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Abstract - To solve a general problem with genetic 
algorithm, it is desirable to maintain the population size 
as large as possible. in some cases, however, the cost to 
evaluate each individual is relatively high, and it is 
difficult to maintain large population. To solve this 
problein we propose a hybrid CA based on clustering, 
which considerably reduces evaluation number without 
any loss of its performance. The algorithm divides the 
whole population into several clusters, and evaluates 
only one representative for each cluster. The fitness 
values of other individuals are estimated from the 
representative fitness values indirectly, which can 
maintain large population with less number of 
evaluations. Several benchmark tests have been 
conducted and the results show that the proposed CA is 
very efficient. 

1 Introduction 
Evolutionary computation (EC) is an efficient method for 
machine learning, optimization and classification, based on 
evolution mechanisms such as biological genetics and 
natural selection. EC provides efficiency and advantages 
from set of points called population, and improves the 
population by generations to solve a problem [Chamber95. 
GoldbcrgK9]. Due to this fact there has been extensive 
research on EC, making it a major stream of artificial 
intelligence. It is required to make the population size of 
evolution as large as possible because EC approach evolves 
the population spread over the search space. However, in 
some specific problem the cost to evaluate individuals is 
relatively high, and this makes it difficult to maintain large 
number of individuals in a population. Smaller population 
causes several negative results such as genetic drift. 

One example that requires smaller population is 
interactive evolutionary computation (IEC) application. IEC 
is a technique that performs optimization based on human 
evaluation [Takagi98]. A human operator can obtain what 
he wants through repeated interaction with computer. I t  has 
a special advantage, which is to adopt user’s choice as 
fitness, when fitness function cannot be explicitly defined. 
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This property allows IEC application to be applied on 
artistic domains such as music or design, which are almost 
impossible to be solved with simple EC. However this kind 
of approach requires direct evaluation of user for each 
individual and the fact limits the population size. 

To solve this evaluation cost problem, we propose a 
hybrid GA based on clustering, which considerably reduces 
the number of evaluation without any loss of its performance. 
Section 2 introduces GA and clustering algorithm as 
background. Section 3 describes the hybrid clustering GA 
we have proposed. Section 4 provides some experimental 
results and analysis of comparing proposed GA with simple 
GA. 

2 Background 

2.1 Genetic Algorithm 
GA was proposed by John Holland in early 1970s. It applies 
some of natural evolution mechanisms such as crossover, 
mutation. and survival of the fittest to optimization and 
machine learning. GA provides very efficient search method 
working on population, and has been applied to many 
problems of optimization and classification [GoldbergXF)]. 
General GA process is as follows [Eberhart96]: 

( 1 )  Initialize the population of genes. 
( 2 )  Calculate the fitness for each individual in the population. 
(3) Reproduce the individuals selected to form a new 

population according to each individual’s fitness. 
(4) Perform crossover and mutation on the population. 
( 5 )  Repeat step (2) through (4) until some condition is 

sat isfied. 

Crossover operation swaps some part of genetic bit string 
within parents. It emulates just as crossover of genes in real 
world that descendants are inherited characteristics from 
both parents. -Mutation operation inverts some bits from 
whole bit string at very low rate. In real world we can see 
that some mutants come out rarely. Fig. I shows the way of 
applying crossover and mutation operations to genetic 
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algorithm. Each individual in the population evolves to 
getting higher fitness generation by generation. 

As its basic form. CA has several limitations and many 
developments to solve them are in progress these days. To 
avoid genetic drift that leads the evolution to local optima, i t  
is suggested to maintain diversity within individuals by 
several way such as migration model, local selection, and 
minimal generation gap [Unemi98]. To accelerate the 
convergence, Seront ct al. proposed hybrid GA with local 
search [SerontOO] and Ingu et al. suggested using search 
space approximation [Ingu99]. To apply GA to artistic 
domains such as music and design, IGA was proposcd 
[Takagi98]. 
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Fig. 1 Crossover and mutation 

2.2 Clustering Algorithm 
Clustering algorithm refers to the process of grouping 
samples so that the samples are similar within group 
[Gose96]. These groups are called clusters. In applying 
clustering algorithm, it is very important to decide the 
similarity measure. Most common methods are using 
distance measures such as city block distance, Euclidean 
distance, and Minkowski distance [Kande183]. These 
methods compute the distance from the notation 

0 

m 2 3 : Minkowski distance 
There are three general categories of clustering 

techniques: Hierarchical clustering, partitional clustering. 
and overlapping clustering. 

m = I : City block distance 
m = 2 : Euclidean distance 

A. Hierarchical Clustering 
Hierarchical clustering algorithm constructs a structure of 
clusters. In this structure a cluster can have several sub- 

structures which are composed of othcr cluters. 
Hierarchical clustcring algorithm takes two differcnt 
approaches: agglotnerative algorithm of a bottom-up 
approach and divisive algorithm of a top-down approach. 
Agglomerative algorithm starts with xi clusters, consisting of 
one sample, and continues to merge most similar clusters. 
On the other hand, divisive algorithm starts with one huge 
clustcr consisting of all individuals and continues to divide 
them [ Gose96, Haritigan751. 

