
An Efficient Genetic Algorithm with Uniform
Crossover for the Multi-Objective Airport Gate
Assignment Problem

Xiao-Bing Hu1 and Ezequiel Di Paolo2

1 Centre for Computational Neuroscience and Robotics, University of Sussex
xiaobing.hu@sussex.ac.uk

2 Centre for Computational Neuroscience and Robotics, University of Sussex
ezequiel@sussex.ac.uk

Genetic Algorithms (GAs) have a good potential of solving the Gate Assignment Prob-
lem (GAP) at airport terminals, and the design of feasible and efficient evolutionary
operators, particularly, the crossover operator, is crucial to successful implementations.
This paper reports an application of GAs to the multi-objective GAP. The relative posi-
tions between aircraft rather than their absolute positions in the queues to gates are used
to construct chromosomes in a novel encoding scheme, and a new uniform crossover
operator, free of feasibility problems, is then proposed, which is effective and efficient
to identify, inherit and protect useful common sub-queues to gates during evolution.
Extensive simulation studies illustrate the advantages of the proposed GA scheme with
uniform crossover operator.

1 Introduction

As a major issue in Air Traffic Control (ATC) operations, the Gate Assignment Problem
(GAP) at airport terminals aims to assign aircraft to terminal gates to meet operational
requirements while minimizing both inconveniences to passengers and operating costs
of airports and airlines. The term gate is used to designate not only the facility through
which passengers pass to board or leave an aircraft but also the parking positions used
for servicing a single aircraft. These station operations usually account for a smaller
part of the overall cost of an airlines operations than the flight operations themselves.
However, they can have a major impact on the efficiency with which the flight schedules
are maintained and on the level of passenger satisfaction with the service [1], [2].

Most airline companies create monthly or quarterly Master Flight Schedules (MFSs)
containing flight numbers and along with the corresponding arrival and departing times.
The ground controllers use the MFSs to examine the capacity of gates to accommodate
proposed schedules. There are several considerations that can bear on the decisions,
such as aircraft size and servicing requirements, idle time of gates, flight crew and air-
craft rotation, passenger walking distance, baggage transport distance, ramp congestion,
aircraft waiting time, and use of remote parking stands. In the past few decades, many
optimization methods have been reported to improve the gate assignment operation at

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 71–89.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

72 X.-B. Hu and E. Di Paolo

airport terminals by focusing on one or two of the above considerations. For instance,
passenger walking distance has been widely studied in the GAP research, and meth-
ods such as branch-and-bound algorithms [2], [3], integer programming [4], linear pro-
gramming [5], expert systems [6], [7], heuristic methods [1], tabu search algorithms [8]
and various hybrid methods [9], [10] were reported to minimize this distance. Baggage
transport distance has been relatively less discussed in the GAP literature [1], [11]-[13],
but the algorithms developed to solve the minimum passenger walking distance GAP
can be easily extended to the case where baggage transport distance needs to be consid-
ered [1]. During the peak hours, it often happens that, particularly at hub airports, the
number of aircraft waiting to dwell exceeds the number of available gates. In this case,
aircraft waiting time on the apron should also be minimized [9], [14], [15]. The gate
idle time is a criterion often used to assess the efficiency of using gate capacity [16].
However, the multi-objective GAP is relatively less discussed in literature. Reference
[17] reported some interesting results, where passenger walking distance and passenger
waiting time were both considered, the GAP was modelled as a zero-one integer pro-
gram, and a hybrid method was developed based on the weighting method, the column
approach, the simplex method and the branch-and-bound technique.

As large-scale parallel stochastic search and optimization algorithms, GAs have a
good potential for solving NP-hard problems such as the GAP. For instance, reference
[15] developed a GA to minimize the delayed time during the gates reassignment pro-
cess, but the walking distance was not included. Reference [16] proposed a unified
framework to specifically treat idle time of gates in the previous GAP models, and
then developed a problem-specific knowledge-based GA. This paper aims to shed a lit-
tle more light on how to design efficient GAs for the multi-objective GAP (MOGAP),
where passenger walking distance, baggage transport distance, and aircraft waiting time
on the apron need to be considered simultaneously. The design of highly efficient evo-
lutionary operators, i.e., mutation and crossover, is crucial to successful applications
of GAs to the GAP. Basically, mutation can increase the diversity of chromosomes in
GAs to exploit the solution space, while crossover, in order to help GAs to converge to
optima, needs to identify, inherit and protect good common genes shared by chromo-
somes, and at the same time to recombine non-common genes. Due to the stochastic
nature of mutation and crossover, it is not an easy task to design efficient evolutionary
operators free of the feasibility problem. For instance, infeasible solutions were partic-
ularly discussed in [16], where the mutation operator, rather than introducing diversity,
was used to repair infeasible chromosomes generated by a conventional one-point split
crossover operator.

This paper attempts to develop an infeasibility-free GA for the multi-objective GAP.
Since crossover is often a main source of infeasible chromosomes, effort is particularly
put on the design of a novel uniform crossover operator free of the feasibility problem.
To this end, the relative positions between aircraft rather than the absolute positions of
aircraft in the queues to gates is used to construct chromosomes in the new GA. As
a result of the new uniform crossover operator, the design of mutation operator can
concentrate on the original purpose of diversifying chromosomes.

