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In this article, we study the class of linear elastodynamic problems with affine parameter dependence using

a goal-oriented approach by finite element (FE) and reduced basis (RB) methods. The main contribution

of this article is the “goal-oriented” proper orthogonal decomposition (POD)–Greedy sampling strategy

within the RB approximation context. The proposed sampling strategy looks for the parameter points such

that the output error approximation will be minimized by Greedy iterations. In estimating such output error

approximation, the standard POD–Greedy algorithm is invoked to provide enriched RB approximations for

the FE outputs. We propose a so-called “cross-validation” process to choose adaptively the dimension of

the enriched RB space corresponding with the dimension of the RB space under consideration. Numerical

results show that the new goal-oriented POD–Greedy sampling procedure with the cross-validation process

improves significantly the space-time output computations in comparison with the ones computed by the

standard POD–Greedy algorithm. The method is thus ideally suited for repeated, rapid, and reliable evalu-

ations of input-output relationships in the space-time setting. © 2014 Wiley Periodicals, Inc. Numer Methods

Partial Differential Eq 31: 575–608, 2015

Keywords: goal-oriented asymptotic error; goal-oriented proper orthogonal decomposition–Greedy algo-

rithm; reduced basis method; cross-validation; wave equation

I. INTRODUCTION

The design, optimization, and control procedures of engineering problems often require several

forms of performance measures or outputs—such as displacements, heat fluxes, or flowrates.

Generally, these outputs are functions of field variables, such as displacements, temperature, or
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velocities, which are usually governed by a partial differential equation (PDE). The parame-

ter or input will frequently define a particular configuration of the model problem. Therefore,

the relevant system behavior will be described by an implicit input-output relationship; where

its computation requires the solution of the underlying parameter-PDE (or μPDE). We pursue

model order reduction (MOR) methods (i.e., snapshots-proper orthogonal decomposition (POD)

[1–6] and reduced basis (RB) [7, 8]) which permits the efficient and reliable evaluation of this

PDE-induced input-output relationship in many query and real-time contexts.

The RB method was first introduced in the late 1970s for nonlinear analysis of structures

and has been investigated and developed more broadly [9]. Recently, the RB method was well

developed for various kinds and classes of parametrized PDEs, such as: the eigenvalue problems

[10], the coercive/noncoercive affine/nonaffine linear/nonlinear elliptic PDEs [7, 11], the coer-

cive/noncoercive affine/nonaffine linear/nonlinear parabolic PDEs [12, 13], the coercive affine

linear hyperbolic PDEs [8, 14], and several highly nonlinear problems such as Burger’s equation

[15, 16] and Boussinesq equation [17]. For the linear wave equation, the RB method and associated

a posteriori error estimation was developed successfully with some levels [14, 18, 19]; however,

in the RB context none of these works have focused on constructing optimally goal-oriented RB

basis functions.

Goal-oriented error estimates in the context of finite element (FE) analysis have been investi-

gated deeply and widely [20–27] (we only cite some typical works as there many on this topic).

For the wave equation, the most well-known method is the dual-weighted residual (DWR) one

which was proposed by Rannacher and coworkers [28–31]. In those works, the authors quantified

the a posteriori error of the interest output to finer locally the FE mesh in an adaptive manner. The

final goal is to minimize computational efforts and maximize the accuracy of the interest output

in an adaptive and controllable manner. In particular, the DWR method makes use of an auxiliary

dual (or sensitivity) equation to derive an a posteriori error expression for the interest output from

the primal residual and the dual solution of that dual equation in space-time setting.

Goal-oriented error estimates in the context of MOR is currently an active research topic

and has been investigated by several authors. In this regard, the construction procedure of these

goal-oriented MOR basis functions is the key issue. For instance, Liu et al. [32] used a Greedy

algorithm to construct goal-oriented RB basis functions based on asymptotic output errors [33];

the surrogate RB model was then used in an inverse analysis. Chen and Quarteroni [34] developed

hybrid and goal-oriented Greedy sampling algorithms to compute failure probability for PDEs

with random input data. In another work, Urban et al. [35] developed a goal-oriented sampling

strategy which consists of solving an optimization problem and a goal-oriented Greedy sampling

to find the optimal parameter samples to best approximate interest outputs. We note that the

representative works mentioned above are for stationary and steady problems.

For dynamic problems, goal-oriented sampling strategy for MOR was also addressed by sev-

eral authors. Meyer and Matthies [36] combined the DWR with the snapshots-POD method to

solve a nonlinear dynamics problem. They quantified the a posteriori error approximation from

the contributions of all POD snapshots; then the MOR basis functions are built (based on these

POD snapshots) by keeping only the snapshots that caused large errors and removing all the

ones which caused smaller errors. In another well-known approach by Bui-Thanh et al. [37] and

Willcox et al. [38], they solved a PDE-constrained optimization problem to find the optimally

goal-oriented set of basis functions. In this way, the optimally goal-oriented basis functions are

found such that they minimize the true output errors (with appropriate regularization techniques)

and subject to equilibrium PDE-constraints [39, 40].

In general, those two above approaches are optimal. However, their computational cost are

very expensive since one has to compute all the FEM solutions/outputs over the entire parameter
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domain (all POD snapshots—for the former approach), and in every iteration within optimization

solvers (for the latter approach); and hence, it would limit the number of input parameters in

comparison with the RB approach.

In this work, we aim to build an optimally goal-oriented set of MOR basis functions without

computing and storing all the POD snapshots as the aforementioned approaches. The best way

to do that is using the RB method with Greedy sampling strategy (see, for instance [7, 8, 11]).

Thanks to the Greedy iterations, the proposed algorithm now looks for the parameter points such

that the output error approximation will be minimized. For the linear wave equation, this idea is

novel and further develops the idea of the standard POD–Greedy sampling procedure currently

used [8, 17, 41], where the algorithm will pick up optimally all parameter points such that the

error (or error indicator) of the field variable is minimized. By this way, we expect to improve

significantly the accuracy of the RB output functional computations; but consequently, we might

lose the rapid convergence rate of the field variable as in the standard POD–Greedy algorithm. In

fact, as we can see later in the numerical results section, the convergent rate of the field variable by

the two algorithms are quite similar; while the convergent rate of the output by the goal-oriented

POD–Greedy algorithm is faster than that of the standard POD–Greedy one.1

In particular, the output error approximation used in this work is a kind of the asymptotic

output error (such as in [32, 33]) where the FE outputs will be approximated by the enriched

RB outputs. The standard POD–Greedy algorithm will be invoked to compute such enriched RB

outputs. Heuristically, the dimension of the enriched RB space will be usually set to two times

larger than that of the RB space under consideration (see [32, 33]). In this work, however, we

devise a simple yet efficient algorithm called “cross-validation” process to find out adaptively

the enriched RB dimension corresponding with each RB dimension under consideration. That

process is performed within the offline stage of the proposed goal-oriented algorithm. We also

note that this output error approximation will be used as both offline and online error indicators

in the offline and online computational stages, respectively.

The potential context for the proposed goal-oriented algorithm is described as follows. Sup-

pose that one considers the linear parameterized wave equation with several different quantities of

interest, and one wants to estimate the RB approximations of these quantities of interest. Note that

these quantities of interest (or some of them) might be a priori unknown, that is, they may exist

at the time of consideration, or they can appear afterwards depending on one’s needs. Clearly,

the standard POD–Greedy algorithm is not sufficient for this situation as it only provides the best

approximations for the solution (or field variable)—and not for these quantities of interest. Our

proposal is as follows. The standard algorithm is implemented first and only once to create stan-

dard RB spaces2 to be used in the output error estimation of the proposed goal-oriented algorithm

afterwards. Then, for each particular quantity of interest, the proposed goal-oriented algorithm

will be performed once to build goal-oriented RB spaces corresponding to that quantity. By this

way, the goal-oriented RB spaces are optimal for the quantity of interest under consideration (or

in other words, best approximate this quantity of interest); and thus are much better than the

standard RB spaces created by the standard algorithm.

The article is organized as follows. In Section II, we introduce necessary definitions, con-

cepts and notations and then state the problem using a semidiscrete approach: fully discretizing in

space using Galerkin FEM and marching in time using Newmark’s trapezoidal rule. In Section III,

1 In subsequent sections, for simplicity we shall call the “standard algorithm” to mention the standard POD–Greedy
algorithm [41], and the “goal-oriented algorithm” to mention the proposed goal-oriented POD–Greedy algorithm,
respectively.
2 We will see later that these standard RB spaces have quite high dimensions (higher than that of the goal-oriented RB
spaces) but are still very small compared to the FE space dimension.
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we describe various topics related to the RB methodology: approximation, the standard versus

goal-oriented algorithms, error estimations and offline-online computational procedure. In Section

IV, we verify the performance of the proposed algorithm by investigating numerically two prob-

lems: a two-dimensional (2D) linear elastodynamic problem and a three-dimensional (3D) dental

implant simulation problem [8]. Finally, we provide some concluding remarks in Section V.