There are several hierarchical clustering algorithms such 
as single-linkage algorithm, complete-linage algorithm, 
average-linkage algorithm. and Ward's method, which is 
also called as minimum-variance method. Ward's method is 
described in Fig. 2 .  

( I )  Assign all samples as clusters with one element. 
(2) If a cluster contains m samples x l ,  ..., x, where x, is 

the feature vector (xzl,...,xic,) . compute the squared 
Euclidean distance from the nieari 

J'1 

where 

(3) Find cluster pair, which has smallest squared error 

and merge them. 
(4) Go to step (2) until all clusters are united. 

Fig. 2 Ward's algorithm 

B. Partitional Clustering 
Different from hierarchical clustering which creates a series 
of nested clusters, partitional clustering usually creates one 
set of clusters that partition the data into similar groups. 
Samples close to one another are assumed to be similar and 
the goal of the partitional clustering algorithms is to group 
data that are close together. In rnauiy of the partitional 
algorithms, the number of clusters to be constructed is 
specified in advance. Hard c-means (HCM) algorithm, k- 
means algorithm, Forgy's algorithm, aind isodata algorithm is 
good examples of partitional clustering [Gose96. 
Haritipan751. Fig. 3 describes a simple k-means algorithm. 

( I )  Form k clustcrs with first k samples 
(2) For each of the remaining n-k samples 

Put the sample into the cluster. identified with nearest 

Recompute the centroid of altered cluster 

centroid 

(3) For each of all n samples 
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Put the sample into the cluster identified with nearest 
centroid 

Fig. 3 K-means algorithm 

C. Overlapping Clustering 
Overlapping clustering algorithm has no hierarchical 
structure between clusters, similar to partitional clustering. 
However, this approach does not define closed clusters. I n  
overlapping clustering, each cluster can be overlapped 
partially with others. Fuzzy c-means (FCM) algorithm and 
b-clump algorithm are in this category [Hoppner99, Xie9 I ] .  
Fig. 4 describes the FCM algorithm. 

For a p by I-, positive definite matris, p is the dimension 
of thc vectors X,(j = 1 ,  2 ,  ... , n), c is the number of 
clusters, ti is the number of vectors (or data points), and 
m>I is the fkzziucss index. To minimize the objective 
function J,,, 

k=l I = ]  

( 1 ) Initialize memberships plj of X, belonging to cluster 
i such that 

i=l 

(2) Compute the fiizzy centroid Vi for i = I ,  2, ... , c 
using 

5tP,;)"xj 

' i (PLj 1" 
y, = i=l 

. j=I 

( 3 )  Update the fuzzy membership p!i using 

f . \A 

Pi, 

(4) Repeat steps (2) and ( 3 )  until the value of the 
objective function J, is no longer decreasing. 

Fig. 4 Fuzzy c-means algorithm 

Clustering techniques allow the division into subgroups 
to be done automatically, without any preconception about 
what kinds of groupings should be found. Cluster analysis 
has been applied in many fields. In image analysis especially, 
clustering can be used to find the groups of pixels with 
similar gray levels, colors. or local texhire, in order to 
discover the various regions in the image [Anderberg73, 
Fukunaka9O]. 

3 Hybrid GA with Clustering 
One possible problem of CA application is genetic drift. It 
means that the searching is stuck on local optima without 
any progress to optimal solution. This is because CA 
optimizcs sampled group of individual named population 
out of whole search space. It is desirable to maintain the 
population size as large as possible to avoid such a problem. 

However, several problems such as interactive genetic 
algorithm (IGA) application require relatively high cost to 
evaluate individuals and this makes it difficult to maintain 
large population. Therefore, to reduce evaluation number 
efficiently without any loss of performance, we are 
proposing a hybrid GA with clustering in this section. 

