3.

P =
p(g, v)

∑Ng
g=1

∑Ng
v=1 p(g, v)

(5)

Px(g) =
∑Ng

v=1
p(g, v) and Py(v) =

∑Ng

g=1
p(g, v) (6)

Moreover, Px+y(i) which is the probability of co-occurrence

matrix coordinates sum to x+y is done through the following

equation in the Haralick feature extraction method shown

in Figure 3.

Px+y(r) =
∑Ng

g=1

∑Ng

v=1
p (g, v), where

r = g + v with r = 2, 3.....2Ng (7)

We have considered only sum variance (fsv) in this research

work. For calculation of fsv, one needs to compute (fsa) which

is the sum average Haralick texture descriptor. This sum

average of each ROI is computed by the following equation

as shown in Figure 3.

fsa =
∑2Ng

r=2
rpx+y(r). (8)

Finally, the sum variance is calculated as,

fsv =
∑2Ng

r=2
(r − fsa)

2px+y(r). (9)

3) FEATURE REDUCTION USING FISHER LINEAR

DISCRIMINANT ANALYSIS

The process of selecting the most discriminant features is

known as feature selection. The success of any machine

learning method is dependent on the selection of the most

discriminant features. We have incorporated the dimension-

ality reduction method for this purpose. Therefore, the single

feature vector of a very higher dimension of each GEI image

is passed through for feature reduction. This dimensionality

technique not only selects the most discriminant features it

also reduces the dimensions of feature space. In the proposed

approach we have incorporated FLDA for dimensionality

reduction. FLDA is a supervised dimensionality reduction

algorithm that uses class labels for the identification of

most discriminant features. On the contrary, the unsupervised

dimensionality reduction techniques such as PCA selects

only those features which suit class labels. The goal of FLDA

is a conversion from high dimension data to lower dimension

data through the calculation of scattered matrices between

and within-class labels. A transform matrix FLDA for the

reduction of features of each subject can be obtained through

the following Equation,

FLDA = argmaxw
|W T SBW |
|W T SWW |

. (10)

4) CLASSIFICATION

After feature extraction from each GEI image, three different

classifiers; Random Forest, Support Vector Machine, and

Multilayer Perceptron were used for gait recognition under

covariate conditions as shown in Figure 4 [25].

a: RANDOM FOREST

Random forest is one of the popular and supervised algo-

rithms used for both classification and regression purposes.

Its performance is very good as compared with other machine

learning classifiers. It uses the ensemble technique by creat-

ing many decision trees on different data samples and finds

the best solution by getting predictions of each decision tree.

For classification purposes, it uses two popular techniques,

Bagging, and random feature selection. In bagging, it takes

bootstrap samples from the training data and then builds the

trees. For each random tree, a process of top-down induction

is followed to favor the diverseness of the ensemble process,

and then by majority voting, a prediction is made. A part of
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the original features is taken to design each tree i-e n≪N

where n is the subset of the complete feature set with size N.

Later on, a tree is built by splitting these features randomly at

each node. Each tree is of full-depth or the depth as required

by the problem, and once the tree is built then no pruning

process is followed. Then, in the end, a classification is made

by doing voting among predictions of different trees. So,

after the extraction of subject features from three different

methods is given to a random forest for classification as

shown in Figure 4. This proposed work uses default settings

for this paper.

b: MULTILAYER PERCEPTRON

Artificial neural networks are machine learning classifiers

that are designed to mimic the human brain. They have

a wider range of applications such as pattern recognition,

classification, and forecasting. Its architecture is formed by

making connections among different artificial neurons called

units or nodes. Each neuron carries some information in

the network. An artificial neuron model receives a vector of

X = (x1, x2 . . . , xn) of I input signals from an environment,

or any other artificial neurons followed by some computation

and activation functions to produce the results. They are

categorized into a single layer and multilayer perceptron.

A single-layer perceptron has only input that is connected

directly to the output layer while a multilayer perceptron has

input, output, and one or more hidden layers. A multi-layer

perceptron is a supervised machine learning algorithm, and it

learns by adjusting the connection weights after calculating

the error between model output and the expected result. The

training procedure of the classifier continues until there exists

a difference between an expected output and model output

and it stops when the error rate between model output and the

desired output is minimum or zero. This minimal difference

shows that models learn a good mapping between input and

desired output. Further, they are data-driven self-adaptive

methods and can model any real-world problem. In our pro-

posed work, we used a multi-layer perceptron-based ANN,

as a classifier to classify different subjects from the perspec-

tive of gait recognition as shown in Figure 4. The learning

rate used here is 0.0001, 2 hidden layers with 50 epochs.

c: SUPPORT VECTOR MACHINE (SVM)

Support vector machines are one of the other popular algo-

rithms used for both classification and regression challenges.