II. PROBLEM STATEMENT

A. Abstract Formulation

We consider a spatial domain � ∈ R
d (d = 1, 2, 3) with Lipschitz continuous boundary ∂�. We

denote the Dirichlet portion of the boundary by ŴD,i , 1 ≤ i ≤ d . We then introduce the Hilbert

spaces

Y e = {v ≡ (v1, . . . , vd) ∈ (H 1(�))
d |vi = 0 on ŴD,i , i = 1, . . . , d}, (1a)

Xe = (L2(�))
d
. (1b)

Here, H 1(�) = {v ∈ L2(�)|∇v ∈ (L2(�))
d} where L2(�) is the space of square-integrable

functions over �. We equip our spaces with inner products and associated norms (·, ·)Y e ((·, ·)Xe )

and || · ||Y e =
√

(·, ·)Y e (|| · ||Xe =
√

(·, ·)Xe ), respectively; a typical choice is

(w, v)Y e =
∑

i,j

∫

�

∂wi

∂xj

∂vi

∂xj

+ wivi , (2a)

(w, v)Xe =
∑

i

∫

�

wivi , (2b)

where the summation over spatial dimensions 1 ≤ i, j ≤ d is assumed throughout this article.

We define an input parameter set D ∈ R
P , a typical point in which shall be denoted

μ ≡ (μ1, . . . , μP ). We then define the parametrized bilinear forms a in Ye, a : Y e ×Y e ×D → R;

m, c, f , ℓ are parametrized continuous bilinear and linear forms in Xe, m : Xe ×Xe ×D → R, c :

Xe × Xe × D → R, f : Xe × D → R and ℓ : Xe → R.

The “exact” continuous problem is stated as follows: given a parameter μ ∈ D ⊂ R
P , the field

variable ue(x, t ; μ) ∈ Y e satisfies the weak form of the μ-parametrized hyperbolic PDE (assume

Rayleigh damping)

m

(

∂2ue(x, t ; μ)

∂t2
, v; μ

)

+ c

(

∂ue(x, t ; μ)

∂t
, v; μ

)

+ a (ue(x, t ; μ), v; μ) = g(t)f (v; μ),

∀v ∈ Y e, t ∈ [0, T ], μ ∈ D, (3)

with initial conditions: ue(x, 0; μ) = 0, ∂ue(x,0;μ)

∂t
= 0.

In the above equation, x denotes the coordinate of a point in the domain �, t is the time vari-

able, [0, T ] is a finite time interval and the explicit forms of a, m, c, and f could be defined as:

∀w, v ∈ Y e, μ ∈ D,

m(w, v; μ) =
∑

i

∫

�

ρviwi , (4a)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



GOAL-ORIENTED SAMPLING STRATEGY USING RB METHOD 579

c(w, v; μ) =
∑

i

∫

�

αρviwi +
∑

i,j ,k,l

∫

�

β
∂vi

∂xj

Cijkl

∂wk

∂xl

, (4b)

a(w, v; μ) =
∑

i,j ,k,l

∫

�

∂vi

∂xj

Cijkl

∂wk

∂xl

, (4c)

f (v; μ) =
∑

i

∫

�

bivi +
∑

i

∫

ŴN

viφi . (4d)

where, ρ is the mass density; α is the mass-proportional Rayleigh damping coefficient; β is the

stiffness-proportional Rayleigh damping coefficient; Cijkl is the material elasticity tensor; b is

a body force and φ is a surface traction applied to a region of the domain �; g(t) is the time

history associated with the external loading f (v; μ); ŴD and ŴN are the Dirichlet and Neumann

boundaries, respectively. We note that the input parameter μ could appear in (not limited to) either

ρ(μ), α(μ), β(μ), Cijkl(μ) and even b(μ), φ(μ) and g(t ; μ).

We then evaluate a quantity of interest (output) from

se(μ) =
∫ T

0

∫

Ŵo

ue(x, t ; μ)
(x, t)dxdt , =
∫ T

0

ℓ(ue(x, t ; μ))dt . (5)

Here, Ŵo are some (output) spatial regions of interest and 
(x, t) is an extractor which

depends on the view position of an “observer” in the space-time domain; and ℓ(ue(x, t ; μ)) =
∫

Ŵo
ue(x, t ; μ)
(x, t)dx.

We shall assume that the bilinear forms a(·, ·; μ) and m(·, ·; μ) are continuous,

a(w, v; μ) ≤ γ ||w||Y e ||v||Y e ≤ γ0||w||Y e ||v||Y e , ∀w, v ∈ Y e, ∀μ ∈ D, (6a)

m(w, v; μ) ≤ ̺||w||Xe ||v||Xe ≤ ̺0||w||Xe ||v||Xe , ∀w, v ∈ Y e, ∀μ ∈ D, (6b)

coercive,

0 ≤ α0 ≤ α(μ) ≡ inf
v∈Y e

a(v, v; μ)

||v||2Y e

, ∀μ ∈ D, (7a)

0 ≤ σ0 ≤ σ(μ) ≡ inf
v∈Y e

m(v, v; μ)

||v||2Xe

, ∀μ ∈ D; (7b)

and symmetric a(v, w; μ) = a(w, v; μ), ∀w, v ∈ Y e, ∀μ ∈ D and m(v, w; μ) =
m(w, v; μ), ∀w, v ∈ Y e, ∀μ ∈ D. (We (plausibly) suppose that γ0, ̺0, α0 and σ0 may be chosen

independent of N .) In addition, the linear forms f (v) : Y e → R and ℓ(v) : Y e → R are assumed

to be bounded with respect to || · ||Y e and || · ||Xe , respectively. Under these conditions, there exists

a unique so-called “weak” (or “variational”) solution ue(x, t ; μ) ∈ Y e of the Eq. (3) [31, 42].

We shall make an important assumption, that is, a, m, c, and f depend affinely on the parameter

μ and thus can be expressed as

m(w, v; μ) =
Qm
∑

q=1

�q
m(μ)mq(w, v), ∀w, v ∈ Y e, μ ∈ D, (8a)

c(w, v; μ) =
Qc
∑

q=1

�q
c (μ)cq(w, v), ∀w, v ∈ Y e, μ ∈ D, (8b)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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a(w, v; μ) =
Qa
∑

q=1

�q
a(μ)aq(w, v), ∀w, v ∈ Y e, μ ∈ D, (8c)

f (v; μ) =
Qf
∑

q=1

�
q

f (μ)f q(v), ∀v ∈ Y e, μ ∈ D, (8d)

for some (preferably) small integers Qm,c,a,f . Here, the smooth functions �
q

m,c,a,f (μ) : D → R

depend on μ, but the bilinear and linear forms mq , cq , aq , and fq do not depend on μ.

B. Finite Element Discretization

We shall use the “method of lines” approach: fully discretize in space using Galerkin FE and

discretize in time using Newmark’s trapezoidal scheme
(

γ N = 1

2
, βN = 1

4

)

. We introduce a ref-

erence FE approximation space Y ⊂ Y e(⊂ Xe) of dimension N ; we further define X ≡ Xe.

Note that Y and X shall inherit the inner product and norm from Ye and Xe, respectively. For

time integration: we divide I = [0, T ] into K subintervals of equal length �t = T

K
and define

tk = k�t , 0 ≤ k ≤ K . Recall that the Newmark’s trapezoidal scheme is implicit and uncon-

ditionally stable. Furthermore, �t and the FE mesh size will be chosen such that they satisfy

the solvability, stability and accuracy conditions following [43] (Chapter 9.4.4) or [44] (Chapter

9.1). Thus, our “true” FE approximation u(x, tk; μ)
(

≡ uk(μ)
)

∈ Y to the “exact” problem is

equivalent to solving (K − 1) following elliptic problems [44]:

A
(

uk+1(μ), v; μ
)

= F (v) , ∀v ∈ Y , μ ∈ D, 1 ≤ k ≤ K − 1, (9)

where [45]

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A
(

uk+1(μ), v; μ
)

=
1

�t2
m(uk+1(μ), v; μ) +

1

2�t
c(uk+1(μ), v; μ) +

1

4
a(uk+1(μ), v; μ),

F (v) = −
1

�t2
m(uk−1(μ), v; μ) +

1

2�t
c(uk−1(μ), v; μ) −

1

4
a(uk−1(μ), v; μ)

+
2

�t2
m(uk(μ), v; μ) −

1

2
a(uk(μ), v; μ) + geq(tk)f (v; μ),

geq(tk) =
1

4
g(tk−1) +

1

2
g(tk) +

1

4
g(tk+1),

(10)

with initial conditions3: u0(μ) = 0, ∂u0(μ)

∂t
= 0; we then evaluate the output of interest from (using

the trapezoidal rule for integral approximation)

s(μ) =
K−1
∑

k=0

∫ tk+1

tk
ℓ(u(x, t ; μ))dt ≈

K−1
∑

k=0

�t

2

(

ℓ(uk(μ)) + ℓ(uk+1(μ))
)

. (11)

Clearly, with the well-conditions (i.e., symmetric positive definiteness) of the FE mass and

stiffness matrices as well as of the initial values, the linear system (10) possesses a unique solution.

3 To start the procedure (9), u1(μ) is computed as on page 491 of [44].
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The RB approximation shall be built upon our reference FE approximation, and the RB

error will thus be evaluated with respect to uk(μ) ∈ Y . Clearly, our methods must remain

computationally efficient and stable as N → ∞.

Finally, note that our linear and bilinear forms are independent of time—the system is thus lin-

ear time-invariant (LTI) [12]. We shall point out that one application which satisfies this property

is the dental implant problem [8, 46].

C. Dealing with Unknown Loading

In many dynamical systems, generally, the applied force to excite the system [e.g., g(tk) in (10) or

g(t) in (3)] is not known in advance and thus we cannot solve (9) for uk+1(μ). In such situations,

fortunately, we may appeal to the LTI property to justify an impulse approach as described now

[12]. We note from the Duhamel’s principle that the solution of any LTI system can be written as

the convolution of the impulse response with the control input: for any control input gany(t
k), we

can obtain its corresponding solution uk
any(μ), 1 ≤ k ≤ K from

uk
any(μ) =

k
∑

j=1

u
k−j+1

unit (μ)gany(t
j ), 1 ≤ k ≤ K , (12)

where uk
unit(μ) is the solution of (9) for a unit impulse control input gunit(t

k) = δ1k , 1 ≤ k ≤ K (δ

is the Kronecker delta symbol). Therefore, it is sufficient to build the RB basis functions for the

problem based on this impulse response.