The basic idea is to perform the evaluation by two step 
mechanism. We separate all individuals in the population 
into subgroups by clustering method, and evaluate one 
representative of each subgroup. The fitness values of 
remaining individuals are estimated from this representative 
fitness of each subgroup. The other GA operation is same as 
in simple GA. Fig. 5 describes the algorithm in pseudo-code 
and Fig. 6 shows the basic idea in diagram. 

Procedure Cluster-GA() { 
Initialize(); 
While not end condition do 

SimplcGA(); 
Clustering(); 
Evaluation(); 

End while 
1 
Procedure SimpleGAO { 

Select(): 
Crossover(); 
Mutate( 1: 

1 
Procedure Clustering0 { 

/* Performs clustering which divides 
population into k cluster */ 

; 
Procedure Evaluation() { 

Pick-Represen tatives(); 
Evaluate-Represen tativeso; 
Indirect_Evaluation( ); 

} 
Procedure Indircct-~valuation() { 

/* Evaluates non-representative 
individuals indirectly from th 
fitness values of representatives */ 

1 
I 

Fig. 5 Proposed GA description 



To implcment the algorithm, we have to decide the 
clustering method and indirect evaluation method. For the 
clustering method we have chosen the k-means algorithm, 
one of partitional clustering algorithm. The algorithm is one 
of the simplest partitioiial algorithms and i t  is advantageous 
that me can specify the number ofclusters in advance. 

Simple GA Propmed G.4 
?. - ___~____ 

popl 00 
clul0 

Fig. 6 Simplc CA vs. proposed CA 

Simple GA using IO0 
Proposed GA using 

For an indirect evaluation method, there can be various 
ways to compute fitness value of individuals from 
representative fitness. We have selected one of the simplest 
and intuitive methods: the distance from the representative. 
As described above, the representative is evaluated by 
objective function and therefore we already know the fitness 
value of each representative. Remaining individuals get 
fitness value computed from it, in proportion to a distance 
from representative. We have used the Euclidean distance 
and it can be calculated from ( I )  with m=2. We can get 
equation 

I 

clustering and fitness assigning by distance. 
The population size is 100 and it evaluates 

as a result and use it as a distance measure. 

4 Experimental Results 
To prove that the proposed CA efficiently reduces 
evaluation number without any loss of the performance, we 
have conducted several benchmark tests. Eight benchinark 
fiinctions have been used to compare three genetic 
algorithms including the proposed GA. We have named the 
candidate algorithms pop 100, clul0, and pop IO. Pop 100 is 
simple genetic algorithm that is using 100 individuals as 
population. ClulO is the proposed GA. which is using 100 
individuals with 10 clusters. In other words, it evaluates only 
I O  representatives and remaining 90 individuals are 
evaluated indirectly from the representative fitness values. 
Pop10 is simple genetic algorithm with IO population size. 
We warit to prove that the performance of clul0 is ES good 
as one of pop100, though proposed algorithm clul0 
evaluates only I O  individuals directly. Table 1 describes on 

these three candidate algorithms. and Table 2 shows general 
parameters of GA. 

Benchmark functions used for the experiment, the 3D 
landscapes of them, and the results are as, follows. For every 
benchmark function, clu 10 shows almosi same performance 
as pop100 while popl 0 shows very poor performance. 

<Function 1> De Jong Funlction 1 

Fig. 7(a) 3D landscape of De Joii,g function 1 



Fig. 7(b) Benchmark result for De Jong function 1 

<Function 2> Griewangk Function 

n=10, -600.0 C. x, 5 600.0 

Fig. 8(a) 3D landscape of Griewangk function 
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Fig. 8(b) Benchmark result tor Griewangk function 

Both De Jong function 1 and Griewangk function are 
typical quadratic function. The diffcrencc between them is 
that De Jong function 1 is complete quadratic function while 
(iriewangk function hiis product telm in it. Therefore the 
function shows implicit relations between individuals. This 
property leads optimization algorithm that uses few points to 
wrong way. As the result. the difference of performance 
bcmeen pop10 and clul0 or poplO0 in  Fig. 8(b) is much 
bigger than that of Fig. 7(b). 