However, in most cases, it is used for classification purposes.

The classification of data points in the dataset is done by

finding a hyperplane in an N-dimensional space where N

is the number of features. The SVM focuses on finding a

hyperplane (an optimal hyperplane) that maximize the mar-

gins defined by support vectors where the margin is simply

the distance between support vectors. Support vectors are

essential training tuples that influence the orientation and

position of the hyperplane. The equation for hyperplane as

the set of points x satisfying for separating each subject,

f (x) = w.x + b = 0. (11)

Here W = {w1,w2 . . .wn} is a weight vector and b are a

scaler (bias). SVM can easily work with the input space of

high dimensional. For a non-linear dataset, in which the data

points are not linearly separable, the SVM needs a kernel

function to map the original data to a higher dimension so

that it can be linearly separable. There are many kernel func-

tions with each have different performance on different types

of data which includes linear, polynomial, Gaussian kernel.

In our proposedwork, for the feature vector X of every subject

in the dataset, a linear kernel which is K (xi, xj) = xiTxj is

used. It involves mapping of the form,

8 : x → ϕ (x), (12)

where ϕ(x) is x itself andK denotes the linear kernel function.

Furthermore, in multi-class classification, it uses one-vs-all

and one-vs-one strategy. In this proposed work, we used an

SVM algorithm with a linear kernel function and a one-vs-

one strategy to get our required results on gait recognition as

shown in Figure 4. Here we used a linear kernel with a value

of C = 1.0.

IV. EXPERIMENTAL SETUP AND RESULTS

A. DATASET

We consider the two datasets CASIA and OU-ISIR dataset in

this research. The CASIA Gait Dataset [26] is provided by

the Chinese Academy of Sciences (CASIA). It is divided into

three parts, CASIA-A Gait Dataset, CASIA-B Gait Dataset,

and CASIA-C. Similarly, OU-ISIR Treadmill Dataset [27]

is an indoor gait dataset divided into two parts one part is

focusing on speed variation called Treadmill dataset A-speed

variation, and the other is part focuses on clothing variations

called Treadmill Dataset B. For simple clothing and carry-

ing conditions we consider, CASIA-B Gait Dataset consists

of 124 subjects. Each subject has 6 normal walk sequences,

two sequences with a bag, and two sequences with a coat. So,

a total there are 10 sequences are available for each person.

The other dataset is the OU-ISIR Treadmill dataset B consists

of 68 subjects from a side view with 32 clothing variations.

The list of clothing combinations is shown in Table 1. For

speed invariant gait recognition, we consider CASIA-C Gait

Dataset consists of 153 subjects.

TABLE 1. Clothing variations taken from OUR-ISIR dataset

VOLUME 9, 2021 6471



M. Bukhari et al.: Efficient Gait Recognition Method for Known and Unknown Covariate Conditions

Each subject has 4 normal speed walk sequences, 2 slow

walk sequences, 2 fast walk sequences, and 2 normal speed

walk sequences with Bag. So, there are 10 sequences are

available for each subject. All these videos are captured

at night by the infrared (thermal) camera. All subjects are

walking from left to right. The other dataset is OU-ISIR

Treadmill dataset A consists of 34 subjects with 9 different

speed variations varying between 2km/h and 10km/h with a

1Km/h interval. The subjects are walked between 2km/h to

7km/h and ran (or jogged) between 8km/h to 10km/h.

B. RESULTS AND DISCUSSION

All the experiments were carried out with Python on AMD

processor A8-7410 APU with AMD Radeon R5 Graphics

with 8GB RAM. We have used accuracy as an evaluation

metric in this research work [25], [28]–[31]. The proposed

methods are evaluated over 2 datasets under different cooper-

ative and strict covariate conditions. The results are presented

in two sections: gait recognition for cooperative persons and

gait recognition under strict covariate conditions.