III. REDUCED BASIS APPROXIMATION

Two key properties of the RB methodology will be recalled as follows. First, our attention is

restricted to a smooth and low-dimensional manifold instead of the very high-dimensional FE

space. Namely, the field variable uk(μ), 1 ≤ k ≤ K does not belong to the very high-dimensional

FE space; rather it resides, or “evolves” on a much lower dimensional manifold which is induced

by the parametric dependence over the parameter domain [12]. Therefore, by restricting our

attention to this manifold, we can adequately approximate the field variable by a space of dimen-

sion N ≪ N . Second, the parametric setting of the PDE (3) enables to split the computational

procedure into two stages: an extensive/expensive Offline stage performed once to prepare all

necessary data for numerous input-output calculations in the Online stage afterwards. Details of

these computations will be explained in subsequent sections.

A. Approximation

We introduce the set of samples S∗ = {μ1 ∈ D, μ2 ∈ D, . . . , μN ∈ D}, 1 ≤ N ≤ Nmax, and

associated nested Lagrangian RB spaces YN = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, where

ζn ∈ YN , 1 ≤ n ≤ Nmax are mutually (·, ·)Y —orthogonal RB basis functions. The sets S∗ and YN

shall be constructed correspondingly by the standard and goal-oriented POD–Greedy algorithms

described in Section III.B afterwards.

Our RB approximation uk
N (μ) to uk(μ) is then obtained by a standard Galerkin projection:

given μ ∈ D, we now look for uk
N (μ) ∈ YN that satisfies

A
(

uk+1
N (μ), v; μ

)

= F (v) , ∀v ∈ YN , μ ∈ D, 1 ≤ k ≤ K − 1, (13)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A
(

uk+1
N (μ), v; μ

)

=
1

�t2
m(uk+1

N (μ), v; μ) +
1

2�t
c(uk+1

N (μ), v; μ) +
1

4
a(uk+1

N (μ), v; μ),

F (v) = −
1

�t2
m(uk−1

N (μ), v; μ) +
1

2�t
c(uk−1

N (μ), v; μ) −
1

4
a(uk−1

N (μ), v; μ)

+
2

�t2
m(uk

N (μ), v; μ) −
1

2
a(uk

N (μ), v; μ) + geq(tk)f (v; μ),

(14)

with the initial conditions: u0
N (μ) = 0,

∂u0
N

(μ)

∂t
= 0; we then evaluate the output estimate, sN (μ),

from

sN (μ) =
K−1
∑

k=0

∫ tk+1

tk
ℓ(uN (x, t ; μ))dt ≈

K−1
∑

k=0

�t

2

(

ℓ(uk
N (μ)) + ℓ(uk+1

N (μ))
)

. (15)

B. Goal-Oriented POD–Greedy Sampling Procedure

The Proper Orthogonal Decomposition. We aim to generate an optimal (in the mean square

error sense) basis set {ζm}M
m=1 from any given set of Mmax(≥ M) snapshots {ξk}Mmax

k=1 . To do this,

let VM = span{v1, . . . , vM} ⊂ span{ξ1, . . . , ξMmax} be an arbitrary space of dimension M. We

assume that the basis {v1, . . . , vM} is orthonormal such that (vn, vm) = δnm, 1 ≤ n, m ≤ M((·, ·)
denotes an appropriate inner product and δnm is the Kronecker delta symbol). The POD space,

WM = span{ζ1, . . . , ζM} is defined as

WM = arg min
VM⊂span{ξ1 ,...,ξMmax }

(

1

Mmax

Mmax
∑

k=1

inf
αk∈RM

∥

∥

∥

∥

ξk −
M

∑

m=1

αk
mvm

∥

∥

∥

∥

2
)

. (16)

In essence, the POD space WM which is extracted from the given set of snapshots {ξk}Mmax
k=1

is the space that best approximate this given set of snapshots and can be written as WM =
POD

(

{ξ1, . . . , ξMmax}, M
)

. We can construct this POD space using the method of snapshots4

which is presented concisely in the Appendix of [49].

Goal-Oriented POD–Greedy Algorithm. We now discuss the POD–Greedy algorithms

[8, 41, 50, 51] to construct the nested sets S∗ and YN of interest. Let �train be a finite set of the para-

meters in D (�train ⊂ D); and S∗ denote the set of greedily selected parameters in �train. Initialize

S∗ = {μ0}, where μ0 is an arbitrarily chosen parameter. Let eproj(μ, tk) = uk(μ) − projYN
uk(μ),

where projYN
uk(μ) is the YN -orthogonal projection of uk(μ) into the YN space. Our proposed

goal-oriented and the standard algorithms are presented simultaneously in Table I. Note that the

superscript “st” denotes the standard and “go” denotes the goal-oriented algorithms, respectively.

a. Let us first describe the standard POD–Greedy algorithm in the right column of Table I.

In particular, at each Greedy iteration, one first solves (9) to obtain the “true” FE solu-

tion
{

uk(μst
∗ ), 0 ≤ k ≤ K

}

; then computes the projection error to form the snapshots set

4 Some books which investigate thoroughly this POD subject can be found in, for instance, [47, 48].
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TABLE I. (Left) The proposed goal-oriented POD–Greedy sampling algorithm and (Right) the standard
POD–Greedy sampling algorithm.

(T1a) Set Y
go

N = 0 Set Y st
N = 0

(T1b) Set μ
go
∗ = μ0 Set μst

∗ = μ0

(T1c) While N ≤ N
go
max While N ≤ N st

max

(T1d) Wgo =
{

e
go

proj(μ
go
∗ , tk), 0 ≤ k ≤ K

}

; W st =
{

est
proj(μ

st
∗ , tk), 0 ≤ k ≤ K

}

;

(T1e) Y
go

N+M ← Y
go

N ⊕ POD(Wgo, M); Y st
N+M ← Y st

N ⊕ POD(W st, M);

(T1f) N ← N + M; N ← N + M;

(T1g) Find Ñ s.t. ∀μ ∈ �st
n ⊂ �st

n+1(⊂ Sst
∗ ), μst

∗ = arg max
μ∈�train

{

�u(μ)
√

∑K
k=1

||ust
N

(μ,tk )||2
Y

}

;

ηT ≤ | �s (μ)

s(μ)−s
go
N

(μ)
| ≤ 2 − ηT ; Sst

∗ ← Sst
∗ ∪

{

μst
∗
}

;

(T1h) μ
go
∗ = arg max

μ∈�train

{

|�s (μ)

sst

Ñ
(μ)

|
}

; end.

(T1i) S
go
∗ ← S

go
∗ ∪

{

μ
go
∗

}

;

(T1j) end.

(T1k) �s(μ) = sst

Ñ
(μ) − s

go

N (μ) �u(μ) =
√

∑K
k=1 ||Rst(v; μ, tk)||2

Y ′

The terms �u(μ) and �s(μ) are printed in boldface to highlight the difference between the two algorithms.

Algorithm 1 The “cross-validation” process.

W st in (T1d). Next, one does snapshots-POD analysis [49] on this set to build/extract M

“new” basis functions and adds them to the “current” RB basis functions set Y st
N (T1e).

The RB dimension N is also updated correspondingly in (T1f). Now, based on these newly

updated bases Y st
N , the error indicator �u(μ)

√

∑K
k=1 ||ust

N
(μ,tk )||2

Y

will be computed exhaustively for

all μ ∈ �train to look for the worst sampling point μst
∗ and add it to the set Sst

∗ (T1g). This

whole procedure is iterated until it satisfies some stopping criteria. Note in the computation

of �u(μ) (T1k), the term ||Rst(v; μ, tk)||Y ′ is the dual norm of the associated residual of

Numerical Methods for Partial Differential Equations DOI 10.1002/num



584 HOANG ET AL.

Algorithm 2 Function to compute Ñ based on input �st and N.

Eq. (13), namely,

R
st(v; μ, tk) = F (v) − A

(

uk+1
N (μ), v; μ

)

, ∀v ∈ YN , μ ∈ D, 1 ≤ k ≤ K − 1. (17)

Detailed computation of the term ||Rst(v; μ, tk)||Y ′ can be found in, for instance, [7, 8, 12].

In essence, the term �u(μ)
√

∑K
k=1 ||ust

N
(μ,tk )||2

Y

is the ratio of the dual norm of the residual to the norm

of the RB solution. Thus, this term is roughly considered as an error indicator for the error

in the solution (or field variable). This is one special choice of many ones and is usually

used in the current standard POD–Greedy algorithm [8, 17, 41].

b. We now consider the goal-oriented algorithm in the left column of Table I. All the main

steps of this algorithm are exactly the same as that of the standard algorithm, except that

the error indicator is now defined as

∣

∣

∣

�s (μ)

sst

Ñ
(μ)

∣

∣

∣
in (T1h). Essentially, this term is an asymptotic

error approximation for the true output error (i.e., s(μ) − sN (μ) ≈ sst

Ñ
(μ) − sN (μ)). Thus,

the main idea of this goal-oriented algorithm is that the Greedy iterations now try to min-

imize the output error indicator rather than the solution error indicator as in the standard

algorithm above. From another viewpoint, we can think of this goal-oriented algorithm as

a special version of the standard algorithm using a relative output error approximation as

an error indicator.

c. In the goal-oriented algorithm, the computation of �s(μ) requires a good approximation

sst

Ñ
(μ) for the FE output s(μ). To cope with this situation, we use the asymptotic output

error approximation which makes use of an enriched RB output computation. Specifically,

we propose to implement the standard algorithm in advance to obtain enriched RB spaces

Y st
Nmax

which are ready for the computation of sst

Ñ
(μ)(Ñ ≥ N ) in the goal-oriented algo-

rithm afterwards. Hence, here sst

Ñ
(μ) implies the enriched RB output computed by standard

algorithm (“st”) using Ñ basis functions.