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 73

2 Problem Formulation of the MOGAP

As mentioned before, there are quite a few different considerations in the GAP, and
the MOGAP in this paper will focus on three of them: passenger walking distance,
baggage transport distance, and aircraft waiting time on the apron. Passenger walking
distance has a direct impact on the customer satisfaction. The typical walking distances
in airports considered are: (I) the distance from check-in to gates for embarking or orig-
inating passengers, (II) the distance from gates to baggage claim areas (check-out) for
disembarking or destination passengers, and (III) the distances from gate to gate for
transfer or connecting passengers. Baggage transport distance occurs when baggage is
transferred between aircraft and baggage claim areas. Basically, these distances can be
reduced by improving the method by which scheduled flights are assigned to the airport
terminal gates. Aircraft waiting time on the apron is the difference between the planned
entering time to gates and the allocated entering time to gates. Due to the shortage
of gates at peak hours, some scheduled aircraft have to wait extra time on the apron,
which could end up with delayed departure and even cause passengers miss connec-
tion flights. Although this kind of ground delay is more tolerable than airborne delay in
terms of safety and costs, it largely affects the customer satisfaction. Besides, aircraft
waiting time can help address another big issue in the GAP: the efficiency of using gate
capacity, which is often represented by how even the distribution of idle times is. In the
minimum distance GAP, some special constraints have to be included in order to avoid
most aircraft being assigned to a same single gate, which however can automatically
be ensured by minimizing aircraft waiting time. Therefore, in the MOGAP, we will
construct an objective function by combining the above three considerations. A simple
way to conduct gate assignment is the first-come-first-served (FCFS) principle accord-
ing to the planned entering time to gates, but the result is usually not optimal or even
not near-optimal, because the FCFS principle does not take into account the layout of
airport terminals. Even for a queue at a single gate, the FCFS principle is not the first
option, mainly because different aircraft may have different ground time and different
number of passengers. Obviously, putting ahead an aircraft with more passengers and
less ground time could bring benefits, even if its planned entering time is later. Fig.1
gives a simple illustration of the MOGAP.

Suppose NAC aircraft need to be assigned to NG gates during a given time period
[TS,TE]. Let Pi and Gi denote the planned entering time to gates and the ground time of
the ith aircraft in the original set of aircraft under consideration, respectively. Assume
Pi and Gi to be known in advance. In this paper, the planned entering time to gates for
arrival aircraft is assumed to be the scheduled arrival time to the airport (Ai), and the
planned entering time for departing aircraft is the scheduled departure time (Di) minus
the ground time, i.e., Pi = Di − Gi. Let Qg denote the queue at gate g, Qg(j) is the
jth aircraft in Qg, g = 1, . . . ,NG, j = 1, . . . ,Hg, and Hg is the number of aircraft in Qg
satisfying

NG

∑
g=1

Hg = NAC (1)

74 X.-B. Hu and E. Di Paolo

Fig. 1. Illustration of the MOGAP

Qg(j) = i means the ith aircraft in the original set is assigned as the jth aircraft to dwell
at gate g. The allocated entering time to gates (Ei) for the ith aircraft in the original set
can then be calculated as

EQg(j) =

{
PQg(j), j = 1

max(PQg(j),EQg(j−1) +GQg(j−1)), j > 1
j = 1, . . . ,Hg,g = 1, . . . ,NG (2)

The waiting time on the apron for the ith aircraft in the original set is

Wi = Ei − Pi, i = 1, . . . ,NAC. (3)

For the sake of simplicity of modeling, besides the NG real gates, the entrance/exit
of the airport terminal is usually considered as a dummy gate (e.g., see [1]), and we call
it gate NG + 1 in this paper. Associated with this dummy gate NG + 1, we introduce a
dummy aircraft NAC + 1. Of course there is no real aircraft queue for this dummy gate,
except the dummy aircraft which dwells at the dummy gate all time.

Three data matrices, Mp ∈ R(NAC+1)×(NAC+1), MPWD ∈ R(NG+1)×(NG+1), and MBTD ∈
R(NG+1)×(NG+1), are used to record the number of passengers transferred between
aircraft, passenger walking distances between gates, and baggage transport distances
between gates, respectively. Given i ≤ NAC and j ≤ NAC, the value of MP(i, j) is the
number of passengers transferred from aircraft i to aircraft j, MP(i,NA + 1) records the
number of arriving passengers from aircraft i to exit, i.e., the dummy aircraft NA + 1,
and MP(NA + 1, j) the number of departing passengers from entrance to aircraft j. For
those passengers who just pass by the airport with a long-haul aircraft, we assume they
do not leave the aircraft when the aircraft stops at the airport. Therefore, we always
have MP(i, i) = 0 for i = 1, . . . ,NAC +1. MPWD(i, j) are the passengers walking distance
from gate i to gate j, and MBT D(i, j) the baggage transport distance from gate i to gate
j. Although MPWD(NG + 1,NG + 1) = 0, we do not have MPWD(i, i) %= 0, i = 1, . . . ,NG,
because, even though passengers transfer between two aircraft which are successively
assigned to the same gate, they still need to leave the first aircraft and wait in a certain
terminal lounge before they can board the second aircraft. Similarly, for MBT D(i, i) one
has MBTD(NG + 1,NG + 1) = 0, but MBTD(i, i) %= 0. Besides these three matrices, we
still need a data vector: VG = [ν1, . . . ,νNAC+1], where 1 ≤ νi ≤ NG +1 indicates that the

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 75

ith aircraft in the original set is assigned to gate νi, and νNAC+1 ≡ NG + 1 means the
dummy aircraft NAC + 1 is always assigned to the dummy gate NG + 1.