<Function 3> De Jong Function 2 

Fig. 9(a) 3D landscape of De Jong function 2 

Fig. 9(b) Benchmark result for De Jong function 2 

De Jong function 2 has a convex in the center of the 
landscape. In the evolution process both proposed clu I O  and 
pop100 avoid local optima easily and rapidly, while pop10 
is trapped on them for long time. 
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<Function 4> De Jong Function 3 
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Fig. I O(a) 3D landscape of De Jong function 3 

! i ---vopio j 
-jo 1- - - ... .. ~ .- 

I 21 41 81 b l  1U1 171 141  161 I S 1  ?01 

Fig. I O(b) Benchmark result for De Jong function 3 

<Function 5> De Jong Function 4 
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Fig. I l (b)  Benchniark result for De Jong fiinction 5 

De Jong function 3 is 5 dimensional and De Jong 
ftinction 5 is 30 dimensional. In Fig. IO(b) we can see 
several leaps of fitncss. The leaps im higher and niore 
frequent in poplO0 and clul0 than popl0. Because of the 
coniplexity of De Jong fiinction 4, the leap is expresscd as a 
gentle slope in fig. I I(b). but the performance of pop10 is 
prctty worse than those of pop IO0 and clul0 as well. 

<Function 6> De Jong Function 5 
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Fig. 1 l(a) 3D landscape of De Jong function 5 Fig. 12(a) 3D landscape of De Jong function 5 
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Fig. 1 Z(h) Benchmark rcsult for Dc Jong function 5 
This Dc Jong function 5 is also called 11s Shekel's 

Foxholes function. Tlic landscape has 25 significant holes 
within a plane, and it is drawn as Fig. l2(a). For this 
function pop1 00 and clu I0 conwrges imincdiately while 
pop I0 shows relatively poor and slow convergence. 

<Function 72 Hastrigin Function 
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Fig. 13(b) Benchmark result for Rastrigin function 

A distinguishing feature of Rastripin function is that 
there are so many local solutions and as i t  gets farther from 
the global solution. more local solutions arc found. Fig. 
l3(h) shows that pop10 is easily trapped on local optima and 
hence evolves slower thall clu I O  and pop 100. 

<Function 8> Schwefel Function 
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Fig. IJ(a) 3 D  landscape of Schwefcl functiun 
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Fig. 14(b) Benchmark result for Schwefel fiinctioii 

The landscape of Schwefel function in Fig. 14(a) shows 
that there exists the second optiinal solution. far from global 
optimum. This point leads optimization algorithm to be 
trapped in it. Fig 13(h) shows that pop100 shows the hest 
perforniance and clul0 evolves a little bit slower than 
pop 100. On the other hand, pop10 shows significantly poor 
pcrfonance. 

From the results above we can see that the proposed GA 
has almost same performance as pop100 tho ugh chi10 
evaluates orly I O  individuals. I n  every benchmark test clul0 
shows rapid convergence as well as pop1 00. On the contrary 
pop 10, which evaluates 10 times without clustering shows 
signi ticantly poor perfbrmance relative to other algorithms. 
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Therefore, we can assert that the proposed hybrid (;A wlth 
clustering has efficiently reduced the evaluation numbei 
without any significant loss ofthe performance. 

5 Conclusions 
We have proposed a n  efficient genetic algorithm with less 
fitness evaluation by clustering. It divides whole population 
into several clusters, and evaluates one individual for each 
cluster. The fitness values of other individuals arc estimated 
from the reprcsentative fitness values indirectly. This hybrid 
GA with clustering can cfiiciently reduces the evaluation 
number without any loss of the performance. Results from 
several benchmark show that the algorithm has almost saine 
perforinance to simple G A  that eval tiates fiar inore times 
than the proposed GA. 

Such an approuch is very useful for. problems that requirc 
high cost to evaluate individuals. A good exaiuplc is 
interactive genetic algorithm application. IGA is one kind of 
CA, which uses user evaluation as the fitness fiinction. With 
this 'interaction' IGA can bc applied to sonic special 
domains such as music or design, different from simple GA. 
However, human cvaluator can become tired easily with 
repeated interaction, which limits the number of evaluation 
of IGA application. In this case our proposed GA with 
clustering can provide the effect of maintaining large 
population without any additional user evaluation. 

There remain several points to improve our research. 
First, we have to explore the clustering methods and the 
indirect evaluation methods. They are two important 
techniques of our algorithm and we have used just one 
method for each: k-means algorithm for clustering, and 
Euclidean distance measure for indirect evaluation. Now we 
are working to substitute thcrn with other clustering 
algorithms such as SOM, FCM, and isodata algorithm as 
well as other indirect evaluation methods such as association 
method, correlation method, and probabilistic method. 

After that we hope to apply the algorithm to real E A  
problem. But it is not so easy and it requires more research 
to prove that the proposed hybrid IGA has better 
performance than original IGA. We are in intensive work for 
this research. 
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