The use of asymptotic output error approximation �s(μ) is not new in the literature.

For example, in the works [32, 33] the authors used heuristically Ñ = 2N as an adequate
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choice for the output error approximation. In this work, however, we propose a new algo-

rithm called a “cross-validation” process to choose adaptively Ñ for each particular N in

the offline stage of the goal-oriented algorithm. Note that these found pairs (N , Ñ) will

also be used in the error approximation in the online stage later. The “cross-validation”

process is presented in line (T1g) and is detailed in Algorithm 1; however, we postpone its

explanation until point f) below.

d. The main idea of the “cross-validation” process is to find a sufficient Ñ (for an N under

consideration) such that the effectivity

∣

∣

∣

sst

Ñ
(μ)−s

go
N

(μ)

s(μ)−s
go
N

(μ)

∣

∣

∣
satisfies: ∀μ ∈ �try,

ηT ≤
∣

∣

∣

∣

sst

Ñ
(μ) − s

go

N (μ)

s(μ) − s
go

N (μ)

∣

∣

∣

∣

≤ 2 − ηT , (♣)

where ηT is a user-prescribed effectivity (say, 0.8 or 0.9), and �try is an arbitrary set of

parameters (s
go

N (μ) is a goal-oriented RB output using N basis functions). Because the FE

output s(μ) appears in (♣), we think of using �try ⊂ Sst
∗ as all FE solutions/outputs are

available for all μ ∈ Sst
∗ (recall that the standard algorithm was already implemented).

Hence, we will use the notation �st(≡ �try) ⊂ Sst
∗ to reflect this idea.

e. We first explain the Algorithm 2 in detail. Essentially, algorithm 2 is an iteration process

to find a proper Ñ which satisfies (♣) for a given sample set �st and a given N. The

iteration procedure starts with Ñ = 2N ; and Ñ will be increased if (♣) is violated by

any μ ∈ �st. The procedure will stop when (♣) holds true ∀μ ∈ �st. Within Algorithm

2, if Ñ exceeds N st
max the standard algorithm will be called and implemented to increase

N st
max accordingly. Note that the standard algorithm will continue to run from the previous

N st
max; so in summary, it is deemed to run “once” but continuously in different stages when

necessary.

f. Let us now describe the “cross-validation” process in Algorithm 1. In fact, finding the

proper size of �st is not a trivial task: fixing �st = Sst
∗ is not an efficient way, and we

also don’t want to use one more parameter to tune this setting (the only one parameter for

the GO algorithm is ηT ). We thus propose an adaptive strategy to choose |�st| as follows

(Algorithm 1). Suppose that at the Greedy iteration N with a given set �st
n ⊂ Sst

∗ , we can

find the corresponding Ñ thanks to Algorithm 2 above. We will request further that the

currently found Ñ also needs to verify (♣) over �st
n+1, where |�st

n+1| = |�st
n | + �nsample,

and �nsample is a number of next sample points taken from the set Sst
∗ . Otherwise, �st

n+1 is

assigned to �st
n (i.e., �st

n is enriched now) and the procedure is repeated until the found Ñ

satisfies (♣) over both sets �st
n and �st

n+1 (⊂ Sst
∗ ). By this way, we can start the sampling

procedure with fairly small |�st
n | and let it “evolve” automatically without the necessity of

any control or adjustment. Following the same process, �st
n and �st

n+1 will also be used to

find Ñ at the next Greedy iteration N + 1; and they will be enriched appropriately when

necessary.

For example, the standard algorithm is implemented first and once for quite large N st
max,

say, N st
max = 200 and hence |Sst

∗ | = 200 (using M = 1). Then for an arbitrary quantity of

interest, the goal-oriented algorithm will be implemented accordingly. Consider the “cross-

validation” process at the first Greedy iterationN go = 1, we can choose�st
1 ⊂ �st

2 ⊂ Sst
∗ such

that |�st
1 | = 10 and |�st

2 | = 20 first sample points of Sst
∗ , respectively (hence, �nsample = 10).

Based on this �st
1 set, Algorithm 2 is invoked to find the corresponding Ñ1. Next, (♣) is

checked with Ñ1 over �st
2 : if it holds true ∀μ ∈ �st

2 , then (N go = 1, Ñ1) will be the necessar-

ily found pair; the algorithm will quit the “cross-validation” process and continue with step
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(T1h). Otherwise, the algorithm will enrich �st
1 and �st

2 such that |�st
1 | = 20 and |�st

2 | = 30

first sample points from Sst
∗ , and repeat the computational procedure until the right pair

(N go = 1, Ñ) is found. �st
1 and �st

2 are also used to check (♣) at the next Greedy iteration

in a completely similar manner.

g. Finally, we close this subsection with one remark on the possible value range of ηT . In fact,

we cannot choose ηT to be too high, that is, too close to 1. The reason is that the convergence

of the GO algorithm depends on the convergence of the standard one; and generally the

standard algorithm will stall/flat with some N ≥ N st
max (i.e., its error indicator and RB true

error cannot decrease further as it reaches machine accuracy ≈ 10−8). If ηT is too close to 1,

say 0.95, the cross-validation process will break down (infinite loop in Algorithm 1) since

it cannot find the suitable Ñ to satisfy (♣) over �st
n and �st

n+1; and there is no way to handle

this situation. Therefore, it is practical to choose a modest ηT , and in fact we can do that

easily based on the convergence history of the standard algorithm which is implemented in

advance. Indeed, through two numerical experiments in Section IV later, ηT = 0.8 is the

maximum possible choice and it gives the best performance among all GO ηT algorithms.

On the contrary, low ηT (i.e., close to 0) poses no difficulty for the cross-validation process

since its corresponding Ñ generally will be smaller than that of higher ηT , and hence low

ηT is “safer” than high ηT regarding Ñ .

C. Error Estimations

True Errors. We use the true errors to validate the performance of the standard and goal-oriented

algorithms in the online computation stage. The relative true errors by the two algorithms for the

solutions are defined as

est
u (μ) =

√

∑K

k=1 ||uk(μ) − u
st,k
N (μ)||2Y

∑K

k=1 ||uk(μ)||2Y
, ego

u (μ) =

√

∑K

k=1 ||uk(μ) − u
go,k

N (μ)||2Y
∑K

k=1 ||uk(μ)||2Y
; (18)

and for the outputs

est
s (μ) =

∣

∣

∣

∣

s(μ) − sst
N (μ)

s(μ)

∣

∣

∣

∣

≈
∣

∣

∣

∣

∑K−1

k=0
�t

2

(

ℓ
(

uk(μ) − u
st,k
N (μ)

)

+ ℓ
(

uk+1(μ) − u
st,k+1
N (μ)

))

∑K−1

k=0
�t

2

(

ℓ(uk(μ)) + ℓ(uk+1(μ))
)

∣

∣

∣

∣

,

(19a)

ego
s (μ) =

∣

∣

∣

∣

s(μ) − s
go

N (μ)

s(μ)

∣

∣

∣

∣

≈
∣

∣

∣

∣

∑K−1

k=0
�t

2

(

ℓ
(

uk(μ) − u
go,k

N (μ)
)

+ ℓ
(

uk+1(μ) − u
go,k+1

N (μ)
))

∑K−1

k=0
�t

2

(

ℓ(uk(μ)) + ℓ(uk+1(μ))
)

∣

∣

∣

∣

,

(19b)

respectively.

In the above expressions, uk(μ), u
st,k
N (μ) and u

go,k

N (μ) are the FE, standard RB and goal-oriented

RB solutions; s(μ), sst
N (μ) and s

go

N (μ) are the FE, standard RB, and goal-oriented RB outputs,

respectively.

Output Error Approximation. The true errors are good for validation purposes but are not of

practical uses in the online stage, where one requires fast and countless online calculations. In this

work, we propose to use �s(μ) as an error estimation for the output in the online computation

stage (in short, �s(μ) is an error estimation in both offline and online stages). Of course this error
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approximation is not a rigorous upper error bound such as the a posteriori error bounds [7, 15, 17];

however, there are several good reasons for using it in practice. First, the time-marching error

bounds for the wave equation so far were shown to be ineffective and pessimistic due to the

instability of the wave equation: exponential growing with respect to time [19, 52, 53]. (We also

note that the space-time error bounds, although very promising, are still not yet derived in the

literature.) Second, this error approximation converges asymptotically to the true error (thanks

to Ñ chosen effectively by the proposed “cross-validation” process), and thus can approximate

relatively the accuracy of the RB outputs for various choices of μ. Third—most important, its

computational cost is cheap: only O(N 3)+O(Ñ 3) as described in the next section (N , Ñ ≪ N ).