Now we can calculate the total passenger walking distance (TPWD), the total bag-
gage transferring distance (TBTD), and the total passenger waiting time (TPWT) as

JT PWD =
NG+1

∑
g=1

Hg

∑
j=1

NAC+1

∑
i=1

MP(Qg(j), i)MPW D(g,νi), (4)

JTBT D =
NG+1

∑
g=1

Hg

∑
j=1

NAC+1

∑
i=1

MP(Qg(j), i)MBT D(g,νi), (5)

JTPW T =
NAC

∑
i=1

Wi

NAC+1

∑
j=1

(MP(i, j)+ MP(j, i)), (6)

respectively. In the MOGAP of this paper, the following weighted objective function is
used to cover these three aspects:

JMOGAP = αJT PWD + β JTBTD +(1 − α − β)φJTPWT , (7)

where α and β are tuneable weights to adjust the contributions of TPWD, TBTD and
TPWT,

α + β ≤ 1,0 ≤ α ≤ 1,0 ≤ β ≤ 1, (8)

and φ is a system parameter to make the waiting time comparable to the distances. In
this paper, the distances are measured in meters, and the times measured in minutes.
Assuming the average passenger walking speed is 3km/h, then 1 minute waiting time
for a passenger can be considered as 50 meters extra walking distance for him/her. In
this paper, we take the half, i.e., set φ = 25 because we assume that for passengers
walking is physically more uncomfortable than waiting.

The MOGAP can now be mathematically formulated as a minimization problem:

minQ1,...,QNG
JMOGAP, (9)

subject to (1) to (8). Clearly, how to assign aircraft to different gates to form NG
queues and how to organize the order of aircraft in each queue compose a solution,
i.e., Q1, . . . ,QNG , to the minimization problem (9). Unlike other existing GAP models,
the above formulation of the MOGAP needs no binary variables due to the usage of
Q1, . . . ,QNG .

3 A GA with Uniform Crossover for the MOGAP

In this section we will report a new GA with uniform crossover for the MOGAP (The
proposed new GA will be denoted as GAUC hereafter). For comparative purposes, we
will also discuss two other GAs, particularly to compare their chromosome structures
and crossover operators.

76 X.-B. Hu and E. Di Paolo

3.1 New Chromosome Structure

Basically, grouping aircraft according to gates, i.e., assigning aircraft to different gates,
is one of the most important steps in the GAP, because it has direct influence on both
walking distances and idle times of gates. If aircraft waiting time on the apron is not un-
der consideration, then optimal grouping plus the FCFS principle can produce the best
way of utilizing the gates at airport terminals. The GA proposed in [16] was designed
based on aircraft grouping information. The structure of its chromosome is illustrated
in Fig.2.(b), where a gene C(i) = g means the ith aircraft in the original set of aircraft
is assigned to dwell at gate g, in other words, gate g is assigned to aircraft i. Hereafter,
we call aircraft grouping as gate assignment. Clearly, the GA based on gate assignment
is not concerned about the order of aircraft in the queue to each gate, which is crucial
to the minimization of aircraft waiting time on the apron.

Fig. 2. Chromosome structures (see text)

As discussed before, different aircraft may have different number of passengers and
different ground time, and therefore, switching the positions of some aircraft in a FCFS-
principle-based queue could reduce the total passenger waiting time, which is another
criterion to assess the level of customer satisfaction with the service. The GA proposed
for the arriving sequencing and scheduling problem in [18] can be modified and ex-
tended to handle the position switching in the GAP. The chromosome structure is illus-
trated in Fig.2.(c), where one can see the absolute positions of aircraft in queues to gates
are used to construct chromosomes, i.e., a gene C(g, j) = i means the ith aircraft in the
original set of aircraft is assigned as the jth aircraft to dwell to gate g. Apparently, the
underlying physical meaning of a chromosome, i.e., queues to gates, is expressed in a
straightforward way by the absolute-position-based structure. However, it is difficult to
carry out genetic operations on common genes, i.e., to identify, to inherit and to protect
them, in these chromosomes based on absolute position of aircraft.

Basically, common genes should be defined as those sub-structures or sections which
are shared by some chromosomes and play an important role in evolving the fitness of

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 77

Fig. 3. Two definitions of common genes in the MOGAP

chromosomes. In the MOGAP, walking distances are sensitive to gate assignment, while
relative position between aircraft in queues affects aircraft waiting time. In the evolu-
tionary process, if many fit chromosomes assign a same gate to a same aircraft, and/or
apply the same order to a same pair of successive aircraft in a queue, it is likely that
this gate assignment and/or this relative position will also appear in the fittest chromo-
somes. Therefore, the same gate assignment and the same relative position are used to
define common genes in the MOGAP. Fig.3.(a) and Fig.3.(b) illustrate these two defini-
tions. From Fig.3.(a) one can see that the gate assignment based chromosome structure
makes it very easy to identify common genes, i.e., if C1(i) =C2(i), then these two genes
are common genes. However, this structure has no information for identifying common
relative position between aircraft in queues. An absolute position based chromosome
structure has sufficient information for identifying both common gate assignment and
common relative position, but unfortunately extra computationally expensive proce-
dures are required.