1) GAIT RECOGNITION RESULTS FOR KNOWN

COOVARIATE CONDITIONS

This section presents results for gait recognition with coop-

erative persons (known covariates) which means no covariate

conditions are used. In this research, the covariate conditions

are only those where the gallery set is different than probe

sets. The results presented in Table 2 show the gallery and

probe set and either gallery set is the same as the probe set or

the probe set is also a part of the gallery set. Table 2 shows

the results for clothing and speed cooperative conditions from

CASIA datasets. It is important here to mention that speed

is not considered as a covariate condition and only bags and

clothing variations are considered as strict covariates. This

is because the shape of humans is not much changed due to

speed variations.

TABLE 2. Results for CASIA dataset gait recognition under normal
conditions

The GEI images are directly given to the CNN algorithm

and very good accuracies are achieved. This shows if no

strict covariate conditions are considered then simple CNN

is powerful enough to give satisfactory performance. This

strengthens the argument that GEI performs well for gait

recognition under normal conditions. However, the perfor-

mance drop for covariate conditions is too high as it has been

widely reported. Table 3 presents the results for the ISIR

dataset for speed variations.

TABLE 3. Results for ISIR dataset gait recognition under normal
conditions

The experiment used just a part of the full dataset shows

the effect of CNN when the covariate is not strictly followed.

Here it is pertinent to mention that number of samples for

clothing variations present in the ISIR dataset is low which

makes it difficult to use it for training as well as for test-

ing. Therefore, some experiments are only carried out for

speed variations. The gallery set has different variations of

speed present, but the probe set is also a part of the gallery

set which makes it an unknown covariate experiment. The

results are extremely good from experiment 1 to 10. The next

6 experiments are to make the experimental setup consistent

with Table 2 where the gallery and probe sets are different

for speed. The results show that overall results are very good

here too.

Table 4 shows a comparative analysis of our proposed

method with existing literature under no covariate conditions.

The results prove that our method performs better than exist-

ing work and the important conclusion can be made that

simple GEI with deep learning is enough to handle non-

covariate conditions.

2) RESULTS FOR GAIT RECOGNITION FOR UNKNOWN

COVARIATE CONDITIONS

This section presents results for covariate conditions where it

is strictly maintained that the gallery and probe sets are not

overlapped. The simplest approach is adopted to overcome

the covariate condition problems which is to extract only the

relevant and important ROIs from the GEI. This enables us

to only focus on the common parts of the GEI of both gallery
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TABLE 4. A comparative analysis of the proposed Deep learning Method with existing work under no covariate conditions

TABLE 5. Experimental setup for covariate gait recognition

TABLE 6. The highest values of each feature against both experimental conditions from casia for all classifiers

FIGURE 5. The feature-wise accuracy for CASIA Dataset under Covariate Conditions (Coats and Bags) using RF, SVM and MLP.

and probe sets. The details of the experiment are presented

in Table 5. Table 5 shows that for the CASIA dataset, training

is only performed on Normal GEIs while testing is carried out

on the bag and coat GEIs separately. For the ISIR dataset,

Type09 and Type C are used for training while testing is

performed on Type A, Type B, and Type 02 separately. This

experimental setup is used to ensure strict unknown covariate

conditions.

Three classifiers were used to evaluate the performance

of the features extracted. These classifiers include Random

Forest, Multilayer Perceptron, and SVM. These classifiers

are used because of their generalizability to different high

dimensional data. The number of extracted features from

ROIs is too high. Therefore, we applied Fisher linear discrim-

inant analysis to then only used 120 features for the CASIA

dataset and 60 features for ISIR experiments. In CASIA

experiments, the classifiers were trained over the ROIs of

normal persons and tested under covariate conditions of bags

and coats. In the first experiment, where normal sequences are

used for training and sequences with a person wearing a coat

is presented in Figure 5. All three classifiers are trained and

tested for 120 features and results show the MLP and SVM
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TABLE 7. The highest values of each feature against all experimental conditions from ISIR for all classifiers

FIGURE 6. The feature-wise accuracy for ISIR Dataset Covariate Experiments 1,2 and 3 (from left to right and top to bottom) using RF, SVM and MLP.

perform better than RF and show an almost similar pattern

for all number features. The results for the highest values of

individual features against each experiment for all classifiers

are presented in Table 6. This shows that the performance of

the individual features is not that good as compared to when

these features are combined.