The output error approximation �s(μ) in (T1k) and its associated effectivity are defined as

follows

�go
s (μ) = sst

Ñ
(μ) − s

go

N (μ), ηgo
s (μ) =

∣

∣

∣

∣

�go
s (μ)

s(μ) − s
go

N (μ)

∣

∣

∣

∣

. (20)

Note that to compare the performance of output error approximation of the standard versus the

goal-oriented algorithms, here we also define the output error approximation and its associated

effectivity for the standard algorithm as

�st
s (μ) = sst

Ñ
(μ) − sst

N (μ), ηst
s (μ) =

∣

∣

∣

∣

�st
s (μ)

s(μ) − sst
N (μ)

∣

∣

∣

∣

, (21)

where the superscript “st” implies the standard algorithm. The superscript “go” is thus added in

(20) to imply the goal-oriented algorithm, respectively.

D. Offline-Online Computational Procedure

In this section, we develop offline-online computational procedures to fully exploit the dimension

reduction of the problem [8, 12, 15]. We note that both algorithms (standard and goal-oriented)

have the same offline-online computational procedures, they are only different in the ways to

build the sets S∗ and YN via Greedy iterations. We first express uk
N (μ) as:

uk
N (μ) =

N
∑

n=1

uk
Nn(μ)ζn, ∀ζn ∈ YN . (22)

We then choose a test function v = ζn, 1 ≤ n ≤ N for the RB Eq. (13). It then follows that

uk
N (μ) = [uk

N1(μ)uk
N2(μ) · · · uk

NN (μ)]T ∈ R
N satisfies

(

1

�t2
MN (μ) +

1

2�t
CN (μ) +

1

4
AN (μ)

)

uk+1
N (μ)

=
(

−
1

�t2
MN (μ) +

1

2�t
CN (μ) −

1

4
AN (μ)

)

uk−1
N (μ)

+
(

2

�t2
MN (μ) −

1

2
AN (μ)

)

uk
N (μ) + geq(tk)FN (μ), 1 ≤ k ≤ K − 1. (23)
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The initial condition is treated similar to the treatment in (9) and (13). Here,

CN (μ), AN (μ), MN (μ) ∈ R
N×N are symmetric positive definite matrices5 with entries CNi,j (μ) =

c(ζi , ζj ; μ), ANi,j (μ) = a(ζi , ζj ; μ), MNi,j (μ) = m(ζi , ζj ; μ), 1 ≤ i, j ≤ N and FN ∈ R
N is the

RB load vector with entries FNi = f (ζi), 1 ≤ i ≤ N , respectively.

The RB output is then computed from

sN (μ) =
K−1
∑

k=0

�t

2
LT

N

(

uk
N (μ) + uk+1

N (μ)
)

. (24)

Invoking the affine parameter dependence (8), we obtain

MNi,j (μ) = m(ζi , ζj ; μ) =
Qm
∑

q=1

�q
m(μ)mq(ζi , ζj ), (25a)

CNi,j (μ) = c(ζi , ζj ; μ) =
Qc
∑

q=1

�q
c (μ)cq(ζi , ζj ), (25b)

ANi,j (μ) = a(ζi , ζj ; μ) =
Qa
∑

q=1

�q
a(μ)aq(ζi , ζj ), (25c)

FNi(μ) = f (ζi ; μ) =
Qf
∑

q=1

�
q

f (μ)f q(ζi), (25d)

which can be written as

MNi,j (μ) =
Qm
∑

q=1

�q
m(μ)M

q

Ni,j , CNi,j (μ) =
Qc
∑

q=1

�q
c (μ)C

q

Ni,j ,

ANi,j (μ) =
Qa
∑

q=1

�q
a(μ)A

q

Ni,j , FNi(μ) =
Qf
∑

q=1

�
q

f (μ)F
q

Ni , (26)

where the parameter independent quantities M
q

N , C
q

N , A
q

N ∈ R
N×N , and F

q

N ∈ R
N are given by

M
q

Ni,j = mq(ζi , ζj ), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qm, (27a)

C
q

Ni,j = cq(ζi , ζj ), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qc, (27b)

A
q

Ni,j = aq(ζi , ζj ), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qa , (27c)

F
q

Ni = f q(ζi), 1 ≤ i ≤ Nmax, 1 ≤ q ≤ Qf , (27d)

respectively.

The offline-online computational procedure is now described as follows. In the offline stage—

performed only once, we first implement the standard POD–Greedy algorithm [8]: we solve to

5 The proof of this property can be found in, for instance, Proposition 5.1, page 136 of [54]. Thanks to this property, the
stability of our proposed RB scheme will be guaranteed as a consequence.
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find Y st
N = {ζ st

n , 1 ≤ n ≤ Nmax}; then compute and store the μ-independent quantities in (27) for

the estimation of the RB solution and output6. Once these RB solution and output are available, we

can now implement the goal-oriented POD–Greedy algorithm. We consider each goal-oriented

POD–Greedy iteration (Table I) in more details. We first need to solve (9) for the “true” FE

solutions; then compute the projection error in step (T1d) and solve the POD/eigenvalue problem

in step (T1e). In addition, we have to compute O(N 2Q)N -inner products in (27) (we denote

Q = Qm + Qc + Qa). By approximating s(μ) via the enriched approximation sst

Ñ
(μ) in (T1k)

through the standard algorithm, we can now do an exhaustive yet cheap search over �train to look

for the optimal μ in each Greedy iteration. In summary, the offline stage of the goal-oriented

algorithm also includes the offline stage of the standard algorithm, and therefore, it is more

expensive than that of the standard algorithm. (We again emphasize that the standard algorithm

is implemented only once, and then the goal-oriented algorithm can be implemented many times

corresponding with various output functionals, respectively.).

The online stage of the goal-oriented algorithm is very similar to that of the standard algorithm

[8]. In the online stage—performed many times, for each new parameter μ—we first assemble

the RB matrices in (25), this requires O(N 2Q) operations. We then solve the RB governing Eq.

(23), the operation counts are O(N 3 + KN 2) as the RB matrices are generally full. Finally, we

evaluate the displacement output sN (μ) from (24) at the cost of O(KN). For the error approxi-

mation (i.e., �s(μ) = sst

Ñ
(μ) − s

go

N (μ)), there is nothing more than computing one more output

sst

Ñ
(μ) and then performing the associated subtraction; the cost is O(Ñ 3). Therefore, as required

in the real-time context, the online complexity to compute the output and its associated error

approximation are O(N 3) + O(Ñ 3)—independent of N ; and since N , Ñ ≪ N we can expect

significant computational saving in the online stage relative to the classical FE approach.

IV. NUMERICAL EXAMPLES

In this section, we will verify both POD–Greedy algorithms by investigating a simple 2D linear

elastodynamic problem and a 3D dental implant model problem in the time domain. The details

are described in the following.

A. A 2D Linear Elastodynamic Problem

Finite Element Model and Approximation. We consider a 2D plane strain model problem

as in Fig. 1(a). It is assumed that the model problem is scaled (or nondimensionalized) from a real

problem in practice and hence all the terms are dimensionless. The details of the nondimensional-

ization is briefly discussed in Appendix A. The length and height of the model are L = 4 and H = 1,

respectively. The model is composed of 2 subdomains �1 and �2 with two different materials:

Young’s moduli E1 = 1 and E2 ∈ [0.1, 10] and Poisson ratios ν1 = ν2 = 0.3, respectively.

We assume Rayleigh damping for the model where the mass-proportional damping coefficients

α1 = α2 = 0, and the stiffness-proportional damping coefficients β1 = β2 ≡ β ∈ [0.05, 0.5] such

that Ci = βiAi , 1 ≤ i ≤ 2, where Ci and Ai are the FEM damping and stiffness matrices of each

subdomain, respectively. Isotropic and homogenous material behavior is assumed for the model.

We also note that the material mass densities will vanish from the weak form of the PDE due to

6 There are still several terms related to the computation of the dual norm of the residual ||Rst(v; μ, tk)||Y ′ , we do not
show them here for simplicity. Detailed implementation of the standard POD–Greedy algorithm can be referred to, for
instance, [8, 15, 17].
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FIG. 1. (a) The 2D model with its dimensionless parameters and (b) its FE reference mesh. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the nondimensionalisation [Eq. (34), Appendix A]. A surface traction which is opposite to the x-

direction with the magnitude φ = 0.01 is then applied to the right edge of the model (Ŵl) as shown

in Fig. 1(a). As mentioned in Section II.C, it is sufficient to perform all calculations for the impulse

loading case since the solutions associated with other loading cases can be inferred by Duhamel’s

convolution principle. Time history of the impulse loading is also shown in Fig. 2(a). Homoge-

neous Dirichlet boundary condition is enforced on the left edge (ŴD), while zero initial conditions

(i.e., zero displacement and velocity) are applied on the model. The output of interest is defined

as the time integral of the average x-displacement along the right edge (Ŵo ≡ Ŵl) of the model.