The GAUC introduced in this paper will use the information of both gate assignment
and relative position, not absolute position, to construct chromosomes. As illustrated in
Fig.2.(d), a chromosome in the GAUC is a matrix with a dimension of (NAC +1)×NAC,

78 X.-B. Hu and E. Di Paolo

where the first NAC × NAC genes, i.e., C(i, j), i = 1, . . . ,NAC, j = 1, . . . ,NAC, record rela-
tive positions between aircraft in queues, and the last NAC genes, i.e., C(NAC +1, j), j =
1, . . . ,NAC, record gate assignments. If C(i, i) = 1 and C(NAC +1, i) = g, this means the
ith aircraft in the original set of aircraft is assigned as the first aircraft to dwell at gate g;
If C(i, j) = 1 and C(NAC + 1, j) = g, this means aircraft j is assigned to follow aircraft
i to dwell at gate g. As illustrated in Fig.3.(c), with this new structure, common genes
under both definitions can be easily identified: If C1(i, j)&C2(i, j) = 1, then they are
common relative position; If C1(NAC + 1, j) = C2(NAC + 1, j), then they are common
gate assignment.

Feasibility is a crucial issue in the design of a chromosome structure. For the struc-
ture based on gate assignment, if aircraft waiting time is allowed, which is the case
in the MOGAP, then there is no feasibility problem as long as 1 ≤ C(i) ≤ NG for any
i = 1, . . . ,NAC. For another two structures, some special constraints must be satisfied.
The feasibility of chromosomes based on absolute position of aircraft is defined by two
constraints: (I) each aircraft appears once and only once in a chromosome, and (II) if
C(g, j) > 0, then C(g,h) > 0 for all 1 ≤ h < j. For the GAUC proposed in this paper, a
feasible chromosome must satisfy the following constraints according to the underlying
physical meaning in the MOGAP:

NAC

∑
i=1

NAC

∑
j=1

C(i, j) = NAC, (10)

NAC

∑
j=1

C(i, j)

{
≤ 2, C(i, i) > 0
≤ 1, C(i, i) = 0

(11)

NAC

∑
i=1

C(i, j) = 1, (12)

1 ≤
NAC

∑
i=1

C(i, i) = N̄G ≤ NG, (13)

∑
C(NAC+1, j)=g, j=1,...,NAC

C(j, j) = 1for anyg ∈ Φ̄G, (14)

where, without losing the generality, it is assumed that only N̄G gates in all NG gates are
assigned to aircraft and Φ̄G denotes the set of assigned gates. Constraints (10) to (14)
are actually a new version of the two feasibility constraints for chromosomes based on
absolute position. From constraints (10) to (11), one can derive that there may often be
some empty rows, no more than N̄G empty rows, in the matrix. If the ith row is empty,
then it means aircraft i is the last aircraft to dwell to gate C(NAC + 1, i).

Actually, constraints (10) to (14) will rarely be used in the GAUC. In the initial-
ization of a chromosome, the following procedure can efficiently generate a feasible
chromosome only with a need to check against constraint (13):

Step 1: Create a (NAC + 1) × NAC matrix with all entries set as 0. Let U =
{1, . . . ,NAC} represent the original set of aircraft, and let ΦG = {1, . . . ,NG} be the
set of gates.

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 79

Step 2: While U %= /0, do
Step 2.1: For 1 ≤ i ≤ NAC, if one more new C(i, i) = 1 will violate Constraint
(13), then randomly choose an existing C(i, i) = 1, let g = C(NAC + 1, i), and
go to Step 2.2. Otherwise, choose i ∈ U and g ∈ ΦG randomly, set C(i, i) = 1,
C(NAC + 1, i) = g, and remove i from U and g from ΦG, i.e., let U = U − {i}
and ΦG = ΦG −{g}.
Step 2.2: Regardless of C(i, i), if there is no non-zero entry in row i, then ran-
domly choose j ∈ U , set C(i, j) = 1, C(NAC + 1, j) = g, and remove j from
U , i.e., let U = U − { j}. Otherwise, find the C(i, j) = 1, let i = j, and repeat
Step 2.2.

3.2 Mutation Operator

Mutation is used by GAs to diversify chromosomes in order to exploit solution space
as widely as possible. In the case of MOGAP, the mutation operation should be able to
reassign an aircraft to any gate at any order. Therefore, we need two mutation operators:
(I) one to shift randomly the positions of two successive aircraft in a same queue, and
(II) the other to swap randomly aircraft in two different queues, or to remove an aircraft
from one queue, and then append it to the end of another queue. The chromosome
structure based on gate assignment only supports the second mutation. The structure
based on absolute position supports both as denoted as follows:

Mutation I: C(g, j) ↔ C(g, j + 1), j = 1, . . . ,Hg − 1,g = 1, . . . ,NG.
Mutation II: C(g1, j) ↔ C(g2,k), j = 1, . . . ,Hg1 and k = 1, . . . ,Hg2 + 1,g1 %=

g2,g1 = 1, . . . ,NG,g2 = 1, . . . ,NG.

In the GAUC, the above two mutation operators need to be re-designed as the fol-
lowing in order to fit in the chromosome structure based on both gate assignment and
relative position between aircraft in queues:

Mutation III: Randomly choose a non-zero gene, say, C(i, j) = 1. If there exist a
C(j,m) = 1 (and maybe further a C(m,h) = 1), then change the values of some genes
by following the instructions given in Fig.4.(a).

Mutation IV: Randomly choose two non-zero genes, say, C(i, j) = 1 and C(h,x) = 1
(there may be C(j,m) = 1 and/or C(x,y) = 1), which have different assigned gates, i.e.,
C(NAC + 1, j) %= C(NAC + 1,x). Then reset the values of some genes by following the
instructions given in Fig.4.(b).