The highest accuracy achieved for the experiment when

a combined feature vector is used is 92% with 120 features

using MLP which is very good considering the training was

only done on normal ROI sequences. The second experiment

was carried out for persons carrying bags. Here, again the

normal GEI’s ROIs were used for the training. An almost

similar pattern of results was produced where MLP and SVM

performed better than RF. The best results were achieved by

81% with MLP with 80 features as shown in Figure 5.

In our next experiment, we evaluated the performance of

our proposed ROI based feature extraction technique with

covariate conditions as shown in Table 6. The method was

trained over Type 09 and Type C gallery set for all exper-

iments and Type A, Type B, and Type 02 is used as probe

set separately. The results for the highest values of individual

features against each experiment for all classifiers are pre-

sented in Table 7. This shows that the performance of the

individual features is not that good as compared to when these

features are combined. Then three classifiers are used for

training and testing over 60 combined features and accuracies

are reported in Figure 6. The experiments show that SVM and

MLP performed better than RF.

The highest accuracies achieved are 86%, 91.2%, and 69%

for experiments 1, 2, and 3, respectively. The first two best

accuracies were achieved by SVM and MLP performed best

for experiment 3. We have compared our results with the

methods designed for strict covariate conditions. The point

we want to establish here is that if the gallery set includes
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TABLE 8. Comparative analysis with state of the art work under covariate conditions

any of the prob set samples like a bag or coat sequence then

good results can be easily achieved.We proved this in our first

experiment, where we only used GEI with CNN and achieved

very good results.

Furthermore, the comparison is carried out with techniques

that only use the available data without using augmentation

data to improve the results. It is evident from Table 8 that

we were able to achieve very good mean results as compared

to the latest and classical methods. The results show that we

have achieved the best average results for unknown covari-

ates. The comparison is carried only for strict unknow covari-

ate conditions and with a single view (90o). Furthermore,

the comparison is only carried out for the CASIA dataset

because this is usually considered as a benchmark dataset for

covariate conditions.

In addition to this, we performed a limited number of

experiments on the ISIR dataset just to show the performance

of the proposed method. Therefore, the comparative analysis

is not carried out for ISIR with existing work. However,

the proposed method can be extended to apply to all exper-

iments. This approach is efficient as compared to the sce-

narios where full GEI or its variants are directly provided to

deep learning architectures to handle the covariate conditions.

In that case, the relevant patterns (bags, jackets, hats, etc.)

are also used by the deep learning architectures and become

difficult for it to handle efficiently. In our proposed case, the

proposed scenario is more realistic where unique covariate

invariant features are selected and passed to CNN for learning

which makes it easier to handle covariate conditions. The

proposed architecture can be extended for real-time systems.

V. CONCLUSION

Gait recognition without the subject’s cooperation remains

one of the most challenging research areas in the field. The

covariate conditions, including clothing and speed variations,

are still difficult to handle in realistic experimental setups.

The existing solutions perform poorly when subject coop-

eration is not possible, and there are changes in covariate

conditions, making them unsuitable to deploy for practical

purposes. The emergence of deep learning approaches has

made computer vision tasks easier. However, there are cer-

tain scenarios where pre-processed data can further improve

the performance of these deep learning methods. In this

work, we have developed a gait recognition method that

extracts features from ROIs of the gallery and probe gait

GEI sequences. The unique covariate condition invariant

feature-based gait sequences used with RF, SVM, and MLP

performed very well for covariate conditions. The results

demonstrate the overall superiority of our approach over

the existing approaches. It is pertinent to mention that the

feature selection method deals only with changes in different

covariate conditions and has no effect on gait itself.

The proposed method handles covariate conditions by

selecting the discriminative covariate invariant features and

removes the occluded part of the body. The aim is to remove

the body part, which is affected by covariate conditions, espe-

cially for bags and coats. The same technique can be used on

other datasets with similar covariate conditions. The proposed

method can be used to handle dynamic covariates like putting

on a coat and taking out a coat as the occluded and affected

part of the body remains the same for these conditions. The

ROIs can still be used for unique covariate invariant features.

In future, the ROI selection process can be improved for

automatic candidate selection. The algorithm can be extended

to design zero-shot learning-based algorithms to work in real-

time data. The latest zero-shot training-based algorithms and

proposed discriminative feature learning can be combined to

handle covariate conditions in real-time.
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