Specifically, the explicit forms of all linear and bilinear forms associated with the 2D model

problem are defined as follows

m(w, v) =
2

∑

r=1

∑

i

∫

�r

wivi , (28a)

FIG. 2. (a) Time history of impulse loading, and (b) corresponding FEM output displacement in x-direction
versus time with μtest = (1,0.1). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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a(w, v; μ) =
∑

i,j ,k,l

∫

�1

∂vi

∂xj

C1
ijkl

∂wk

∂xl

+ μ1

∑

i,j ,k,l

∫

�2

∂vi

∂xj

C2
ijkl

∂wk

∂xl

, (28b)

c(w, v; μ) = μ2

∑

i,j ,k,l

∫

�1

∂vi

∂xj

C1
ijkl

∂wk

∂xl

+ μ2μ1

∑

i,j ,k,l

∫

�2

∂vi

∂xj

C2
ijkl

∂wk

∂xl

, (28c)

f (v) =
∑

i

∫

Ŵl

viφi , (28d)

ℓ(v) =
1

|Ŵo|

∫

Ŵo

v1, (28e)

for all w, v ∈ Y , μ ∈ D. Here, the parameter μ = (μ1, μ2) ≡ (E2, β), where E2 is the Young’s

modulus of the domain �2 and β is the stiffness-proportional damping coefficient of both domains

�1, �2.Cr
ijkl is the constitutive elasticity tensor for isotropic materials and it is expressed in terms of

the Young’s modulus E and Poisson’s ratio ν of each region �r , 1 ≤ r ≤ 2, respectively. It is obvi-

ous from (8) and (28) that the smooth functions �1
a(μ) = 1, �2

a(μ) = μ1; �1
c(μ) = μ2, �2

c(μ) =
μ1μ2 depend on μ — but the bilinear forms a1(w, v) = c1(w, v) =

∑

i,j ,k,l

∫

�1

∂vi

∂xj
C1

ijkl

∂wk

∂xl
, and

a2(w, v) = c2(w, v) =
∑

i,j ,k,l

∫

�2

∂vi

∂xj
C2

ijkl

∂wk

∂xl
do not depend on μ.

The FE mesh consist of 215 nodes and 376 linear triangular elements as shown in Fig. 1(b).

The FE space to approximate the 2D elastodynamic problem is of dimension N = 416. For time

integration, T = 50, �t = 0.2, K = T

�t
= 250. The parameter μ = (E2, β) ∈ D, where the

parameter domain D ≡ [0.1, 10] × [0.05, 0.5] ⊂ R
P=2. The || · ||Y used in this work is defined

as ||w||2Y = a(w, w; μ) + m(w, w; μ), where μ = (1, 0.1); Qa = 2, Qc = 2. The entire work is

performed using the software MATLAB R2012b. We finally show in Fig. 2(b) the “unit” FEM

output displacement (i.e., under the unit impulse load) in the x-direction versus time at μtest, where

μtest = μ = (1, 0.1).

Numerical Results

The Impulse Loading Case. For this 2D model problem, we aim to investigate the behavior

of the goal-oriented algorithms with various choices of ηT under the impulse loading regime.

To start, a training sample set �train is created by an equidistant distribution over D with

ntrain(= 30 × 30) = 900 samples. Note that we use M = 1 and N go
max = 60 (as in Table I)

to terminate the iteration procedures. In the remaining sections, beside the standard and goal-

oriented algorithms (ηT ), we also show the results of the goal-oriented algorithm (Ñ = 2N ) for

comparison purpose.

a. First, we implement the standard POD–Greedy algorithm (i.e., the right column of Table I)

[8]. The results are presented in Fig. 3: Fig. 3(a) shows the maximum error indicator

�max,rel
u = maxμ∈�train

{

�u(μ)
√

∑K
k=1 ||ust

N
(μ,tk )||2

Y

}

as a function of N ; and Fig. 3(b) shows the distri-

bution of the sample set Sst
∗ , respectively. As observe from Fig. 3(a), the max error indicator

�max,rel
u could not decrease further when N st ≥ 140, hence we set N st

max = 150 for the imple-

mentation of the GO algorithms afterwards. (Of course, N st
max is still able to be enriched

automatically whenever Ñ > N st
max as described in Algorithm 2 of the “cross-validation”

process, Goal oriented POD—Greedy algortithm Section) For comparison purpose, the
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FIG. 3. (a) Maximum of error indicator �max,rel
u over �train as a function of N, and (b) distribution of

sampling points by the standard POD–Greedy algorithm (N st
max = 150). Different markers were used for

the first N st
max = 60 basis functions. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

results associated with the first N st
max = 60 basis functions were plotted using different

markers in Fig. 3, respectively.

b. Once the sets Sst
∗ and Y st

N are available, the term sst

Ñ
(μ) (of �s(μ) in (T1k)) is now com-

putable; and hence, it is possible to implement the goal-oriented POD–Greedy algorithms

(i.e., the left column of Table I). For comparison, we show the results of the goal-oriented

algorithms using (Ñ = 2N ), (Ñ , ηT = 0.8), (Ñ , ηT = 0.5), and (Ñ , ηT = 0.1) in Fig. 4,

respectively. Note that there is no “cross-validation” process for the first algorithm as we

FIG. 4. (a) Maximum of error indicator �max,rel
s over �train as a function of N and (b) distribution of sam-

pling points by the goal-oriented POD–Greedy algorithms (Ñ= 2N), (Ñ , ηT = 0.8), (Ñ , ηT = 0.5), and (Ñ ,
ηT = 0.1). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 5. (a) Ñ , (b) the size |�st
n |, (c) max, and (d) min effectivities

∣

∣

�s (μ)

s(μ)−s
go
N

(μ)

∣

∣ in (♣) as functions of N

of the GO algorithms (Ñ , ηT = 0.8), (Ñ , ηT = 0.5) and (Ñ , ηT = 0.1). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

just fix Ñ = 2N for the computation of sst

Ñ
(μ) in �s(μ). The latter algorithms use the pro-

posed “cross-validation” process to choose adaptively Ñ with the settings: |�st
1 | = 10 and

�nsample = 10 corresponding with ηT = 0.8, 0.5 and 0.1, respectively. Fig. 4(a) presents the

maximum error indicators �max,rel
s = maxμ∈�train

{

∣

∣

�s (μ)

sst

Ñ
(μ)

∣

∣

}

as a function of N ; and Fig. 4(b)

shows the distribution of the sample sets Sgo
∗ . The results of the “cross-validation” processes

(Ñ , ηT = 0.8), (Ñ , ηT = 0.5), and (Ñ , ηT = 0.1) are also presented in Fig. 5. In particular,

Fig. 5(a) presents all the Ñ found adaptively for each N ; Fig. 5(b) shows the size of �st
n as

a function of N ; Fig. 5(c,d) illustrate the maximum and minimum effectivities in (♣) over

�st
n , respectively. Figure 5 confirms the behavior of these GO algorithms: as ηT increases

close to 1, the range [ηT , 2 − ηT ] shrinks around 1 (i.e., better test effectivities), hence the

algorithm would need larger Ñ to hold (♣) true.

c. To evaluate the performance of the algorithms, we create a test sample set �test ⊂ D which

is a coarse subset of D; then compute and compare mutually their RB true errors. This set

has ntest(= 10 × 10) = 100 sample points distributed equidistantly. We show, as functions
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FIG. 6. Comparison of maximum (relative) RB true errors by standard and all goal-oriented POD–Greedy
algorithms over �test: (a) solution and (b) output. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

of N : emax
u = maxμ∈�test

eu(μ) (defined in (18)) and emax
s = maxμ∈�test

es(μ) (defined in (19))

in Fig. 6, respectively. Figure 6(a) shows quite similar true solution errors by the algorithms;

while from Fig. 6(b), the goal-oriented algorithms give true output errors smaller than that

computed by the standard algorithm. The differences in the RB true output errors by the

standard versus GO algorithms can be up to 10 times. Therefore, we can conclude that the

GO algorithms (with cross-validation processes) give RB true output errors smaller than that

provided by the standard algorithm (for the same N basis functions under consideration).

d. Lastly, we evaluate the performance of the sampling algorithms via their (practical) output

error approximations. For comparison, the output error approximation (21) by the stan-

dard algorithm with (Ñ , ηT = 0.8) is used. (Namely, the pairs (N , Ñ) in (21) is taken

following and after implementing the GO (Ñ , ηT = 0.8) algorithm.7) In particular, Fig.

7(b) shows the graphs of �̃max,rel
s = maxμ∈�test

|�s (μ)

s(μ)
| (defined in (20), (21)) as functions

of N by the algorithms: standard (Ñ , ηT = 0.8), GO (Ñ = 2N ), GO (Ñ , ηT = 0.8), GO

(Ñ , ηT = 0.5), and GO (Ñ , ηT = 0.1), respectively. Figure 7(a) is just a repetition of Fig.

6(b)—which shows the max relative RB true errors to compare with the max output error

approximations in Fig. 7(b). The associated maximum/minimum effectivities of this error

approximation (i.e., ηmax
s = maxμ∈�test

ηs(μ), ηmin
s = minμ∈�test

ηs(μ), defined in (20), (21))

are also shown in Fig. 7(c,d), respectively. As observed from Fig. 7(a,b), the GO algorithms

are superior to the standard algorithm in both RB true error and output error approximation.

Regarding effectivities, Fig. 7(c,d) show that the GO (Ñ , ηT = 0.8) algorithm gives the best

effectivities among all the algorithms. These results confirm the good performance of the

“cross-validation” process: the GO (Ñ , ηT = 0.8) algorithm not only decreases the RB true

error compared with the standard algorithm, but it also improves significantly the output

effectivity estimation compared with other GO algorithms (especially the GO (Ñ = 2N )

one).

7 The aim of this special test is that for the same online computational effort O(N3) + O(Ñ3), we want to compare the

error approximations and associated effectivities by the standard versus the GO (Ñ , ηT = 0.8) algorithms.
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FIG. 7. “Impulse load” case: comparison of (a) max relative RB true errors, (b) max relative error
approximations, (c) corresponding max effectivities, and (d) corresponding min effectivities of all sam-
pling algorithms over �test. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

B. A 3D Dental Implant Model Problem

Finite Element Model and Approximation. We now consider a simplified 3D dental implant-

bone model in Fig. 8(a). The geometry of the simplified dental implant-bone model is constructed

using the software SolidWorks 2010. The physical domain � consists of five regions: the out-

ermost cortical bone �1, the cancellous bone �2, the interfacial tissue �3, the dental implant

�4 and the stainless steel screw �5. The 3D simplified model is then meshed using the soft-

ware ABAQUS/CAE version 6.10-1 [Fig. 8(b)]. A dynamic force opposite to the x-direction is

then applied to a prescribed area on the body of the screw as shown in Fig. 9(a). As mentioned

in Sections II.C and finite model approximation Section, all computations and simulations will

be performed for the impulse loading case thanks to the Duhamel’s convolution principle (12).