The mutation operations given in Fig.4 automatically guarantee the feasibility of
resulting chromosomes as long as the original chromosomes are feasible.

3.3 Crossover Operator

There has long been a strong debate about the usefulness of crossover, and some people
consider crossover as a special case of mutation, which is true in many designs of GAs
[22]. However, we believe the fundamental role of crossover is different from that of
mutation. Mutation aims to diversify chromosomes, while crossover can converge them
by identifying, inheriting and protecting their common genes. As it is well known, it

80 X.-B. Hu and E. Di Paolo

Fig. 4. Mutation operators in GAUC

is crucial for GAs to keep a good balance between diversity and convergence in the
evolutionary process, which is really a challenging task in the design of GAs. The
difficulties in the design of highly efficient crossover operators do not and also should
not mean that crossover is useless. Otherwise, we should expect to see a natural world
dominated by single gender species, which however we all know is not true. Therefore,
as a nature-inspired algorithm, GAs should have some primary tasks, to identify, to
inherit and to protect good/useful common genes in chromosomes, only or at least
mainly for crossover.

Uniform crossover is probably the most wildly used crossover operator because
of its efficiency in not only identifying, inheriting and protecting common genes, but
also re-combining non-common genes [19]-[21]. Fig.5, using the chromosome struc-
ture based on gate assignment, compares uniform crossover with another also wildly
used crossover operator: one position split crossover. From Fig.5 one can see that the

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 81

Fig. 5. Uniform crossover vs. on position split crossover

uniform crossover is actually a (NAC − 1)-position-split crossover, which is obviously
much more powerful than the one position split crossover in terms of exploiting all
possibilities of recombining non-common genes.

To design an effective and efficient uniform crossover operator to handle common
relative position between aircraft in queues is a major objective of this paper. Although
the chromosome structure based on absolute position of aircraft contains the informa-
tion of relative position, due to the feasibility issue in chromosomes, it is very difficult
to design an effective crossover operator to identify, inherit and protect common rel-
ative positions. However, for comparative purposes, here we still manage to design a
crossover operator for the absolute position based chromosome structure:

If {C1(1, j), . . . ,C1(NG, j)} = {C2(1,k), . . . ,C2(NG,k)} %= {0, . . . ,0}
then C1(., j) ↔ C2(.,k)

(15)

Equation (15) requires the set of all jth aircraft in C1 to be the same as the set of all
kth aircraft in C2. This crossover does not often cause feasibility problems. Actually, it
has no feasibility problem if the following constraint is added

C1(g, j) > 0,C2(g,k) > 0 for all g = 1, . . . ,NG (16)

However, what this crossover operator does is not what a crossover operator is ex-
pected to do, supposing we want to identify, inherit and protect those common genes
defined by either gate assignment or relative position between aircraft. Actually the
above crossover operator can be considered as a combination of Mutation I and II.

A focus of this paper is to design an effective and efficient crossover operator which
can identify, inherit and protect both common gate assignment and common relative po-
sition between aircraft in queues to gates, and at the same time which can exploit all pos-
sibilities of re-combining non-common genes. The feasibility issue of the new crossover
operator should be addressed in a computationally cheap way. With the new chromo-
some structure illustrated in Fig.2.(d) and the definitions of common genes shown in
Fig.3.(c), we propose a novel uniform crossover operator described as the following
procedure, which is further illustrated by Fig.6:

82 X.-B. Hu and E. Di Paolo

Fig. 6. Uniform crossover operation in GAUC

Step 1: Given two parent chromosomes C1 and C2, calculate C3 to locate common
genes

C3(i, j) = C1(i, j)&C2(i, j),

C3(NAC + 1, j) =

{
C1(NAC + 1, j), C1(NAC + 1, j) = C2(NAC + 1, j)
0 C1(NAC + 1, j) %= C2(NAC + 1, j)

(17)

i = 1, . . . ,NAC, j = 1, . . . ,NAC,

i.e., C3(i, j) = 1 or C3(NAC +1, j)> 0 means this location has a common gene shared
by C1 and C2.
Step 2: Assign gates to C3 by referring to C1 and C2. Basically, C3(NAC + 1, j) is
set as C1(NAC + 1, j) or C2(NAC + 1, j), and C3(j, j) is set as C1(j, j) or C2(j, j),
j = 1, ,NAC, at a half-and-half chance, subject to Constraint (14). Let C4 = C3.
Step 3: Indicate infeasible genes related to relative positions in C4: Set C4(i, i) = −1
for i = 1, . . . ,NAC; If C3(i, j) = 1 for i %= j, then set C4(m, j) = −1 and C4(i,m) = −1

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 83

for m = 1, . . . ,NAC; if C3(i, i) = 1, then set C4(m, i) = −1 for m = 1, . . . ,NAC.
C4(i, j) %= 0 means this location will not be considered when a new relative posi-
tion between aircraft needs to be set up.
Step 4: While ∑C3(i, j) < NAC, i = 1, . . . ,NAC, and j = 1, . . . ,NAC, do

Step 4.1: Randomly choose j, such that ∑C3(i, j) = 0, i = 1, . . . ,NAC.
Step 4.2: Suppose C1(i1, j) = 1 and C2(i2, j) = 1, i1 = 1, . . . ,NAC, and i2 =
1, . . . ,NAC. If C3(NAC +1, i1) = C3(NAC +1, i2) = C3(NAC +1, j) and C4(i1, j) =
C4(i2, j) = 0, then set i3 = i1 or i3 = i2 at a half-and-half chance; Else if
C3(NAC + 1, in) = C3(NAC + 1, j) and C4(in, j) = 0, n = 1 or 2, then set i3 = in;
Otherwise, randomly choose i3 such that C3(NAC + 1, i3) = C3(NAC + 1, j) and
C4(i3, j) = 0.
Step 4.3: Set C3(i3, j) = 1, C4(i3, j) = 1, C4(m, i3) = −1 and C4(i3,m) = −1 for
m = 1, . . . ,NAC.

Clearly, with the above crossover procedure, all common genes are efficiently identi-
fied, inherited and protected, and all possibilities of feasibly re-combining non-common
genes can be exploited. As will be proved later, this uniform crossover is a very power-
ful search operator in the proposed GA.

3.4 Heuristic Rules

To further improve the performance of GA, e.g., to stimulate necessary and/or poten-
tially useful local search, the following problem-specific heuristic rules are introduced:

• To help the algorithm to converge fast, not all of the new chromosomes are ini-
tialized randomly, but some are generated according to the FCFS principle. This
is because, according to the real-world GAP operation, an FCFS-based solution is
fairly reasonable, and an optimal or sub-optimal solution is often not far away from
such an FCFS-based solution. Therefore, initializing some chromosomes according
to the FCFS principle can effectively stimulate the local search around the FCFS-
based solution.

• When initializing a chromosome randomly, we still follow the FCFS principle but
in a loose way, i.e., an aircraft with an earlier Pi is more likely to be assigned to the
front of a queue. This rule is also used to increase the chance of local search around
the FCFS-based solution.

• If two aircraft have a same Pi, or their Pis are within a specified narrow time window,
then the one with more passengers stands a better chance to be allowed to dwell first.
This rule may help to reduce the total passenger waiting time significantly.

• For the sake of diversity, in each generation, a certain proportion of worst chromo-
somes are replaced by totally new ones.

• Like in [18], the population in a generation, NPopulation, and the maximum number
of generations in the evolutionary process, NGeneration, are adjusted according to NAC
in order to roughly keep the level of solution quality

NPopulation = 30 + 10(round(max(0,NAC − 10)/5)), (18)

NGeneration = 40 + 15(round(max(0,NAC − 10)/5)). (19)

84 X.-B. Hu and E. Di Paolo

Fig. 7. Two-sided parking terminal layout

4 Simulation Results

The terminal layout has a big influence on the cost-efficiency of daily airport operations
[23]. In our study, a typical terminal layout, two-sided parking terminal, is used, as
illustrated in Fig.7. The terminal is assumed to have 20 gates. The data matrix MPWD
and MBTD, i.e., distances for passenger walking and baggage transporting, are generated
according to (20) to (23)

MPWD(n,m) = MPW D(m,n) = d1 + d2|nrem(n)− nrem(m)| (20)

MPWD(n,NG + 1) = MPWD(NG + 1,n) = d3 + d2|nrem(n)− 5.5| (21)

MBTD(n,m) = MBT D(m,n) = d4 + d5|nrem(n)− nrem(m)| (22)

MBTD(n,NG + 1) = MBT D(NG + 1,n) = d6 + d5|nrem(n)− 5.5| (23)

where n = 1, . . . ,NG, m = 1, . . . ,NG, and d1 to d6 are constant coefficients which can
roughly determine the terminal size and the gate locations,

nrem(n) =

{
rem(n,11), n < 11
rem(n − 10,11), n ≥ 11

(24)

and rem is a function that calculate the remainder after division.
Traffic and passenger data are generated randomly under the assumption that the

capacity of an aircraft varies between 50 and 300, the ground time span at a gate is
between 30 and 60 minutes, and all aircraft are planned to arrive or depart within a
period of one-hour time window. The congestion condition is indicated by NAC. For
comparative purposes, the GA reported in [18] is extended to solve the MOGAP. As
discussed in Section 3, this extended GA employs the chromosome structure based
on absolute position, and its crossover is actually a more complex mutation operator.
Therefore, it is denoted as GACMO, in order to distinguish from the proposed GAUC

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 85

Fig. 8. Fitness levels in a test

with uniform crossover. Due to limited space, here we only give in Table 1 the results
of a relatively simple case study, in order to illustrate how different GAs optimize gate
assignment. In this test, JMOGAP under GAUC is about 5% smaller than that of GACMO,
and Fig.8 shows how the fitness, i.e. −JMOGAP, changes in the evolutionary processes of
GACMO and GAUC. From Fig.8.(a), one can see that the largest fitness of a generation
in GAUC increases more quickly than that in GACMO, which means GAUC, which
uses the new chromosome structure and uniform crossover, has a faster convergence
speed than GACMO, which is designed based on absolute position of aircraft and has
a crossover only equivalent to a combination of Mutation I and II. Actually, on average
in this test, it takes GAUC 2.7778 generations to make a breakthrough in the largest
fitness, while for GACMO, it takes 4.7619 generations. From Fig.8.(b) one can see that
the average fitness of a generation in GAUC increases faster and stays larger than that in
GACMO. This implies GAUC can effectively improve the overall fitness level, which
is probably because the new uniform crossover proposed in this paper really works well
in identifying, inheriting and protecting good common genes.