Figure 9(b) shows the time history of both loading cases used in this work: the impulse load

and an “arbitrary” load. The Dirichlet boundary condition (∂�D) is specified in the bottom-half

of the simplified model as illustrated in Figure 9(a); while zero initial conditions (i.e., zero dis-

placement and velocity) are applied on the model. The output of interest is defined as the average
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FIG. 8. (a) The 3D simplified FEM model with sectional view and (b) meshing in ABAQUS. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

x-displacement responses of a prescribed area on the head of the screw [Fig. 9(a)]. The FE mesh

consists of 9479 nodes and 50,388 four-node tetrahedral solid elements. The coinciding nodes of

the contact surfaces between different regions (the regions �1, �2, �3, �4, �5) are assumed to be

rigidly fixed, that is, the displacements in the x−, y−, and z-directions are all set to be the same

for the same coinciding nodes.

We assume that the regions �i , 1 ≤ i ≤ 5, of the simplified model are homogeneous and

isotropic. The material properties: the Young’s moduli, Poisson’s ratios and densities of these

regions are presented in Table II [55]. As similar to [8], we still use Rayleigh damping with

stiffness-proportional damping coefficientβi , 1 ≤ i ≤ 5 (Table II) such that Ci = βiAi , 1 ≤ i ≤ 5,

where Ci and Ai are the FEM damping and stiffness matrices of each region, respectively. We also

FIG. 9. (a) Output area, applied load F and boundary condition and (b) time history of an impulse and an
“arbitrary” load. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE II. Material properties of the dental implant-bone structure.

Domain Layers E (Pa) ν ρ(g/mm3) β

�1 Cortical bone 2.3162 × 1010 0.371 1.8601 × 10−3 3.38 × 10−6

�2 Cancellous bone 8.2345 × 108 0.3136 7.1195 × 10−4 6.76 × 10−6

�3 Tissue E 0.3155 1.055 × 10−3 β

�4 Titan implant 1.05 × 1011 0.32 4.52 × 10−3 5.1791 × 10−10

�5 Stainless steel screw 1.93 × 1011 0.305 8.027 × 10−3 2.5685 × 10−8

note in Table II that (E,β)—the Young’s modulus and Rayleigh damping coefficient associated

with the interfacial tissue are our sole parameters.

With respect to our particular dental implant problem, the actual integral forms of the linear

and bilinear forms are defined as:

m(w, v) =
5

∑

r=1

∑

i

∫

�r

ρrwivi , (29a)

a(w, v; μ) =
5

∑

r=1,r �=3

∑

i,j ,k,l

∫

�r

∂vi

∂xj

Cr
ijkl

∂wk

∂xl

+ μ1

∑

i,j ,k,l

∫

�3

∂vi

∂xj

C3
ijkl

∂wk

∂xl

, (29b)

c(w, v; μ) =
5

∑

r=1,r �=3

βr

∑

i,j ,k,l

∫

�r

∂vi

∂xj

Cr
ijkl

∂wk

∂xl

+ μ2μ1

∑

i,j ,k,l

∫

�3

∂vi

∂xj

C3
ijkl

∂wk

∂xl

, (29c)

f (v) =
∑

i

∫

Ŵl

viφi , (29d)

ℓ(v) =
1

|Ŵo|

∫

Ŵo

v1, (29e)

for all w, v ∈ Y , μ ∈ D. Here, the parameter μ = (μ1, μ2) ≡ (E, β) belongs to the region

�3. Cr
ijkl is the constitutive elasticity tensor for isotropic materials and it is expressed in terms

of the Young’s modulus E and Poisson’s ratio ν of each region �r , 1 ≤ r ≤ 5, respec-

tively. Ŵl is the prescribed loading area (surface traction) and Ŵo is the prescribed output area

as shown in Fig. 9(a), respectively. It is obvious from (8) and (29) that the smooth functions

�1
a(μ) = 1, �2

a(μ) = μ1; �1
c(μ) = 1, �2

c(μ) = μ1μ2 depend on μ — but the bilinear forms

a1(w, v) =
∑5

r=1,r �=3

∑

i,j ,k,l

∫

�r

∂vi

∂xj
Cr

ijkl

∂wk

∂xl
, a2(w, v) = c2(w, v) =

∑

i,j ,k,l

∫

�3

∂vi

∂xj
C3

ijkl

∂wk

∂xl
and

c1(w, v) =
∑5

r=1,r �=3 βr

∑

i,j ,k,l

∫

�r

∂vi

∂xj
Cr

ijkl

∂wk

∂xl
do not depend on μ.

The FE space to approximate the 3D dental implant-bone problem is of dimension N = 26343.

For time integration, T = 1 × 10−3s, �t = 2 × 10−6s, K = T

�t
= 500. The input parameter

μ ≡ (E, β) ∈ D, where the parameter domain D ≡ [1×106, 25×106]Pa×[5×10−6, 5×10−5] ⊂
R

P=2. (Note that the range of E of this parameter domain is nearly two times larger than that of

[8].) The || · ||Y norm used in this work is defined as ||w||2Y = a(w, w; μ) + m(w, w; μ), where

μ = (13 × 106Pa, 2.75 × 10−5) is the arithmetic average of μ in D; Qa = 2, Qc = 2. The entire

work is performed using the software MATLAB R2012b. Figure 10 presents some FEM results

corresponding with the test parameter μtest = (10 × 106Pa, 1 × 10−5). In particular, Fig. 10(a)

shows the “unit” FEM output displacement (i.e., under the unit impulse load) in the xx-direction

versus time at μtest. In addition, Fig. 10(b) shows the FEM output displacements versus time under
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FIG. 10. (a) “Unit” FEM output displacement in x-direction versus time and (b) comparison of “arbitrary”
FEM output displacements [under the applied load in Fig.9(b)] computed by Duhamel’s convolution and
direct computation, with μtest =

(

10 × 106Pa, 1 × 10−5
)

. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

the “arbitrary” load [in Fig. 9(b)] by direct FEM computation and by Duhamel’s convolution. It

is observed that these two results match perfectly well with each other.

Numerical Results

The Impulse Loading Case. We now discuss the POD–Greedy algorithms of interest. A train-

ing sample set �train is created by an equidistant distribution over D with ntrain(= 30 × 30) = 900

samples. We still use M = 1 and N go
max = 60 (Table I) to terminate the iteration procedures. In the

remaining sections, we only show the results of 3 typical algorithms which are the standard, the

GO (Ñ , ηT = 0.8) and the GO (Ñ = 2N ) algorithms for comparison.

a. As similar to numerical results Section above, the standard POD–Greedy algorithm is

implemented first. The results are presented in Fig. 11: Fig 11(a) shows the maximum

error indicator �max,rel
u = maxμ∈�train

{

�u(μ)
√

∑K
k=1 ||ust

N
(μ,tk )||2

Y

}

as a function of N ; and Fig. 11(b)

shows the distribution of the sample set Sst
∗ , respectively. N st

max is set to be 200 since the goal-

oriented algorithms may need a quite large N st
max afterwards. For comparison purpose, the

results associated with the first N st
max = 60 basis functions were also plotted using different

markers as in Fig. 11, respectively.

b. Now, the goal-oriented POD–Greedy algorithms can be implemented since the term sst

Ñ
(μ)

is computable from the availability of the sets Sst
∗ and Y st

N . For comparison, we show the

results of the goal-oriented algorithms using (Ñ = 2N ) versus (Ñ , ηT = 0.8) in Figure 12.

The settings |�st
1 | = 10 and �nsample = 10 are used for this GO (Ñ , ηT = 0.8) algorithm.

Figure 12(a) presents the maximum error indicators �max,rel
s = maxμ∈�train

{

∣

∣

�s (μ)

sst

Ñ
(μ)

∣

∣

}

as a

function of N ; and Fig. 12(b) shows the distribution of the sample sets Sgo
∗ , respectively. It

is observed from Fig. 12(a) that the GO (Ñ , ηT = 0.8) algorithm is just a bit better than the
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FIG. 11. (a) Maximum of error indicator �max,rel
u over �train as a function of N and (b) distribution of

sampling points by the standard POD–Greedy algorithm (N st
max = 200). Different markers were used for

the first N st
max = 60 basis functions. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

GO (Ñ = 2N ) one regarding maximum error indicators. However, Fig. 12(b) shows that

these two algorithms are different from each other by 15/60 (=1/4) sample points. This is

an important difference which will be reflected clearly in the effectivity estimation by the

two algorithms afterwards. The results of the “cross-validation” process (Ñ , ηT = 0.8) are

also presented in Fig. 13. In particular, Fig. 13(a) presents all the Ñ found adaptively for

each N ; Fig. 13(b) illustrates the maximum and minimum effectivities in (♣) over �st
n ; and

Fig. 13(c) shows the size of �st
n as a function of N, respectively.