However, to get general conclusions about different GAs, we need to conduct exten-
sive simulation tests, where NAC is set as 30, 60 or 90 to simulate the situation of under-
congestion, congestion, or over-congestion, and one of the single-objective functions
in (4) to (6) or the multi-objective function in (7) is used. For each NAC and objective
function, 100 simulation runs are conducted under each GA, and the average results are
given in Table 2 to Table 5, from which we have the following observations:

• Overall, GAUC is about 3% ∼ 10% better than GACMO in terms of the specific ob-
jective function, which illustrates the advantages of the new chromosome structure
based on relative position of aircraft in queues to gates and of the proposed uniform
crossover operator based on the new structure.

• In the cases of single-objective GAP, as given in Table 2 to Table 4, GAUC achieves
a better performance at the cost of other non-objective criteria. For instance, in
Table 2, GAUC gets a smaller TPWD by sacrificing TAWT (total aircraft wait-
ing time). TPWD and TBTD share a similar trend of change, i.e., if GAUC has a
smaller/larger TPWD than GACMO, then it also has a smaller/larger TBTD. This is
probably because both TPWD and TBTD, in a similar way, are determined largely
by the terminal layout.

86 X.-B. Hu and E. Di Paolo

Table 1. Result of gate assignment in a single test

AC Pi(min) Gi(min) GACMO GAUC
Code Ei(min) Gate Ei(min) Gate

1 28 40 28 3 28 3
2 26 50 26 16 26 16
3 5 40 5 9 5 9
4 12 45 12 7 12 7
5 43 50 43 19 43 19
6 27 45 27 4 27 4
7 34 40 34 2 34 2
8 10 35 10 12 10 12
9 48 30 48 12 48 12

10 56 35 56 14 56 14
11 25 35 25 15 25 15
12 52 35 53 13 53 13
13 7 50 7 11 7 8
14 56 40 63 8 57 8
15 56 60 60 15 60 15
16 49 35 49 20 49 5
17 39 30 39 1 39 1
18 47 40 47 9 47 9
19 13 40 13 13 13 13
20 52 35 57 11 63 11
21 25 50 25 5 25 20
22 35 40 35 18 35 18
23 16 50 16 6 16 6
24 20 35 20 14 20 14
25 56 45 66 6 66 6
26 4 40 4 10 4 10
27 8 55 8 8 8 11
28 54 50 57 7 57 7
29 45 35 45 10 45 10
30 28 45 28 17 28 17

Table 2. JT PWD is used as objective function

(×105) JT PWD TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 7.2656 7.2656 18.9600 43.4807 29.5 0.2
GAUC 7.0330 7.0330 18.4091 44.7622 29.6 0.2

NAC = 60 GACMO 14.0606 14.0606 38.5475 201.1071 59.1 0.3
GAUC 13.2538 13.2538 37.2206 209.5881 59.3 0.3

NAC = 90 GACMO 19.7178 19.7178 56.4425 442.9681 88.6 0.6
GAUC 18.8373 18.8373 55.0299 455.4340 88.5 0.5

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 87

Table 3. JT BTD is used as objective function

(×105) JT BTD TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 18.5846 7.2739 18.5846 43.6277 29.5 0.3
GAUC 17.8939 7.1005 17.8939 45.1086 29.6 0.2

NAC = 60 GACMO 38.1412 14.2805 38.1412 202.0039 59.3 0.3
GAUC 36.9374 13.1288 36.9374 210.1956 59.5 0.3

NAC = 90 GACMO 55.8907 20.1136 55.8907 440.7336 88.8 0.7
GAUC 54.0407 18.9287 54.0407 451.1360 89.0 0.6

Table 4. JT PWT is used as objective function

(×105) JT PWT TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 1.5273 18.8120 24.8046 0.0611 2.2 0.9
GAUC 1.4595 19.0023 24.9367 0.0583 2.2 0.9

NAC = 60 GACMO 71.2180 36.9188 50.4188 2.8487 3.9 2.3
GAUC 64.2053 37.3578 51.9046 2.5774 3.8 2.3

NAC = 90 GACMO 219.8557 51.6150 73.1843 8.7942 5.3 3.9
GAUC 208.5154 53.0487 75.5549 8.3508 5.3 4.0

Table 5. JMOGAP is used as objective function

(×105) JMOGAP TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 11.9457 16.1300 23.5272 0.1528 2.0 0.9
GAUC 11.4672 15.5086 23.0442 0.1477 2.1 1.0

NAC = 60 GACMO 53.0853 35.9684 49.8836 3.0112 3.9 2.2
GAUC 49.5900 34.1606 48.7724 2.8031 4.0 2.1

NAC = 90 GACMO 120.2156 49.7772 72.3854 8.8088 5.3 4.0
GAUC 115.7206 47.8941 72.2129 8.4692 5.2 4.0

• In the case of MOGAP, if the weights in the objective function are properly tuned
(α = 0.5 and β = 0.1 in the associated tests), GAUC is better than GACMO not
only in terms of the multi-objective function adopted, but also in terms of each
single-objective function not adopted.

• In the minimum distance (passenger walking distance or baggage transporting dis-
tance) GAP, as shown in Table 2 and Table 3, we use no extra constraints to enforce
assigning gates evenly to aircraft. As a result, the gap between the maximum queue
length (MaxQL) and the minimum queue length (MinQL) is huge, which implies
many aircraft are assigned to a certain gate. While in the minimum waiting time
GAP, as given in Table 4, the gap between MaxQL and MinQL is very small, which
means evenly using gates is automatically guaranteed during the minimization of

88 X.-B. Hu and E. Di Paolo

waiting time. Therefore, since waiting time is considered in the MOGAP, the gap
between MaxQL and MinQL is also very small, as shown in Table 5.

• Basically, in a more congested case, i.e., with a larger NAC, the operation of gate
assignment is more expensive. Roughly speaking, the distances increase linearly in
terms of NAC, while the waiting time goes up exponentially, mainly because of the
heavy delay applied to aircraft during a congested period. This might suggest, in a
more congested case, waiting time should be given a larger weight.

5 Conclusion

Uniform crossover is usually efficient in identifying, inheriting and protecting common
genes in GAs, but it could be difficult to design or apply when chromosomes are not
properly constructed. This paper aims to design an efficient GA with uniform crossover
to tackle the multi-objective gate assignment problem (MOGAP) at airport terminals.
Instead of the absolute position of aircraft in queues to gates, which is widely used in
existing GAs for the GAP, the relative position between aircraft is used to construct
chromosomes in the new GA. A highly efficient uniform crossover operator is then de-
signed, which is effective to keep a good balance between diversity and convergence
in the evolutionary process. The advantages of the new GA are demonstrated in exten-
sive simulation tests. Further research will be conducted in order to extend the reported
work from static air traffic situation to dynamical environment based on real traffic data
which need to be collected and analyzed.

Acknowledgements

This work was supported by the EPSRC Grant EP/C51632X/1. A previous version of
this paper was presented at The 2007 IEEE Congress on Evolutionary Computation
(CEC2007), 25-28 Sep 2007, Singapore.

References

1. Haghani, A., Chen, M.C.: Optimizing gate assignments at airport terminals. Transportation
Research A 32, 437–454 (1998)

2. Bolat, A.: Procedures for providing robust gate assignments for arriving aircraft. European
Journal of Operations Research 120, 63–80 (2000)

3. Babic, O., Teodorovic, D., Tosic, V.: Aircraft stand assignment to minimize walking distance.
Journal of Transportation Engineering 110, 55–66 (1984)

4. Mangoubi, R.S., Mathaisel, D.F.X.: Optimizing gate assignments at airport terminals. Trans-
portation Science 19, 173–188 (1985)

5. Bihr, R.: A conceptual solution to the aircraft gate assignment problem using 0,1 linear pro-
gramming. Computers & Industrial Engineering 19, 280–284 (1990)

6. Gosling, G.D.: Design of an expert system for aircraft gate assignment. Transportation Re-
search A 24, 59–69 (1990)

7. Srihari, K., Muthukrishnan, R.: An expert system methodology for an aircraft-gate assign-
ment. Computers & Industrial Engineering 21, 101–105 (1991)

A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 89

8. Xu, J., Bailey, G.: Optimizing gate assignments problem: Mathematical model and a tabu
search algorithm. In: Proceedings of the 34th Hawaii International Conference on System
Sciences. Island of Maui, Hawaii, USA (2001)

9. Ding, H., Lim, A., Rodrigues, B., Zhu, Y.: The over-constrained airport gate assignment
problem. Computers & Operations Research 32, 1867–1880 (2005)

10. Ding, H., Lim, A., Rodrigues, B., Zhu, Y.: New heuristics for the over-constrained flight to
gate assignments. Journal of the Operational Research Society 55, 760–768 (2004)

11. Robuste, F.: Analysis of baggage handling operations at airports. PhD thesis, University of
California, Berkeley, USA (1988)

12. Chang, C.: Flight sequencing and gate assignment in airport hubs. PhD thesis, University of
Maryland at College Park, USA (1994)

13. Robuste, F., Daganzo, C.F.: Analysis of baggage sorting schemes for containerized aircraft.
Transportation Research A 26, 75–92 (1992)

14. Wirasinghe, S.C., Bandara, S.: Airport gate position estimation for minimum total costs-
approximate closed form solution. Transportation Research B 24, 287–297 (1990)

15. Gu, Y., Chung, C.A.: Genetic algorithm approach to aircraft gate reassignment problem.
Journal of Transportation Engineering 125, 384–389 (1999)

16. Bolat, A.: Models and a genetic algorithm for static aircraft-gate assignment problem. Jour-
nal of the Operational Research Society 52, 1107–1120 (2001)

17. Yan, S., Huo, C.M.: Optimization of multiple objective gate assignments. Transportation
Research A 35, 413–432 (2001)

18. Hu, X.B., Chen, W.H.: Genetic Algorithm Based on Receding Horizon Control for Arrival
Sequencing and Scheduling. Engineering Applications of Artificial Intelligence 18, 633–642
(2005)

19. Sywerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, USA (1989)

20. Page, J., Poli, P., Langdon, W.B.: Smooth uniform crossover with smooth point mutation
in genetic programming: A preliminary study, Genetic Programming. In: Langdon, W.B.,
Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, p. 39. Springer,
Heidelberg (1999)

21. Falkenauer, E.: The worth of uniform crossover. In: Proceedings of the 1999 Congress on
Evolutionary Computation, USA (1999)

22. Eiben, A.E., Schoenauer, M.: Evolutionary computing. Information Processing Letters 82,
1–6 (2002)

23. Bandara, S., Wirasinghe, S.C.: Walking distance minimization for airport terminal configu-
rations. Transportation Research A 26, 59–74 (1992)