FIG. 12. (a) Maximum of error indicator �max,rel
s over �train as a function of N and (b) distribution of

sampling points by the goal-oriented POD–Greedy algorithms (Ñ = 2N ) versus (Ñ , ηT = 0.8). [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 13. (a) Ñ , (b) max/min effectivities

∣

∣

∣

�s (μ)

s(μ)−s
go
N

(μ)

∣

∣

∣
in (♣), ∀μ ∈ �st

n ,and (c) the size |�st
n | as functions

of N of the algorithm GO (Ñ , ηT = 0.8). [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

c. To evaluate the performance of the algorithms, we create a test sample set �test ⊂ D which

is a coarse subset of D; then compute and compare mutually their RB true errors. This set

has ntest(= 10 × 10) = 100 sample points distributed equidistantly. We show, as functions

of N : emax
u = maxμ∈�test

eu(μ) (defined in (18)) and emax
s = maxμ∈�test

es(μ) (defined in (19))

in Fig. 14, respectively. We observe again from Fig. 14(b) that the goal-oriented algorithms

completely prevail over the the standard algorithm as regards true output errors. The dif-

ferences in the RB true output errors by the standard versus GO algorithms can be up to 10

times. As expected from Fig. 14(b), the GO (Ñ , ηT = 0.8) algorithm is a bit better than the

GO (Ñ = 2N ) algorithm because the former uses more RB basis functions (Ñ ) than the

latter with the same N [see Fig. 13(a)].

d. Finally, we evaluate the performance of the sampling algorithms via their (practical) out-

put error approximations. Again, the output error approximation (21) by the standard

algorithm with (Ñ , ηT = 0.8) is used. (Namely, the pairs (N , Ñ) in (21) is taken fol-

lowing and after implementing the GO (Ñ , ηT = 0.8) algorithm.) Specifically, Fig. 15(b)

shows the graphs of �̃max,rel
s = maxμ∈�test

|�s (μ)

s(μ)
| (defined in (20), (21)) as functions of
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FIG. 14. Comparison of maximum (relative) RB true errors by standard and all goal-oriented POD–Greedy
algorithms over �test: (a) solution and (b) output. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

FIG. 15. “Impulse load” case: comparison of (a) max relative RB true errors, (b) max relative error
approximations, (c) corresponding max effectivities and (d) corresponding min effectivities of all sam-
pling algorithms over �test. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num



602 HOANG ET AL.

FIG. 16. “Arbitrary load” case: comparison of (a) max relative RB true errors, (b) max relative error
approximations, (c) corresponding max effectivities, and (d) corresponding min effectivities of all sampling
algorithms over �test. (Shorter legends were used in Fig.16(c) and 16(d) to avoid affecting the graphs.) [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

N by 3 algorithms: standard (Ñ , ηT = 0.8), GO (Ñ , ηT = 0.8) and GO (Ñ = 2N ),

respectively. Figure 15(a) is again a repetition of Fig. 14(b)—which shows the max

relative RB true errors to compare with the max output error approximations in Fig.

15(b). The associated maximum/minimum effectivities of this error approximation (i.e.,

ηmax
s = maxμ∈�test

ηs(μ), ηmin
s = minμ∈�test

ηs(μ), defined in (20), (21)) are also shown in Fig.

15(c,d), respectively. Figure 15(a,b) again show that the GO algorithms give smaller RB true

output errors than that provided by the standard algorithm (for the same N basis functions).

Figure 15(c,d also show much better effectivities of the standard and GO (Ñ , ηT = 0.8)

algorithms compared with that of the GO (Ñ = 2N ) one. These results again confirm

the good performance of the “cross-validation” process: the GO (Ñ , ηT = 0.8) algorithm

decreases the RB true error compared with the standard algorithm, and it also improves

significantly the output effectivity estimation compared with the GO (Ñ = 2N ) algorithm.

An Arbitrary Loading Case. All the results shown so far are for the unit impulse load, which

is of very limited use in practice. Fortunately, as mentioned in Section II.C, we can use the
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TABLE III. Comparison of the CPU-time for a FEM and RB analysis.

N tRB(online) (sec) tFEM (sec) κ = tFEM/tRB(online) t�s (μ) (sec) (Ñ = 2N ) t�s (μ) (sec) (Ñ , ηT = 0.8)

10 0.006757 29 4291 0.008329 0.038035
20 0.008391 29 3456 0.014242 0.099046
30 0.011123 29 2607 0.031723 0.049015
40 0.014531 29 1996 0.042440 0.130987
50 0.024381 29 1189 0.061122 0.192829
60 0.031196 29 930 0.075049 0.328012

Duhamel’s principle to convolute all the “unit” RB solutions with an “arbitrary” load to obtain

correspondingly “arbitrary” RB solutions/outputs. Here, we also test and present some results of

our error approximation �s(μ) with the “arbitrary” load defined in Fig. 9(b). We note that the

error approximation (T1k) is good only for the impulse load since we built the goal-oriented RB

basis functions for this load. For more complicated loadings, the error approximation might be

much worse since there might be error in the convolution. Similar to paragraph d) of numerical

results Section above, Fig. 16(a,b) show the graphs of max relative RB true error and max relative

error approximation; while Fig. 16(c,d) show the corresponding max/min effectivities of the 3

algorithms: standard, GO (Ñ , ηT = 0.8) and GO (Ñ = 2N ) over �test, respectively. Again, we

obtain quite similar phenomena as in Fig. 15: the GO algorithms beat the standard one in RB true

error and error approximation; and the GO (Ñ , ηT = 0.8) algorithm provides the best effectivities

among all algorithms. The results again prove the preeminence of the proposed “cross-validation”

process to choose adaptively and sufficiently Ñ for a particular N of interest.

Finally, regarding computational time, all computations were performed on a desktop Intel(R)

Core(TM) i7-3930K CPU @3.20GHz 3.20GHz, RAM 32GB, 64-bit Operating System. The com-

putational time for the RB solver (tRB(online)), the CPU-time for the FEM solver by our code (tFEM)

and the CPU-time saving factor κ = tFEM/tRB(online) are listed on Table III, respectively. We also

provide roughly the computational time for the error approximations (�s(μ)) using both GO

algorithms in that Table. We see that the RB solver is approximately O(1000) times and the error

approximation is O(100) faster than the FEM solver; and thus it is clear that the RB is very efficient

and reliable for solving time-dependent dynamic problems [56–60].

V. CONCLUSION

A new goal-oriented POD–Greedy sampling algorithm was proposed. The proposed algorithm

cooperates and improves further the standard POD–Greedy algorithm using the output error

approximation rather than the dual norm of residual as error indicator within the Greedy itera-

tions. A cross-validation process is proposed to choose adaptively the dimension of the larger-

dimensional auxiliary RB space in the output error approximation. The proposed strategy is

verified by investigating a 2D linear plane strain problem and a 3D dental implant problem in the

time domain. It is demonstrated that this type of error indicator will guide the Greedy iterations

to select the parameter samples to optimize the true output error. In comparison with the standard

algorithm, we conclude that our proposed algorithm performs better—in terms of output’s accu-

racy, and quite similar—in terms of solution’s accuracy. The proposed algorithm is applicable

to various (regular) output functionals and is thus very suitable within the goal-oriented RB

approximation context.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



604 HOANG ET AL.

APPENDIX A: NONDIMENSIONALIZATION OF DAMPED WAVE EQUATION (WEAK
FORM)

In the following, the physical and nondimensional terms will be denoted as x̄ and x, respectively.

With all the terms defined as in (3)–(4) and assuming zero mass-proportional Rayleigh damping

coefficients, the weak form of the dimensional damped wave equation considered in this work

has the following form: ∀t̄ ∈ [0, T̄ ] and a test function v̄

∫

�

ρv̄i

∂2ūi

∂t̄2
+ β

∂

∂t̄

∫

�

∂v̄i

∂x̄j

C̄ijkl

∂ūk

∂x̄l

+
∫

�

∂v̄i

∂x̄j

C̄ijkl

∂ūk

∂x̄l

=
∫

Ŵl

v̄iφi on �, (30)

which subjects to the boundary conditions

ūi = ūd
i on ŴD , (31a)

σ ijnj = C̄ijkl

(

∂ūk

∂x̄l

+ β
∂

∂t̄

∂ūk

∂x̄l

)

nj = φi on Ŵl, (31b)

and initial conditions

ūi(t̄ = 0) = ū
d,0
i on �, (32a)

∂ūi(t̄ = 0)

∂t̄
= v̄

d,0
i on �. (32b)

Let L∗, ρ∗, and E∗ are correspondingly the characteristic length, mass density and stress of the

model and define the nondimensional variables as

xi =
x̄i

L∗ , ui =
ūi

L∗ , φi =
φi

E∗ , (33a)

Cijkl =
1

E∗ C̄ijkl , t =

√

E∗

ρ∗L∗2
t̄ , β =

√

E∗

ρ∗L∗2
β. (33b)

Under this transformation, the nondimensional weak form of Eq. (30) is defined as: ∀t ∈
[0, T ], T =

√

E∗

ρ∗L∗2 T̄ and a test function v

∫

�

vi

∂2ui

∂t2
+ β

∂

∂t

∫

�

∂vi

∂xj

Cijkl

∂uk

∂xl

+
∫

�

∂vi

∂xj

Cijkl

∂uk

∂xl

=
∫

Ŵl

viφi on �, (34)

with boundary conditions

ui =
ūd

i

L∗ on ŴD , (35a)

σijnj = Cijkl

(

∂uk

∂xl

+ β
∂

∂t

∂uk

∂xl

)

nj =
φi

E∗ on Ŵl, (35b)
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and initial conditions

ui(t = 0) =
ū

d,0
i

L∗ on �, (36a)

∂ui(t = 0)

∂t
=

√

ρ∗

E∗ v̄
d,0
i on �. (36b)
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